## Numerical Linear Algebra Assignment 8

## Exercise 1. (TreBau Exercise 25.2, 10 points)

Let $e_{1}, e_{2}, e_{3}, \cdots$ be a sequence of nonnegative numbers representing errors in some iterative process that converge to zero, and suppose there are a constant $C$ and an exponent $\alpha$ such that for all sufficiently large $k, e_{k+1} \leq C\left(e_{k}\right)^{\alpha}$. Then, (1) linear convergence or geometric convergence: $\alpha=1$ and $C<1$; (2) quadratic convergence: $\alpha=2$; (3) cubic convergence: $\alpha=3$.
(a) Suppose we want an answer of accuracy $\mathcal{O}\left(\varepsilon_{\text {machine }}\right)$. Assuming the amount of work for each step is $\mathcal{O}(1)$, show that the total work requirement in the case of linear convergence is $\mathcal{O}\left(\left|\log \left(\varepsilon_{\text {machine }}\right)\right|\right)$. How does the constant $C$ enter into your work estimate?
(b) Show that in the case of superlinear convergence, i.e., $\alpha>1$, the work requirement becomes $\mathcal{O}\left(\log \left(\left|\log \left(\varepsilon_{\text {machine }}\right)\right|\right)\right)$. (Hint: The problem may be simplified by defining a new error measure $f_{k}=C^{1 /(\alpha-1)} e_{k}$.) How does the exponent $\alpha$ enter into your work estimate?

## Exercise 2. (Theorem 1 of Lecture 8, 10 points)

Let $\{\lambda, \mathbf{v}\}$ be an eigenpair of the matrix $\mathbf{A}$, i.e., $\mathbf{A v}=\lambda \mathbf{v}$. We further assume that $\|\mathbf{v}\|_{2}=1$. Prove the following:
(a) If $\mathbf{A}$ is non-normal, then the Rayleigh quotient $r(\mathbf{x})$ is generally a linearly accurate estimate of the eigenvalue $\lambda$, i.e.,

$$
|r(\mathbf{x})-\lambda|=\mathcal{O}\left(\|\mathbf{x}-\mathbf{v}\|_{2}\right), \quad \text { as } \quad \mathbf{x} \rightarrow \mathbf{v}
$$

(b) If $\mathbf{A}$ is normal, then the Rayleigh quotient $r(\mathbf{x})$ is a quadratically accurate estimate of the eigenvalue $\lambda$, i.e.,

$$
|r(\mathbf{x})-\lambda|=\mathcal{O}\left(\|\mathbf{x}-\mathbf{v}\|_{2}^{2}\right), \quad \text { as } \quad \mathbf{x} \rightarrow \mathbf{v} .
$$

## Exercise 3. (Programming, 10 points)

Construct a $4 \times 4$ matrix A by the following Matlab scripts:

```
L=diag([1 2 % 6 30]); S=randn(4); A=S*L*inv(S);
```

Compare the convergence of Power iteration, Inverse iteration, and Rayleigh quotient iteration. You must use Matlab's semilogy to draw three pictures: the $x$-axis is the iteration index $k$, and the $y$-axis is the absolute error of the computed approximate eigenvalues, i.e., $\left|\lambda^{(k)}-\lambda\right|$. For each method, stop at the 10th iteration.

## Additional Exercise 1. (TreBau Exercise 27.2)

Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be arbitrary. The set of all Rayleigh quotients of $\mathbf{A}$, corresponding to all nonzero vectors $\mathbf{x} \in \mathbb{C}^{m}$, is known as the field of values or numerical range of $\mathbf{A}$, a subset of the complex plane denoted by $\mathcal{W}(\mathbf{A})$. It is well known that $\mathcal{W}(\mathbf{A})$ contains the convex hull of the eigenvalues of $\mathbf{A}$. Prove that if $\mathbf{A}$ is normal, then $\mathcal{W}(\mathbf{A})$ is equal to the convex hull of the eigenvalues of $\mathbf{A}$.

