Numerical Linear Algebra Assignment 17

Exercise 1. (10 points)
Assume that n is even. Let $\omega_{n}=\mathrm{e}^{-\mathrm{i} 2 \pi / n}, \mathbf{F}_{n}=\left[\omega_{n}^{i j}\right]_{i, j=0}^{n-1}$, and

$$
\mathbf{D}=\operatorname{diag}\left\{1, \omega_{n}, \ldots, \omega_{n}^{n / 2-1}\right\}
$$

Construct a matrix \mathbf{M} with entries 0 or 1 such that

$$
\mathbf{F}_{n}=\left[\begin{array}{cc}
\mathbf{I} & \mathbf{D} \\
\mathbf{I} & -\mathbf{D}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{F}_{n / 2} & \\
& \mathbf{F}_{n / 2}
\end{array}\right] \mathbf{M} .
$$

Exercise 2. (10 points)
Prove Lemma 5 of Lecture 17.

Exercise 3. (10 points)
Prove Theorem 6 of Lecture 17.

Exercise 4. (10 points)
Prove Theorem 10 of Lecture 17.

Exercise 5. (10 points)
Write down all the eigenpairs of the $n \times n$ tridiagonal Toeplitz matrix

$$
\mathbf{T}_{n}=\left[\begin{array}{cccc}
b & c & & \\
a & \ddots & \ddots & \\
& \ddots & \ddots & c \\
& & a & b
\end{array}\right]
$$

Exercise 6. (Programming, 10 points)
Write a matlab function $(g=\operatorname{myfft}(f))$ to implement FFT and test its performance. For simplicity, you can assume that $\mathbf{f} \in \mathbb{R}^{n}$ with $n=2^{k}$.

