Lecture 17: FFT and structured matrices

School of Mathematical Sciences, Xiamen University

1. Discrete Fourier transform and its inverse

Definition 1

The discrete Fourier transform (DFT) is a mapping on \mathbb{C}^n given by

$$[\mathcal{F}_n{\mathbf{f}}]_i = \sum_{j=0}^{n-1} \omega_n^{ij} f_j, \quad i = 0, 1, \cdots, n-1,$$

where $\omega_n = e^{-i2\pi/n}$ and $i = \sqrt{-1}$. The inverse DFT is given by

$$\left[\mathcal{F}_{n}^{-1}\{\mathbf{g}\}\right]_{i} = \frac{1}{n} \sum_{j=0}^{n-1} \omega_{n}^{-ij} g_{j}, \quad i = 0, 1, \cdots, n-1.$$

• DFT and inverse DFT as matrix-vector products:

$$\mathcal{F}_n\{\mathbf{f}\} = \mathbf{F}_n\mathbf{f}, \quad \mathcal{F}_n^{-1}\{\mathbf{g}\} = rac{1}{n}\mathbf{F}_n^*\mathbf{g} = rac{1}{n}\overline{\mathbf{F}_n\mathbf{\overline{g}}}, \quad \mathbf{F}_n = \left[\omega_n^{ij}
ight]_{i,j=0}^{n-1}.$$

• Discrete sine/cosine transform: DST, DCT, ...

.

2. The FFT algorithm

• For simplicity, we assume that $n = 2^k$ and set m = n/2. Obviously,

$$\omega_m = \omega_n^2 = e^{-i2\pi/m}, \qquad \omega_m^m = 1, \qquad \omega_n^m = -1.$$

• Given any $\mathbf{f} = \begin{bmatrix} f_0 & f_1 & \cdots & f_{n-1} \end{bmatrix}^\top \in \mathbb{C}^n$, for $i = 0, 1, \dots, m-1$,

$$\begin{split} [\mathcal{F}_n\{\mathbf{f}\}]_i &= \sum_{l=0}^{m-1} \omega_n^{i2l} f_{2l} + \sum_{l=0}^{m-1} \omega_n^{i(2l+1)} f_{2l+1} \\ &= \sum_{l=0}^{m-1} \omega_m^{il} f_{2l} + \omega_n^i \sum_{l=0}^{m-1} \omega_m^{il} f_{2l+1} \\ &= [\mathcal{F}_m\{\mathbf{f}_e\}]_i + \omega_n^i [\mathcal{F}_m\{\mathbf{f}_o\}]_i, \end{split}$$

where

$$\mathbf{f}_{\mathbf{e}} = \begin{bmatrix} f_0 & f_2 & \cdots & f_{n-2} \end{bmatrix}^{\top}, \quad \mathbf{f}_{\mathbf{o}} = \begin{bmatrix} f_1 & f_3 & \cdots & f_{n-1} \end{bmatrix}^{\top}$$

•

• For i = 0, 1, ..., m - 1, we also have

$$\begin{aligned} [\mathcal{F}_n\{\mathbf{f}\}]_{m+i} &= \sum_{l=0}^{m-1} \omega_n^{(m+i)2l} f_{2l} + \sum_{l=0}^{m-1} \omega_n^{(m+i)(2l+1)} f_{2l+1} \\ &= \sum_{l=0}^{m-1} \omega_m^{il} f_{2l} - \omega_n^i \sum_{l=0}^{m-1} \omega_m^{il} f_{2l+1} \\ &= [\mathcal{F}_m\{\mathbf{f}_e\}]_i - \omega_n^i [\mathcal{F}_m\{\mathbf{f}_o\}]_i. \end{aligned}$$

• Let FFT(n) denote the number of flops required to evaluate $\mathcal{F}_n{\{\mathbf{f}\}}$ by a recursive algorithm. Given the vectors $\mathcal{F}_m{\{\mathbf{f}_e\}}$ and $\mathcal{F}_m{\{\mathbf{f}_o\}}$, only *m* multiplications, *m* additions and *m* subtractions are needed to evaluate $\mathcal{F}_n{\{\mathbf{f}\}}$. Hence,

