Lecture 12: Conjugate gradients
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1. The principle of conjugate gradients

@ Consider a Hermitian positive definite linear system
Ax=b, AcC™™ beC™

For initial guess xg, at step j, the conjugate gradient method finds
an approximate solution

X; € X0 + le(A, I‘o)

satisfying
r; = b — AX]' 1 ’Cj(A,I'Q),

where

Kj(A,rg) := span{rg, Arg, ..., AV 1rg)
@ Note that the residual of GMRES satisfies

r; 1 AK:)(A, I‘g).
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2. Conjugate gradients

Algorithm CG: Ax = b, A € C"™*™ Hermitian positive definite.
Choose arbitrary xg;
Set rp = b — Axg and pg = rg;
for j =1,2,..., do until convergence:
(rjor,rjo1) Tiarj-
(Apj-1,Pj-1) Pj_1APj-1
X; = Xj_1 + o;pj—1; (approximation solution)
rj =rj_1 —a;jAp;_1; (residual)
_ () TG
Bj = = — ;
(rj_1,rj-1)  rj_Tj
p; =rj+ Bjpj—1; (search direction)
end

;  (step length)

Qj =

o M.R. Hestenes and E. Stiefel
Methods of conjugate gradients for solving linear systems

J. Research Nat. Bur. Standards 49 (1952), 409-436
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https://nvlpubs.nist.gov/nistpubs/jres/049/jresv49n6p409_A1b.pdf

2.1. The Lanczos process

o Since A is Hermitian, then H; = Q;AQ); in the Arnoldi process is
also Hermitian. Since H; is upper Hessenberg, it is tridiagonal:

al b2
bg a9 bg
Hj = Q;AQ] = b3 as . = Tj.
. L bj
bj a;

Note that T; € R7*7. We have the Lanczos relation
AQj = Qj—i—lTja where Tj = Q;+1AQj.
o Compared with the Arnoldi process, we have

aj = hjj,  bj1 = hjyij = hjji
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o The tridiagonal structure means that in the inner loop of the
Arnoldi process, the limits 1 to j can be replaced by j — 1 to j.
Therefore, we have the Lanczos process.

Algorithm: Lanczos process generating the orthonormal basis
r = arbitrary nonzero vector, by =0, qg =0

qi =r/||r[2

for j=1,2,3,...,
v = Aq;
V=V — quj,1
a; = q;v

V=V— ajqj

bjr1 = [Iv]2

qj+1 = V/bj+1
end

o Note that the Lanczos process can be written down easily by using
the Lanczos relation.

Numerical Linear Algebra Lecture 12 Xiamen University 5/ 24



2.2. Derivation of conjugate gradients
o Note that the matrix

ap by

bQ a9 b3

T; = QjAQ; =

bj_l aj_l bj
bj aj

in the Lanczos process is Hermitian positive definite (since A is
HPD). Hence, T can be LU factorized into

1 di  be
(&) 1 dQ b3
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with the recurrences for ¢; and d;:

ay if j =1,
¢j =bj/dj, dj= {

aj —c;b; if 5> 1.
e Assume that x; = xg + Q;y;. By r; LK;, ie., Q;‘»rj = 0, we have
Tjy; = llroll2e1.
Rewrite x; = x¢ + Q;y; as
x;j = x0 + Q;T; " (||roll2e1) = x0 + Q;U; 'L ! ([[ro]l2e1).-

Let .
P;=Q;U;" = [Po P1 - Pj-1],

z; ::Lj_l(Hl‘onel):[Cl (CIEEE Cj]T

)
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where po = qi1/a1, (1 = ||rol|2 and, for j > 2,

pj—1 = —(a; —bpj—2), ¢ =—c;i(j-1.

1
d;
It is now important to observe that (why?)

Pi=[po p1 -+ Pj1]=[Pj1 pj1],

z; =[G (& Cj]T = [Zgl} ;

With this formulation, we arrive at a simple recurrence for x;:
X; =X+ szj = X0+ Pj—1Zj—1 + ijj_1 =Xj-1+ (jpj_l.

o The residual r; is essentially a multiple of q;1 (see below for a
proof), therefore, all residuals are mutually orthogonal.
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In fact, we have ro = ||rgll2q; and, for j > 1,
r; = b — AX]' =b-— A(XO + ijj)
=19 — AQ;y; =10 — Q;11Ty;
=19 — Q;T;y; — bjr1(€jy;)aj+1
= [roll2a1 — Q;(l[roll2e1) — bj+1(€jy;)qj+1
= _bj+1(e;‘3’j)(h'+1-

o If we allow p;j_; to scale and compensate for the scaling in the
scalars, we potentially can have simpler recurrences of the form:
Po = ro and for j > 1,

