Lecture 17: FFT and structured matrices

School of Mathematical Sciences, Xiamen University

1. Discrete Fourier transform and its inverse

Definition 1

The discrete Fourier transform (DFT) is a mapping on \mathbb{C}^{n} given by

$$
\left[\mathcal{F}_{n}\{\mathbf{f}\}\right]_{i}=\sum_{j=0}^{n-1} \omega_{n}^{i j} f_{j}, \quad i=0,1, \cdots, n-1
$$

where $\omega_{n}=\mathrm{e}^{-\mathrm{i} 2 \pi / n}$ and $\mathrm{i}=\sqrt{-1}$. The inverse DFT is given by

$$
\left[\mathcal{F}_{n}^{-1}\{\mathbf{g}\}\right]_{i}=\frac{1}{n} \sum_{j=0}^{n-1} \omega_{n}^{-i j} g_{j}, \quad i=0,1, \cdots, n-1
$$

- DFT and inverse DFT as matrix-vector products:

$$
\mathcal{F}_{n}\{\mathbf{f}\}=\mathbf{F}_{n} \mathbf{f}, \quad \mathcal{F}_{n}^{-1}\{\mathbf{g}\}=\frac{1}{n} \mathbf{F}_{n}^{*} \mathbf{g}=\frac{1}{n} \overline{\mathbf{F}_{n} \overline{\mathbf{g}}}, \quad \mathbf{F}_{n}=\left[\omega_{n}^{i j}\right]_{i, j=0}^{n-1} .
$$

- Discrete sine/cosine transform: DST, DCT, ...

2. The FFT algorithm

- For simplicity, we assume that $n=2^{k}$ and set $m=n / 2$. Obviously,

$$
\omega_{m}=\omega_{n}^{2}=\mathrm{e}^{-\mathrm{i} 2 \pi / m}, \quad \omega_{m}^{m}=1, \quad \omega_{n}^{m}=-1
$$

- Given any $\mathbf{f}=\left[\begin{array}{llll}f_{0} & f_{1} & \cdots & f_{n-1}\end{array}\right]^{\top} \in \mathbb{C}^{n}$, for $i=0,1, \ldots, m-1$,

$$
\begin{aligned}
{\left[\mathcal{F}_{n}\{\mathbf{f}\}\right]_{i} } & =\sum_{l=0}^{m-1} \omega_{n}^{i 2 l} f_{2 l}+\sum_{l=0}^{m-1} \omega_{n}^{i(2 l+1)} f_{2 l+1} \\
& =\sum_{l=0}^{m-1} \omega_{m}^{i l} f_{2 l}+\omega_{n}^{i} \sum_{l=0}^{m-1} \omega_{m}^{i l} f_{2 l+1} \\
& =\left[\mathcal{F}_{m}\left\{\mathbf{f}_{\mathrm{e}}\right\}\right]_{i}+\omega_{n}^{i}\left[\mathcal{F}_{m}\left\{\mathbf{f}_{\mathrm{o}}\right\}\right]_{i},
\end{aligned}
$$

where

$$
\mathbf{f}_{\mathrm{e}}=\left[\begin{array}{llll}
f_{0} & f_{2} & \cdots & f_{n-2}
\end{array}\right]^{\top}, \quad \mathbf{f}_{\mathrm{o}}=\left[\begin{array}{llll}
f_{1} & f_{3} & \cdots & f_{n-1}
\end{array}\right]^{\top} .
$$

- For $i=0,1, \ldots, m-1$, we also have

$$
\begin{aligned}
{\left[\mathcal{F}_{n}\{\mathbf{f}\}\right]_{m+i} } & =\sum_{l=0}^{m-1} \omega_{n}^{(m+i) 2 l} f_{2 l}+\sum_{l=0}^{m-1} \omega_{n}^{(m+i)(2 l+1)} f_{2 l+1} \\
& =\sum_{l=0}^{m-1} \omega_{m}^{i l} f_{2 l}-\omega_{n}^{i} \sum_{l=0}^{m-1} \omega_{m}^{i l} f_{2 l+1} \\
& =\left[\mathcal{F}_{m}\left\{\mathbf{f}_{\mathrm{e}}\right\}\right]_{i}-\omega_{n}^{i}\left[\mathcal{F}_{m}\left\{\mathbf{f}_{\mathrm{o}}\right\}\right]_{i} .
\end{aligned}
$$