$$FFT(n) = 3m + 2FFT(m) = 3n/2 + 2FFT(n/2).$$

Since FFT(1) = 0, then

$$FFT(n) = 3n/2 \times k = \frac{3}{2}n \log n.$$

Method	Matrix $(m \ge n)$	Operation or Factorization	Flops
MV product	$\mathbf{A} \in \mathbb{C}^{n imes n}$	$\mathbf{b} = \mathbf{A}\mathbf{x}$	$2n^2$
FFT MV product	$\mathbf{F} \in \mathbb{C}^{n imes n}$	$\mathbf{b} = \mathbf{F}\mathbf{x}$	$3n\log n/2$
MM product	$\mathbf{A},\mathbf{B}\in\mathbb{C}^{n imes n}$	$\mathbf{C} = \mathbf{A}\mathbf{B}$	$2n^3$
Inverse	$\mathbf{A} \in \mathbb{C}^{n imes n}$	\mathbf{A}^{-1}	$2n^3$
LU factorization	$\mathbf{A} \in \mathbb{C}^{n imes n}$	$\mathbf{PA} = \mathbf{LU}$	$2n^{3}/3$
Hessenberg LU	$\mathbf{H} \in \mathbb{C}^{n imes n}$	$\mathbf{H} = \mathbf{L}\mathbf{U}$	$2n^2$
Tridiagonal LU	$\mathbf{T} \in \mathbb{C}^{n imes n}$	$\mathbf{T} = \mathbf{L}\mathbf{U}$	3n
Cholesky	$\mathbf{A} \in \mathbb{C}^{n imes n}$	$\mathbf{A} = \mathbf{R}^* \mathbf{R}$	$n^{3}/3$
Triangular solve	$\mathbf{L} \in \mathbb{C}^{n imes n}$	$\mathbf{L}\mathbf{x} = \mathbf{b}$	n^2
Triangular inverse	$\mathbf{L} \in \mathbb{C}^{n imes n}$	\mathbf{L}^{-1}	$2n^{3}/3$
Normal equations	$\mathbf{A} \in \mathbb{C}^{m imes n}$	$\mathbf{A}^*\mathbf{A} = \mathbf{R}^*\mathbf{R}$	$mn^2 + n^3/3$
Householder QR	$\mathbf{A} \in \mathbb{C}^{m imes n}$	$\mathbf{Q}^*\mathbf{A} = \mathbf{R}$	$2(mn^2 - n^3/3)$
MGS QR	$\mathbf{A} \in \mathbb{C}^{m imes n}$	$\mathbf{A} = \mathbf{Q}_n \mathbf{R}_n$	$2mn^2$
Bidiagonalization	$\mathbf{A} \in \mathbb{C}^{m imes n}$	$\mathbf{B} = \mathbf{U}^* \mathbf{A} \mathbf{V}$	$4(mn^2 - n^3/3)$
Hessenberg reduction	$\mathbf{A} \in \mathbb{C}^{n imes n}$	$\mathbf{H} = \mathbf{Q}^* \mathbf{A} \mathbf{Q}$	$10n^{3}/3$
Tridiagonal reduction	$\mathbf{A} \in \mathbb{C}^{n imes n}$	$\mathbf{T} = \mathbf{Q}^* \mathbf{A} \mathbf{Q}$	$4n^{3}/3$

3. Flop counts for frequently used algorithms

Remark 2

On modern computer architectures the communication costs in moving data between different levels of memory or between processors in a network can exceed the arithmetic costs by orders of magnitude.

4. Circulant matrix

Definition 3

An $n \times n$ matrix ${\bf C}$ is called circulant if it has the form

$$\mathbf{C} = \begin{bmatrix} c_0 & c_{n-1} & \cdots & c_2 & c_1 \\ c_1 & c_0 & c_{n-1} & \ddots & c_2 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ c_{n-2} & \ddots & c_1 & c_0 & c_{n-1} \\ c_{n-1} & c_{n-2} & \cdots & c_1 & c_0 \end{bmatrix}$$

We indicate this situation by $\mathbf{C} = \mathbf{circ}(\mathbf{c})$, where

$$\mathbf{c} = \begin{bmatrix} c_0 & c_1 & \cdots & c_{n-1} \end{bmatrix}^\top \in \mathbb{C}^n$$

• Exercise: Generate a circulant matrix in Matlab.

.

Definition 4

The $n \times n$ circulant right shift matrix is given by

$$\mathbf{R} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{bmatrix} = \mathbf{circ} \left(\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^{\top} \right).$$

• Obviously, if
$$\mathbf{C} = \operatorname{circ}(\mathbf{c})$$
, then $\mathbf{C} = \sum_{j=0}^{n-1} c_j \mathbf{R}^j$.