Xj = Xj-1+ Q;jpj-1,
rj =r;_1— OéjAija

p; =r; + Bjpj-1.
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o Note that at present we have
Piii=[po p1 - pj]= Qj+1U;4}1Dj+1’

where Dj 1 is a diagonal matrix with scaling parameters as
diagonal entries. We now derive the A-conjugacy of p;, i.e., for
each 0 <1i < j,

P?Apj =0.
It suffices to show that P7 ;AP; is diagonal. Since
P;JrlAPj—I—l = Dj+1U]+1Q]+1AQJ+1U]+1DJ+1
- D*+1U]+1T]+1U]+1D]+1
= Dj1 U LDy

is Hermitian and lower triangular simultaneously, then

P% AP 1 must be diagonal.
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e Now we can derive the scalar factors ;; and ; by solely imposing
the orthogonality of r; and A-conjugacy of p;. Due to the
orthogonality of r;, it is necessary that

ri_rj = rjfl(rj_l ajAp;_1) =0.
As a result,

* . * . * .
o — rjflrj,l o I‘jflrj,l . rjflrj,l
J T L - - X .
r; jAp;_1  (Pj-1—Bj-1Pj-2)*AP;_1  Pj_1AP;_1

Similarly, due to the A-conjugacy of pj, it is necessary that
PjAp;_1 = (vj+ fjpj-1)"Ap;_1 = 0.

As a result,
r;Ap;_, 1] (rj—1 —rj) Y

;T T % - T % * o
pj_1APj—1 a]pj—lApj—l I 1Tj-1
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2.3. Convergence of conjugate gradients

Theorem 1
Assume CG does not converge at step | (i.e., r; #0,0<j <1). Then
V1<j<lI:
(1) The jth residual r; satisfies rjr; =0 for 0 <i < j. (orthogonal)
(2) The jth search direction p; is nonzero (p; # 0) and satisfies

P;Ap; =0 for 0 <i < j. (A-conjugate or (:,-)a-orthogonal)
(3) The Krylov subspace

Kj+1(A,rg) : = span{rg, Arg, - - - , Adrg}

= Span{xl — X0,X2 — X0, , Xj41 — Xo}
= SPaH{PO,Pb o 7pj}
= span{rg,ri,--- ,r;}.

o A direct result of Theorem 1: There exists & < m such that
rj#0, r;1LK;, j=1,...,k—1, and r;=0,
i.e., CG finds the exact solution at step k.
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e Since A is Hermitian positive definite, the function || - ||a defined
by ||x||a = Vx*Ax is a norm, called A-norm.

Theorem 2 (Optimality of CG)

Let x, denote the exzact solution A~ b. We consider the A-norm of
the vector €; = X, — Xj, the error at step j. If rj_1 # 0, then x; is the
unique vector in xo + K;(A,rg) such that

E; = X, — X; = min X, — X||A.
leslla = lhe—xjla = _ min i ~x]a

o A direct result of Theorem 2 and r; = Ag;: There exists £ <m
such that

leolla > lleilla = -+~ = ller-1lla > [lexlla = 0.

That is to say CG converges monotonically and finds the exact
solution at step k.
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Theorem 3

Let P; denote the set of polynomials p of degree < j. Ifrj_1 # 0, then
we have

HEJ'“A _ . ”p(A)EOHA R ’ ( )|
leolla  peB;p0=1 |leolla T peP;p(0)=1AeA(A ’

where A(A) denotes the spectrum of A.

Exercise: Prove that if r;_; # 0, then the jth error €; of CG can be
uniquely expressed as €; = p;(A)eo with deg(p;) = j and p;(0) = 1.
What is the unique polynomial?

Theorem 4

If A has only n distinct eigenvalues, then the CG iteration converges in
at most n steps.

Hint: construct a special polynomial of degree n and prove that &, = 0.
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Theorem 5 (rate of convergence)

Let A have the 2-norm condition number k = Apax(A)/Amin(A). Then
the A-norms of the errors satisfy

= () - (55) ()

Proof. Consider the scaled and shifted Chebyshev polynomial

2z
p(z) =Tj <’Y— v

) mo),

where T}(z) is the Chebyshev polynomial of degree j (for |z| <1,
Tj(x) = cos(j arccos(x)), and for |x| > 1, Tj(z) = cosh(j arccosh(z))),
and

o )\max+)\min K+1
7T

max ~— )\min K—1

For & € [Amin; Amax], it follows from v — 3 € [-1,1], that

max )\min
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T ( 2 > ‘ <1, i p(2)] < ——

il , le., max z)| < .

J 7 )\max - )\min o mep‘min)\max] P |zi’7(’)/)‘
1

By the change of variables z = 5(2’ + 27 1), we have

Ti(x) (x + Va2 —1) ; (x — Va2 —1) _ %(zj L,

which is standard in the study of Chebyshev polynomials. Note that

:H+1:>2:\/E+10r\/E—1.
k—1 VeE—=1 " e+1

wo=n () =3[ +(#5) ]

The second inequality in Theorem 5 is obvious.