- Let $\operatorname{FFT}(n)$ denote the number of flops required to evaluate $\mathcal{F}_{n}\{\mathbf{f}\}$ by a recursive algorithm. Given the vectors $\mathcal{F}_{m}\left\{\mathbf{f}_{\mathrm{e}}\right\}$ and $\mathcal{F}_{m}\left\{\mathbf{f}_{\mathrm{o}}\right\}$, only m multiplications, m additions and m subtractions are needed to evaluate $\mathcal{F}_{n}\{\mathbf{f}\}$. Hence,

$$
\operatorname{FFT}(n)=3 m+2 \mathrm{FFT}(m)=3 n / 2+2 \mathrm{FFT}(n / 2)
$$

Since $\operatorname{FFT}(1)=0$, then

$$
\operatorname{FFT}(n)=3 n / 2 \times k=\frac{3}{2} n \log n
$$

3. Flop counts for frequently used algorithms

Method	Matrix $(m \geq n)$	Operation or Factorization	Flops
MV product	$\mathbf{A} \in \mathbb{C}^{n \times n}$	$\mathbf{b}=\mathbf{A x}$	$2 n^{2}$
FFT MV product	$\mathbf{F} \in \mathbb{C}^{n \times n}$	$\mathbf{b}=\mathbf{F x}$	$3 n \log n / 2$
MM product	$\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$	$\mathbf{C}=\mathbf{A B}$	$2 n^{3}$
Inverse	$\mathbf{A} \in \mathbb{C}^{n \times n}$	\mathbf{A}	$2 n^{3}$
LU factorization	$\mathbf{A} \in \mathbb{C}^{n \times n}$	$\mathbf{P A}=\mathbf{L U}$	$2 n^{3} / 3$
Hessenberg LU	$\mathbf{H} \in \mathbb{C}^{n \times n}$	$\mathbf{H}=\mathbf{L U}$	$2 n^{2}$
Tridiagonal LU	$\mathbf{T} \in \mathbb{C}^{n \times n}$	$\mathbf{T}=\mathbf{L} \mathbf{U}$	$3 n$
Cholesky	$\mathbf{A} \in \mathbb{C}^{n \times n}$	$\mathbf{A =} \mathbf{R} \mathbf{R}^{*} \mathbf{R}$	$n^{3} / 3$
Triangular solve	$\mathbf{L} \in \mathbb{C}^{n \times n}$	$\mathbf{L x}=\mathbf{b}$	n^{2}
Triangular inverse	$\mathbf{L} \in \mathbb{C}^{n \times n}$	$\mathbf{L}{ }^{-1}$	$2 n^{3} / 3$
Normal equations	$\mathbf{A} \in \mathbb{C}^{m \times n}$	$\mathbf{A}^{*} \mathbf{A}=\mathbf{R}^{*} \mathbf{R}$	$m n^{2}+n^{3} / 3$
Householder QR	$\mathbf{A} \in \mathbb{C}^{m \times n}$	$\mathbf{Q ^ { * } \mathbf { A } = \mathbf { R }}$	$2\left(m n^{2}-n^{3} / 3\right)$
MGS QR	$\mathbf{A} \in \mathbb{C}^{m \times n}$	$\mathbf{A}=\mathbf{Q}_{n} \mathbf{R}$	$2 m n^{2}$
Bidiagonalization	$\mathbf{A} \in \mathbb{C}^{m \times n}$	$\mathbf{B}=\mathbf{U}^{*} \mathbf{A V}$	$4\left(m n^{2}-n^{3} / 3\right)$
Hessenberg reduction	$\mathbf{A} \in \mathbb{C}^{n \times n}$	$\mathbf{H}=\mathbf{Q}^{*} \mathbf{A Q}$	$10 n^{3} / 3$
Tridiagonal reduction	$\mathbf{A} \in \mathbb{C}^{n \times n}$	$\mathbf{T}=\mathbf{Q}^{*} \mathbf{A Q}$	$4 n^{3} / 3$

Remark 2

On modern computer architectures the communication costs in moving data between different levels of memory or between processors in a network can exceed the arithmetic costs by orders of magnitude.