Lemma 5

1

Let
$$\omega_n = e^{-i2\pi/n}$$
. Then

$$\mathbf{R} = \frac{1}{n} \mathbf{F}_n^* \operatorname{diag}\{1, \omega_n, \omega_n^2, \cdots, \omega_n^{n-1}\} \mathbf{F}_n.$$

Numerical Linear Algebra

Theorem 6

If $\mathbf{C} = \mathbf{circ}(\mathbf{c})$, then

$$\mathbf{C} = \mathbf{F}_n^{-1} \operatorname{diag}\{\widehat{\mathbf{c}}\} \mathbf{F}_n = \frac{1}{n} \mathbf{F}_n^* \operatorname{diag}\{\widehat{\mathbf{c}}\} \mathbf{F}_n$$

where

$$\widehat{\mathbf{c}} = \mathbf{F}_n \mathbf{c}.$$

Fast algorithm 1: Circulant matrix-vector product $\mathbf{v} = \mathbf{C}\mathbf{u}$

Step 1: Compute $\hat{\mathbf{c}} = \mathbf{F}_n \mathbf{c}$ and $\hat{\mathbf{u}} = \mathbf{F}_n \mathbf{u}$ by FFT Step 2: Compute the component-wise vector product $\hat{\mathbf{v}} = \hat{\mathbf{c}} \cdot \ast \hat{\mathbf{u}}$ Step 3: Compute $\mathbf{v} = \frac{1}{n} \mathbf{F}_n^* \hat{\mathbf{v}}$ by iFFT

5. Toeplitz matrix

Definition 7

A matrix is called Toeplitz if it is constant along diagonals. An $n\times n$ Toeplitz matrix ${\bf T}$ has the form

$$\mathbf{T} = \begin{bmatrix} t_0 & t_{-1} & \cdots & t_{2-n} & t_{1-n} \\ t_1 & t_0 & t_{-1} & \ddots & t_{2-n} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ t_{n-2} & \ddots & t_1 & t_0 & t_{-1} \\ t_{n-1} & t_{n-2} & \cdots & t_1 & t_0 \end{bmatrix}$$

We indicate this situation by $\mathbf{T} = \mathbf{toep}(\mathbf{t})$, where

$$\mathbf{t} = \begin{bmatrix} t_{1-n} & \cdots & t_{-1} & t_0 & t_1 & \cdots & t_{n-1} \end{bmatrix}^\top \in \mathbb{C}^{2n-1}.$$

• Explore toeplitz(c,r) in Matlab.

• Define $\mathbf{S} = \mathbf{toep}(\mathbf{s})$, where

$$\mathbf{s} = \begin{bmatrix} t_1 & t_2 & \cdots & t_{n-1} & 0 & t_{1-n} & \cdots & t_{-2} & t_{-1} \end{bmatrix}^{\top}.$$

Then we have

$$\mathbf{T}^{ce} := egin{bmatrix} \mathbf{T} & \mathbf{S} \ \mathbf{S} & \mathbf{T} \end{bmatrix} = \mathbf{circ}(\mathbf{t}^{ce}),$$

where

$$\mathbf{t}^{ce} = \begin{bmatrix} t_0 & t_1 & \cdots & t_{n-1} & 0 & t_{1-n} & \cdots & t_{-2} & t_{-1} \end{bmatrix}^\top \in \mathbb{C}^{2n}.$$

Note that

$$\begin{bmatrix} \mathbf{T} & \mathbf{S} \\ \mathbf{S} & \mathbf{T} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{T}\mathbf{u} \\ \mathbf{S}\mathbf{u} \end{bmatrix}.$$

Using the fast algorithm for a circulant matrix-vector product, we obtain the following fast algorithm for a Toeplitz matrix-vector product $\mathbf{v} = \mathbf{T}\mathbf{u}$.

Fast algorithm 2: Toeplitz matrix-vector product $\mathbf{v} = \mathbf{T}\mathbf{u}$

Step 1: Compute $\widehat{\mathbf{t}^{ce}} = \mathbf{F}_{2n} \mathbf{t}^{ce}$ and $\widehat{\mathbf{u}^{ze}} = \mathbf{F}_{2n} [\mathbf{u}^{\top} \mathbf{0}]^{\top}$ by FFT Step 2: Compute the component-wise vector product $\widehat{\mathbf{w}} = \widehat{\mathbf{t}^{ce}} \cdot \ast \widehat{\mathbf{u}^{ze}}$ Step 3: Compute $\mathbf{w} = \frac{1}{2n} \mathbf{F}_{2n}^{*} \widehat{\mathbf{w}}$ by iFFT Step 4: Extract the first *n* components of **w** to obtain **v**, i.e., $\mathbf{v} = \mathbf{w}(1:n)$

6. Hankel matrix

• A Hankel matrix $\mathbf{H} = [h_{ij}]$ has identical elements along all its anti-diagonals, meaning that

$$h_{ij} = h_{i+l,j-l}$$

for all relevant integers i, j, and l.

