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1. Discrete Fourier transform and its inverse

Definition 1

The discrete Fourier transform (DFT) is a mapping on Cn given by

[Fn{f}]i =
n−1

j=0

ωij
n fj , i = 0, 1, · · · , n− 1,

where ωn = e−i2π/n and i =
√
−1. The inverse DFT is given by


F−1
n {g}


i
=

1

n

n−1

j=0

ω−ij
n gj , i = 0, 1, · · · , n− 1.

DFT and inverse DFT as matrix-vector products:

Fn{f} = Fnf , F−1
n {g} =

1

n
F∗
ng =

1

n
Fng, Fn =


ωij
n

n−1

i,j=0
.

Discrete sine/cosine transform: DST, DCT, . . .
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2. The FFT algorithm

For simplicity, we assume that n = 2k and set m = n/2. Obviously,

ωm = ω2
n = e−i2π/m, ωm

m = 1, ωm
n = −1.

Given any f =

f0 f1 · · · fn−1

⊤ ∈ Cn, for i = 0, 1, . . . ,m− 1,

[Fn{f}]i =
m−1

l=0

ωi2l
n f2l +

m−1

l=0

ωi(2l+1)
n f2l+1

=

m−1

l=0

ωil
mf2l + ωi

n

m−1

l=0

ωil
mf2l+1

= [Fm{fe}]i + ωi
n[Fm{fo}]i,

where

fe =

f0 f2 · · · fn−2

⊤
, fo =


f1 f3 · · · fn−1

⊤
.
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For i = 0, 1, . . . ,m− 1, we also have

[Fn{f}]m+i =

m−1

l=0

ω(m+i)2l
n f2l +

m−1

l=0

ω(m+i)(2l+1)
n f2l+1

=

m−1

l=0

ωil
mf2l − ωi

n

m−1

l=0

ωil
mf2l+1

= [Fm{fe}]i − ωi
n[Fm{fo}]i.

Let FFT(n) denote the number of flops required to evaluate Fn{f}
by a recursive algorithm. Given the vectors Fm{fe} and Fm{fo},
only m multiplications, m additions and m subtractions are
needed to evaluate Fn{f}. Hence,

FFT(n) = 3m+ 2FFT(m) = 3n/2 + 2FFT (n/2) .

Since FFT(1) = 0, then

FFT(n) = 3n/2× k =
3

2
n log n.
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3. Flop counts for frequently used algorithms

Method Matrix (m ≥ n) Operation or Factorization Flops
MV product A ∈ Cn×n b = Ax 2n2

FFT MV product F ∈ Cn×n b = Fx 3n logn/2
MM product A,B ∈ Cn×n C = AB 2n3

Inverse A ∈ Cn×n A−1 2n3

LU factorization A ∈ Cn×n PA = LU 2n3/3
Hessenberg LU H ∈ Cn×n H = LU 2n2

Tridiagonal LU T ∈ Cn×n T = LU 3n
Cholesky A ∈ Cn×n A = R∗R n3/3

Triangular solve L ∈ Cn×n Lx = b n2

Triangular inverse L ∈ Cn×n L−1 2n3/3
Normal equations A ∈ Cm×n A∗A = R∗R mn2 + n3/3
Householder QR A ∈ Cm×n Q∗A = R 2(mn2 − n3/3)

MGS QR A ∈ Cm×n A = QnRn 2mn2

Bidiagonalization A ∈ Cm×n B = U∗AV 4(mn2 − n3/3)
Hessenberg reduction A ∈ Cn×n H = Q∗AQ 10n3/3
Tridiagonal reduction A ∈ Cn×n T = Q∗AQ 4n3/3

Remark 2

On modern computer architectures the communication costs in moving
data between different levels of memory or between processors in a
network can exceed the arithmetic costs by orders of magnitude.
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4. Circulant matrix

Definition 3

An n× n matrix C is called circulant if it has the form

C =





c0 cn−1 · · · c2 c1

c1 c0 cn−1
. . . c2

...
. . .

. . .
. . .

...

cn−2
. . . c1 c0 cn−1

cn−1 cn−2 · · · c1 c0





.

We indicate this situation by C = circ(c), where

c =

c0 c1 · · · cn−1

⊤ ∈ Cn

Exercise: Generate a circulant matrix in Matlab.
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Definition 4

The n× n circulant right shift matrix is given by

R =





0 0 · · · 0 1
1 0 0 · · · 0
0 1 0 0 · · ·
...

. . .
. . .

. . .
...

0 · · · 0 1 0




= circ


0 1 0 · · · 0

⊤
.

Obviously, if C = circ(c), then C =

n−1

j=0

cjR
j .

Lemma 5

Let ωn = e−i2π/n. Then

R =
1

n
F∗
ndiag{1,ωn,ω

2
n, · · · ,ωn−1

n }Fn.
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Theorem 6

If C = circ(c), then

C = F−1
n diag{c}Fn =

1

n
F∗
ndiag{c}Fn

where
c = Fnc.