4. Circulant matrix

Definition 3

An $n \times n$ matrix \mathbf{C} is called circulant if it has the form

$$
\mathbf{C}=\left[\begin{array}{ccccc}
c_{0} & c_{n-1} & \cdots & c_{2} & c_{1} \\
c_{1} & c_{0} & c_{n-1} & \ddots & c_{2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
c_{n-2} & \ddots & c_{1} & c_{0} & c_{n-1} \\
c_{n-1} & c_{n-2} & \cdots & c_{1} & c_{0}
\end{array}\right]
$$

We indicate this situation by $\mathbf{C}=\boldsymbol{\operatorname { c i r c }}(\mathbf{c})$, where

$$
\mathbf{c}=\left[\begin{array}{llll}
c_{0} & c_{1} & \cdots & c_{n-1}
\end{array}\right]^{\top} \in \mathbb{C}^{n}
$$

- Exercise: Generate a circulant matrix in Matlab.

Definition 4

The $n \times n$ circulant right shift matrix is given by

$$
\left.\mathbf{R}=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & 0 & \cdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & 0
\end{array}\right]=\boldsymbol{\operatorname { c i r c }}\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0
\end{array}\right]^{\top}\right) .
$$

- Obviously, if $\mathbf{C}=\boldsymbol{\operatorname { c i r c }}(\mathbf{c})$, then $\mathbf{C}=\sum_{j=0}^{n-1} c_{j} \mathbf{R}^{j}$.

Lemma 5

Let $\omega_{n}=\mathrm{e}^{-\mathrm{i} 2 \pi / n}$. Then

$$
\mathbf{R}=\frac{1}{n} \mathbf{F}_{n}^{*} \operatorname{diag}\left\{1, \omega_{n}, \omega_{n}^{2}, \cdots, \omega_{n}^{n-1}\right\} \mathbf{F}_{n}
$$

Theorem 6

If $\mathbf{C}=\boldsymbol{\operatorname { c i r c }}(\mathbf{c})$, then

$$
\mathbf{C}=\mathbf{F}_{n}^{-1} \operatorname{diag}\{\widehat{\mathbf{c}}\} \mathbf{F}_{n}=\frac{1}{n} \mathbf{F}_{n}^{*} \operatorname{diag}\{\widehat{\mathbf{c}}\} \mathbf{F}_{n}
$$

where

$$
\widehat{\mathbf{c}}=\mathbf{F}_{n} \mathbf{c}
$$

Fast algorithm 1: Circulant matrix-vector product $\mathbf{v}=\mathbf{C u}$
Step 1: Compute $\widehat{\mathbf{c}}=\mathbf{F}_{n} \mathbf{c}$ and $\widehat{\mathbf{u}}=\mathbf{F}_{n} \mathbf{u}$ by FFT
Step 2: Compute the component-wise vector product $\widehat{\mathbf{v}}=\widehat{\mathbf{c}} . * \widehat{\mathbf{u}}$ Step 3: Compute $\mathbf{v}=\frac{1}{n} \mathbf{F}_{n}^{*} \widehat{\mathbf{v}}$ by iFFT

5. Toeplitz matrix

Definition 7

A matrix is called Toeplitz if it is constant along diagonals. An $n \times n$ Toeplitz matrix \mathbf{T} has the form

$$
\mathbf{T}=\left[\begin{array}{ccccc}
t_{0} & t_{-1} & \cdots & t_{2-n} & t_{1-n} \\
t_{1} & t_{0} & t_{-1} & \ddots & t_{2-n} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
t_{n-2} & \ddots & t_{1} & t_{0} & t_{-1} \\
t_{n-1} & t_{n-2} & \cdots & t_{1} & t_{0}
\end{array}\right]
$$