• Explore hankel(c,r) in Matlab.

- A Hankel matrix is symmetric by definition.
- The relation to a Toeplitz matrix: the matrix

$$\mathbf{T} = \mathbf{J}\mathbf{H}, \qquad \mathbf{J} = \begin{bmatrix} & & 1 \\ & 1 & \\ & \ddots & \\ 1 & & \end{bmatrix}$$

is a Toeplitz matrix, where \mathbf{J} is a permutation matrix obtained by reversing the columns (or rows) of the identity.

- Fast algorithm for a Hankel matrix-vector product can be obtained easily from that of a Toeplitz matrix-vector product.
- Other issue:

Discrete sine transform: dst

Discrete cosine transform: dct

 $Symmetric \ Toeplitz\text{-}plus\text{-}Hankel \ (STH) \ matrix \ \dots$

7. Kronecker product and $vec(\cdot)$ operator

Definition 8

Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ and $\mathbf{B} \in \mathbb{C}^{p \times q}$. Then $\mathbf{A} \otimes \mathbf{B}$, the Kronecker product of \mathbf{A} and \mathbf{B} , is the $mp \times nq$ matrix

$$\mathbf{A} \otimes \mathbf{B} := \begin{bmatrix} a_{11}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m1}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{bmatrix}$$

Definition 9

Let $\mathbf{A} \in \mathbb{C}^{m \times n}$. Then $\text{vec}(\mathbf{A})$ is defined to be a column vector of size mn made of the columns of \mathbf{A} stacked atop one another from left to right.

• If $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$, then $\operatorname{vec}(\mathbf{A}) = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_n \end{bmatrix}$.

• Let $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{m \times n}$. Then $\operatorname{tr}(\mathbf{A}^*\mathbf{B}) = \operatorname{vec}(\mathbf{A})^* \operatorname{vec}(\mathbf{B})$.

Theorem 10

Let $\mathbf{A} \in \mathbb{C}^{p \times m}$, $\mathbf{X} \in \mathbb{C}^{m \times n}$, and $\mathbf{B} \in \mathbb{C}^{n \times q}$. Then the following properties hold:

$$\operatorname{vec}(\mathbf{A}\mathbf{X}) = (\mathbf{I}_n \otimes \mathbf{A})\operatorname{vec}(\mathbf{X}),$$
$$\operatorname{vec}(\mathbf{X}\mathbf{B}) = (\mathbf{B}^\top \otimes \mathbf{I}_m)\operatorname{vec}(\mathbf{X}),$$
$$\operatorname{vec}(\mathbf{A}\mathbf{X}\mathbf{B}) = (\mathbf{B}^\top \otimes \mathbf{A})\operatorname{vec}(\mathbf{X}).$$

Theorem 11

The following facts about Kronecker products hold:

$$(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) = (\mathbf{A}\mathbf{C}) \otimes (\mathbf{B}\mathbf{D}),$$
$$(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1},$$
$$(\mathbf{A} \otimes \mathbf{B})^{\dagger} = \mathbf{A}^{\dagger} \otimes \mathbf{B}^{\dagger},$$
$$(\mathbf{A} \otimes \mathbf{B})^* = \mathbf{A}^* \otimes \mathbf{B}^*.$$

• Exercise: For $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{B} \in \mathbb{C}^{p \times q}$, and $\mathbf{C} \in \mathbb{C}^{m \times q}$, solve

$$\min_{\mathbf{X}\in\mathbb{C}^{n\times p}}\|\mathbf{A}\mathbf{X}\mathbf{B}-\mathbf{C}\|_{\mathrm{F}}=?$$

• Exercise: Let \mathcal{T} denote the triangular truncation operator, which is a linear operator that maps a given matrix to its strictly lower triangular part. Write down the matrix form of this operator.

• Exercise: Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ and $\mathbf{B} \in \mathbb{C}^{n \times n}$. What are eigenvalues of

 $\mathbf{I} \otimes \mathbf{A} + \mathbf{B} \otimes \mathbf{I}$, and $\mathbf{A} \otimes \mathbf{B}$?

- 8. Reference books for Toeplitz solver and FFT
 - Chan, Raymond Hon-Fu and Jin, Xiao-Qing An Introduction to Iterative Toeplitz Solvers, SIAM, 2007
 - Van Loan, Charles

Computational Frameworks for the Fast Fourier Transform, SIAM, 1992

- 9. Further reading for fast multipole methods
 - Greengard, Leslie F. and Rokhlin, Vladimir V.

A fast algorithm for particle simulations

Journal of Computational Physics 72 (1987), 325-348.