Fast algorithm 1: Circulant matrix-vector product v = Cu

Step 1: Compute c = Fnc and u = Fnu by FFT
Step 2: Compute the component-wise vector product v = c. ∗ u
Step 3: Compute v =

1

n
F∗
nv by iFFT
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5. Toeplitz matrix

Definition 7

A matrix is called Toeplitz if it is constant along diagonals. An n× n
Toeplitz matrix T has the form

T =





t0 t−1 · · · t2−n t1−n

t1 t0 t−1
. . . t2−n

...
. . .

. . .
. . .

...

tn−2
. . . t1 t0 t−1

tn−1 tn−2 · · · t1 t0





.

We indicate this situation by T = toep(t), where

t =

t1−n · · · t−1 t0 t1 · · · tn−1

⊤ ∈ C2n−1.

Explore toeplitz(c,r) in Matlab.
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Define S = toep(s), where

s =

t1 t2 · · · tn−1 0 t1−n · · · t−2 t−1

⊤
.

Then we have

Tce :=


T S
S T


= circ(tce),

where

tce =

t0 t1 · · · tn−1 0 t1−n · · · t−2 t−1

⊤ ∈ C2n.

Note that 
T S
S T

 
u
0


=


Tu
Su


.

Using the fast algorithm for a circulant matrix-vector product, we
obtain the following fast algorithm for a Toeplitz matrix-vector
product v = Tu.
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Fast algorithm 2: Toeplitz matrix-vector product v = Tu

Step 1: Compute tce = F2nt
ce and uze = F2n[u

⊤ 0]⊤ by FFT

Step 2: Compute the component-wise vector product w = tce. ∗ uze

Step 3: Compute w =
1

2n
F∗
2n w by iFFT

Step 4: Extract the first n components of w to obtain v,
i.e., v = w(1 : n)

6. Hankel matrix

A Hankel matrix H =

hij


has identical elements along all its

anti-diagonals, meaning that

hij = hi+l,j−l

for all relevant integers i, j, and l.

Explore hankel(c,r) in Matlab.
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A Hankel matrix is symmetric by definition.

The relation to a Toeplitz matrix: the matrix

T = JH, J =





1
1

. .
.

1





is a Toeplitz matrix, where J is a permutation matrix obtained by
reversing the columns (or rows) of the identity.

Fast algorithm for a Hankel matrix-vector product can be
obtained easily from that of a Toeplitz matrix-vector product.

Other issue:

Discrete sine transform: dst

Discrete cosine transform: dct

Symmetric Toeplitz-plus-Hankel (STH) matrix ...

Numerical Linear Algebra Lecture 17 Xiamen University 12 / 16



7. Kronecker product and vec(·) operator

Definition 8

Let A ∈ Cm×n and B ∈ Cp×q. Then A⊗B, the Kronecker product of
A and B, is the mp× nq matrix

A⊗B :=




a11B · · · a1nB
...

. . .
...

am1B · · · amnB



 .

Definition 9

Let A ∈ Cm×n. Then vec(A) is defined to be a column vector of size
mn made of the columns of A stacked atop one another from left to
right.
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If A =

a1 a2 · · · an


, then

vec(A) =





a1
a2
...
an




.

Let A,B ∈ Cm×n. Then tr(A∗B) = vec(A)∗vec(B).

Theorem 10

Let A ∈ Cp×m, X ∈ Cm×n, and B ∈ Cn×q. Then the following
properties hold:

vec(AX) = (In ⊗A)vec(X),

vec(XB) = (B⊤ ⊗ Im)vec(X),

vec(AXB) = (B⊤ ⊗A)vec(X).
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Theorem 11

The following facts about Kronecker products hold:

(A⊗B)(C⊗D) = (AC)⊗ (BD),

(A⊗B)−1 = A−1 ⊗B−1,

(A⊗B)† = A† ⊗B†,

(A⊗B)∗ = A∗ ⊗B∗.

Exercise: For A ∈ Cm×n, B ∈ Cp×q, and C ∈ Cm×q, solve

min
X∈Cn×p

AXB−CF =?

Exercise: Let T denote the triangular truncation operator, which
is a linear operator that maps a given matrix to its strictly lower
triangular part. Write down the matrix form of this operator.
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Exercise: Let A ∈ Cm×m and B ∈ Cn×n. What are eigenvalues of

I⊗A+B⊗ I, and A⊗B?

8. Reference books for Toeplitz solver and FFT

Chan, Raymond Hon-Fu and Jin, Xiao-Qing

An Introduction to Iterative Toeplitz Solvers, SIAM, 2007

Van Loan, Charles

Computational Frameworks for the Fast Fourier Transform, SIAM,
1992

9. Further reading for fast multipole methods

Greengard, Leslie F. and Rokhlin, Vladimir V.

A fast algorithm for particle simulations

Journal of Computational Physics 72 (1987), 325-348.
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