We indicate this situation by $\mathbf{T}=\boldsymbol{\operatorname { t o e p }}(\mathbf{t})$, where

$$
\mathbf{t}=\left[\begin{array}{lllllll}
t_{1-n} & \cdots & t_{-1} & t_{0} & t_{1} & \cdots & t_{n-1}
\end{array}\right]^{\top} \in \mathbb{C}^{2 n-1}
$$

- Explore toeplitz (c,r) in Matlab.
- Define $\mathbf{S}=\boldsymbol{\operatorname { t o e p }}(\mathbf{s})$, where

$$
\mathbf{s}=\left[\begin{array}{lllllllll}
t_{1} & t_{2} & \cdots & t_{n-1} & 0 & t_{1-n} & \cdots & t_{-2} & t_{-1}
\end{array}\right]^{\top}
$$

Then we have

$$
\mathbf{T}^{\mathrm{ce}}:=\left[\begin{array}{cc}
\mathbf{T} & \mathbf{S} \\
\mathbf{S} & \mathbf{T}
\end{array}\right]=\operatorname{circ}\left(\mathbf{t}^{\mathrm{ce}}\right),
$$

where

$$
\mathbf{t}^{\mathrm{ce}}=\left[\begin{array}{lllllllll}
t_{0} & t_{1} & \cdots & t_{n-1} & 0 & t_{1-n} & \cdots & t_{-2} & t_{-1}
\end{array}\right]^{\top} \in \mathbb{C}^{2 n} .
$$

Note that

$$
\left[\begin{array}{cc}
\mathbf{T} & \mathbf{S} \\
\mathbf{S} & \mathbf{T}
\end{array}\right]\left[\begin{array}{c}
\mathbf{u} \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{T u} \\
\mathbf{S u}
\end{array}\right]
$$

Using the fast algorithm for a circulant matrix-vector product, we obtain the following fast algorithm for a Toeplitz matrix-vector product $\mathbf{v}=\mathbf{T u}$.

Fast algorithm 2: Toeplitz matrix-vector product $\mathbf{v}=\mathbf{T u}$
Step 1: Compute $\widehat{\mathbf{t}^{c e}}=\mathbf{F}_{2 n} \mathbf{t}^{\text {ce }}$ and $\widehat{\mathbf{u}^{\text {ze }}}=\mathbf{F}_{2 n}\left[\mathbf{u}^{\top} \mathbf{0}\right]^{\top}$ by FFT
Step 2: Compute the component-wise vector product $\widehat{\mathbf{w}}=\widehat{\mathbf{t}^{c e}} . * \widehat{\mathbf{u}^{\text {ze }}}$
Step 3: Compute $\mathbf{w}=\frac{1}{2 n} \mathbf{F}_{2 n}^{*} \widehat{\mathbf{w}}$ by iFFT
Step 4: Extract the first n components of \mathbf{w} to obtain \mathbf{v}, i.e., $\mathbf{v}=\mathbf{w}(1: n)$

6. Hankel matrix

- A Hankel matrix $\mathbf{H}=\left[h_{i j}\right]$ has identical elements along all its anti-diagonals, meaning that

$$
h_{i j}=h_{i+l, j-l}
$$

for all relevant integers i, j, and l.

- Explore hankel (c,r) in Matlab.
- A Hankel matrix is symmetric by definition.
- The relation to a Toeplitz matrix: the matrix

$$
\mathbf{T}=\mathbf{J H}, \quad \mathbf{J}=\left[\begin{array}{llll}
& & & 1 \\
& & 1 & \\
& . & & \\
1 & & &
\end{array}\right]
$$

is a Toeplitz matrix, where \mathbf{J} is a permutation matrix obtained by reversing the columns (or rows) of the identity.

