| 
 
 Numerical Linear Algebra
Prerequisites:   Mathematical Analysis, Advanced Algebra, Matlab Programming
 
 
Highlights:   专业核心课程,深入探讨数值线性代数
 
 
Classroom quizzes:  
 
Final exam 
 
Grading Policy: Assignments 30% + Classroom quizzes 20% + Final exam 50%
 
 
 
Instructor
References
Numerical Linear Algebra, Lloyd N. Trefethen and David Bau, III, SIAM, 1997. Twenty-fifth Anniversary Edition, 2022 
 
Applied Numerical Linear Algebra, James Demmel, SIAM, 1997 
 
Matrix Analysis and Applied Linear Algebra, Study and Solutions Guide, Carl D. Meyer, 2nd Edition, SIAM, 2023 
 
Matrix Analysis and Computations, Zhong-Zhi Bai and Jian-Yu Pan, SIAM, 2021 
 
Matrix Computations, Gene H. Golub and Charles F. Van Loan, 4th Edition, Johns Hopkins University Press, 2013
 
 
Numerical Linear Algebra An Introduction, Holger Wendland, Cambridge University Press, 2018 
 
Linear Algebra, Data Science, and Machine Learning, Jeff Calder and Peter J. Olver, Springer, 2025
 
 
Iterative Methods and Preconditioners for Systems of Linear Equations, Gabriele Ciaramella and Martin J. Gander, SIAM, 2022 
 
Iterative Methods for Sparse Linear Systems, Yousef Saad, 2nd Edition, SIAM, 2003  
 
Iterative Krylov Methods for Large Linear Systems, Henk Van der Vorst, Cambridge University Press, 2003 
 
Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, R. Barrett et al., 2nd Edition, SIAM, 1994. Matlab, Fortran, and C++ codes 
 
 
Accuracy and Stability of Numerical Algorithms, Nicholas J. Higham, 2nd Edition, SIAM, 2002 
 
数值线性代数, 曹志浩, 复旦大学出版社, 1996 
 
数值线性代数, 徐树方, 高立, 张平文, 第二版, 北京大学出版社, 2013 
 
数值线性代数, 高卫国, 魏轲, 柏兆俊, 高等教育出版社, “101计划”核心教材数学领域, 2025
 
 
 
Lecture Notes
Lecture 1: Inner product, Orthogonality, Vector/Matrix norms 
 
Lecture 2: Singular value decomposition (SVD) 
 
Lecture 3: Projector, Classical/Modified Gram–Schmidt orthogonalization, QR factorization 
 
Lecture 4: Householder reflector, Givens rotation, Least squares problem 
 
Lecture 5: LU factorization, Cholesky factorization, Gaussian elimination with pivoting 
 
Lecture 6: Stationary iterative methods 
 
Lecture 7: Eigenvalue problem 
 
Lecture 8: Power/Inverse iteration, Rayleigh quotient iteration 
 
Lecture 9: QR algorithm 
 
Lecture 10: Jacobi method, Bisection method, Divide-and-conquer method 
 
Lecture 11: Krylov subspace, Generalized minimal residual method 
 
Lecture 12: Conjugate gradients     (Proof of Theorem 1) 
 
Lecture 13: Biorthogonalization methods 
 
Lecture 14: Krylov subspace methods for least squares problems 
 
Lecture 15: Krylov subspace methods for eigenvalue problems 
 
Lecture 16: From Lanczos to Gauss quadrature 
 
Lecture 17: FFT and structured matrices 
 
Lecture 18: Multigrid 
 
Lecture 19: Conditioning of a problem 
 
Lecture 20: Backward stability of an algorithm 
 
 
Assignments
Other
 |