Thus
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2.4. A numerical example
e Consider a 500 x 500 matrix A constructed as follows. (i) a; =1,
a;j = aj; = rand(1) for ¢ # j. (ii) Set off-diagonal entry a;; = 0
(i # j) if |aj| > 7, where 7 is a parameter. b is random, xg = 0.
e For 7 close to zero, A is well-conditioned positive definite.

7=10.05

7=10.01

0 10 . 20
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3. CG as an optimization algorithm
e Consider minimizing the nonlinear function ¢(x) of x € R™:

1
o(x) = 5XTAX —x'b, AeR™™ (SPD), beR™.

A standard algorithm (line search): At each step, an iterate
Xj = Xj—1+ ®;Pj-1
is computed. The optimal step length «; is given by

T
Pj_1rj-1 .
o = —I———— = argminp(x; 1 + ap;_1),
pj71Apj—1 @
which ensures that

Xj = arg min o(x).
X€ExX;_1+span{p;_1}

o The steepest descent iteration uses the negative gradient direction:

Pj-1=—Vp(xj-1) =1j-1.
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Example: A = diag{A\1, A2}

1
b=1[0 0] ,
A’X,
Xo Alp
"\1
Ax,
X
P, AP,
Steepest descent Conjugate gradients
o CG uses the A-conjugate direction
Pj-1=Trj_1+ Bj-1Pj2,
which has the special property
Xj = arg min o(x) = arg min o(x).
XEXj_1+span{p;_1} xexg+span{po,p1, ,Pj—1}
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4. Preconditioning

e A good preconditioner M, which accelerates the convergence,
needs to be cheap to perform M~'z. Moreover, the preconditioned
matrix should have eigenvalues clustering behavior.

e For CG, we will assume that M is also Hermitian positive definite.
However, we can not apply CG straightaway for the explicitly
preconditioned systems

M 'Ax=M"1b, or AM 'z=b, (x=Ml2)

because M~!'A and AM™! are most likely not Hermitian.

e One way out is to apply the two-sided preconditioning strategy:
M =LL*, (L'AL*)L*x=L"!b.

The matrix L~'AL™* is HPD, so that CG is applicable. We
emphasize that this is a formalism; in practice, the only thing
needed is to be able to perform M1z, and L is not required.
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o Applying CG to the two-sided preconditioned system and using
simple variable substitutions yield PCG. (Exercise)

@ There is an alternative for the derivation of PCG.

For the left and right preconditioned matrices M~'A and AM™!,
replace the standard inner product

<X7 y> = y*X
by
(x,y). = (Mx,y) and (x,y)r = (M_lx,y>,

respectively.

It is easy to verify that M—'A and AM™! are self-adjoint and
positive definite with respect to the inner products (-, )1, and
(-, )R, respectively. For example,

(AM™'x,y)r = (M'AM 'x,y) = (M~ 'x, AM'y)
= <X7 AM_IY)R-

Numerical Linear Algebra Lecture 12 Xiamen University 21 / 24



Algorithm PCG: AM 'z =b, x =Mz
Choose x = xg; set T = b — Axg and pg = M~ rg;
for j =1,2,..., do until convergence:
Xj = Xj-1+ Q;jpj-1;
rj=rj_1 — qjAp;_1;
pj = M"'rj + Bpj_1;

where
* —1,.. * —1
o — rj_lM rj1 o rjM
J * ] ) 7 = % 1 _' .
P;_1Apj-1 ri M~

e We now are minimizing (note that xg = M~'zy and x = M~'z)
(AM™Y(z, —2),2, — 2)r = (AM Yz, — 2), M }(z, — 2))
= (A(Xy — X), X, — X)
= llella,

over zo + K;(AM ™!, rg) or xg + M7UC;(AM ™!, rp).
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o CG and PCG convergence curves for a 1000 x 1000 matrix

not preconditioned

preconditioned

0 5 10 15 20 25 30 35 40
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5. CGN = CG applied to the normal equations

o Let A € C"™*"™ be nonsingular but not necessarily Hermitian. We
can solve the linear system Ax = b via applying the CG method
to the normal equations

A"Ax = A"Db.

o The matrix A*A is not formed explicitly. Instead, each
matrix-vector product A*Av is evaluated in two steps as A*(Av).

o We have

Irjll2 = llejllasa = [|x« — xjlla*a
= min %% — x||A*A,
xexo+K;(A*A,A*rg)

and

. _ J
_Hl'j||2 <2 <—KJ 1> , where K= —JmaX(A).
llroll2 k+1 OTmin(A)
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