- Fast algorithm for a Hankel matrix-vector product can be obtained easily from that of a Toeplitz matrix-vector product.
- Other issue:

Discrete sine transform: dst
Discrete cosine transform: dct
Symmetric Toeplitz-plus-Hankel (STH) matrix ...
7. Kronecker product and vec(•) operator

Definition 8

Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ and $\mathbf{B} \in \mathbb{C}^{p \times q}$. Then $\mathbf{A} \otimes \mathbf{B}$, the Kronecker product of \mathbf{A} and \mathbf{B}, is the $m p \times n q$ matrix

$$
\mathbf{A} \otimes \mathbf{B}:=\left[\begin{array}{ccc}
a_{11} \mathbf{B} & \cdots & a_{1 n} \mathbf{B} \\
\vdots & \ddots & \vdots \\
a_{m 1} \mathbf{B} & \cdots & a_{m n} \mathbf{B}
\end{array}\right]
$$

Definition 9

Let $\mathbf{A} \in \mathbb{C}^{m \times n}$. Then $\operatorname{vec}(\mathbf{A})$ is defined to be a column vector of size $m n$ made of the columns of \mathbf{A} stacked atop one another from left to right.

- If $\mathbf{A}=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$, then

$$
\operatorname{vec}(\mathbf{A})=\left[\begin{array}{c}
\mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\vdots \\
\mathbf{a}_{n}
\end{array}\right]
$$

- Let $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{m \times n}$. Then $\operatorname{tr}\left(\mathbf{A}^{*} \mathbf{B}\right)=\operatorname{vec}(\mathbf{A})^{*} \operatorname{vec}(\mathbf{B})$.

Theorem 10

Let $\mathbf{A} \in \mathbb{C}^{p \times m}, \mathbf{X} \in \mathbb{C}^{m \times n}$, and $\mathbf{B} \in \mathbb{C}^{n \times q}$. Then the following properties hold:

$$
\begin{aligned}
\operatorname{vec}(\mathbf{A X}) & =\left(\mathbf{I}_{n} \otimes \mathbf{A}\right) \operatorname{vec}(\mathbf{X}), \\
\operatorname{vec}(\mathbf{X B}) & =\left(\mathbf{B}^{\top} \otimes \mathbf{I}_{m}\right) \operatorname{vec}(\mathbf{X}), \\
\operatorname{vec}(\mathbf{A X B}) & =\left(\mathbf{B}^{\top} \otimes \mathbf{A}\right) \operatorname{vec}(\mathbf{X})
\end{aligned}
$$

Theorem 11

The following facts about Kronecker products hold:

$$
\begin{aligned}
(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) & =(\mathbf{A C}) \otimes(\mathbf{B D}), \\
(\mathbf{A} \otimes \mathbf{B})^{-1} & =\mathbf{A}^{-1} \otimes \mathbf{B}^{-1}, \\
(\mathbf{A} \otimes \mathbf{B})^{\dagger} & =\mathbf{A}^{\dagger} \otimes \mathbf{B}^{\dagger}, \\
(\mathbf{A} \otimes \mathbf{B})^{*} & =\mathbf{A}^{*} \otimes \mathbf{B}^{*} .
\end{aligned}
$$

- Exercise: For $\mathbf{A} \in \mathbb{C}^{m \times n}, \mathbf{B} \in \mathbb{C}^{p \times q}$, and $\mathbf{C} \in \mathbb{C}^{m \times q}$, solve

$$
\min _{\mathbf{X} \in \mathbb{C}^{n \times p}}\|\mathbf{A X B}-\mathbf{C}\|_{\mathrm{F}}=?
$$

- Exercise: Let \mathcal{T} denote the triangular truncation operator, which is a linear operator that maps a given matrix to its strictly lower triangular part. Write down the matrix form of this operator.
- Exercise: Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ and $\mathbf{B} \in \mathbb{C}^{n \times n}$. What are eigenvalues of

$$
\mathbf{I} \otimes \mathbf{A}+\mathbf{B} \otimes \mathbf{I}, \quad \text { and } \quad \mathbf{A} \otimes \mathbf{B} ?
$$

8. Reference books for Toeplitz solver and FFT

- Chan, Raymond Hon-Fu and Jin, Xiao-Qing An Introduction to Iterative Toeplitz Solvers, SIAM, 2007
- Van Loan, Charles

Computational Frameworks for the Fast Fourier Transform, SIAM, 1992
9. Further reading for fast multipole methods

- Greengard, Leslie F. and Rokhlin, Vladimir V.

A fast algorithm for particle simulations
Journal of Computational Physics 72 (1987), 325-348.

