Lecture 12: Conjugate gradients

School of Mathematical Sciences, Xiamen University

1. The principle of conjugate gradients

- Consider a Hermitian positive definite linear system

$$
\mathbf{A x}=\mathbf{b}, \quad \mathbf{A} \in \mathbb{C}^{m \times m}, \quad \mathbf{b} \in \mathbb{C}^{m}
$$

For initial guess \mathbf{x}_{0}, at step j, the conjugate gradient method finds an approximate solution

$$
\mathbf{x}_{j} \in \mathbf{x}_{0}+\mathcal{K}_{j}\left(\mathbf{A}, \mathbf{r}_{0}\right)
$$

satisfying

$$
\mathbf{r}_{j}:=\mathbf{b}-\mathbf{A} \mathbf{x}_{j} \perp \mathcal{K}_{j}\left(\mathbf{A}, \mathbf{r}_{0}\right)
$$

where

$$
\mathcal{K}_{j}\left(\mathbf{A}, \mathbf{r}_{0}\right):=\operatorname{span}\left\{\mathbf{r}_{0}, \mathbf{A r}_{0}, \ldots, \mathbf{A}^{j-1} \mathbf{r}_{0}\right\}
$$

- Note that the residual of GMRES satisfies

$$
\mathbf{r}_{j} \perp \mathbf{A} \mathcal{K}_{j}\left(\mathbf{A}, \mathbf{r}_{0}\right)
$$

2. Conjugate gradients

Algorithm CG: $\mathbf{A x}=\mathbf{b}, \mathbf{A} \in \mathbb{C}^{m \times m}$ Hermitian positive definite.
Choose arbitrary \mathbf{x}_{0};
Set $\mathbf{r}_{0}=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}$ and $\mathbf{p}_{0}=\mathbf{r}_{0}$;
for $j=1,2, \ldots$, do until convergence:

$$
\begin{aligned}
& \alpha_{j}=\frac{\left\langle\mathbf{r}_{j-1}, \mathbf{r}_{j-1}\right\rangle}{\left\langle\mathbf{A} \mathbf{p}_{j-1}, \mathbf{p}_{j-1}\right\rangle}=\frac{\mathbf{r}_{j-1}^{*} \mathbf{r}_{j-1}}{\mathbf{p}_{j-1}^{*} \mathbf{A} \mathbf{p}_{j-1}} ; \quad \text { (step length) } \\
& \mathbf{x}_{j}=\mathbf{x}_{j-1}+\alpha_{j} \mathbf{p}_{j-1} ; \quad(\text { approximation solution) } \\
& \mathbf{r}_{j}=\mathbf{r}_{j-1}-\alpha_{j} \mathbf{A} \mathbf{p}_{j-1} ; \quad(\text { residual }) \\
& \beta_{j}=\frac{\left\langle\mathbf{r}_{j}, \mathbf{r}_{j}\right\rangle}{\left\langle\mathbf{r}_{j-1}, \mathbf{r}_{j-1}\right\rangle}=\frac{\mathbf{r}_{j}^{*} \mathbf{r}_{j}}{\mathbf{r}_{j-1}^{*} \mathbf{r}_{j-1}} ; \\
& \mathbf{p}_{j}=\mathbf{r}_{j}+\beta_{j} \mathbf{p}_{j-1} ; \quad \text { (search direction) }
\end{aligned}
$$

end

- M.R. Hestenes and E. Stiefel

Methods of conjugate gradients for solving linear systems

J. Research Nat. Bur. Standards 49 (1952), 409-436

2.1. The Lanczos process

- Since \mathbf{A} is Hermitian, then $\mathbf{H}_{j}=\mathbf{Q}_{j}^{*} \mathbf{A} \mathbf{Q}_{j}$ in the Arnoldi process is also Hermitian. Since \mathbf{H}_{j} is upper Hessenberg, it is tridiagonal:

$$
\mathbf{H}_{j}=\mathbf{Q}_{j}^{*} \mathbf{A Q}_{j}=\left[\begin{array}{ccccc}
a_{1} & b_{2} & & & \\
b_{2} & a_{2} & b_{3} & & \\
& b_{3} & a_{3} & \ddots & \\
& & \ddots & \ddots & b_{j} \\
& & & b_{j} & a_{j}
\end{array}\right]=: \mathbf{T}_{j} .
$$

Note that $\mathbf{T}_{j} \in \mathbb{R}^{j \times j}$. We have the Lanczos relation

$$
\mathbf{A Q}_{j}=\mathbf{Q}_{j+1} \widetilde{\mathbf{T}}_{j}, \quad \text { where } \quad \widetilde{\mathbf{T}}_{j}:=\mathbf{Q}_{j+1}^{*} \mathbf{A} \mathbf{Q}_{j} .
$$

- Compared with the Arnoldi process, we have

$$
a_{j}=h_{j j}, \quad b_{j+1}=h_{j+1, j}=h_{j, j+1}
$$

- The tridiagonal structure means that in the inner loop of the Arnoldi process, the limits 1 to j can be replaced by $j-1$ to j. Therefore, we have the Lanczos process.

Algorithm: Lanczos process generating the orthonormal basis

$$
\mathbf{r}=\text { arbitrary nonzero vector, } b_{1}=0, \mathbf{q}_{0}=\mathbf{0}
$$

$$
\mathbf{q}_{1}=\mathbf{r} /\|\mathbf{r}\|_{2}
$$

$$
\text { for } j=1,2,3, \ldots,
$$

$$
\mathbf{v}=\mathbf{A} \mathbf{q}_{j}
$$

$$
\mathbf{v}=\mathbf{v}-b_{j} \mathbf{q}_{j-1}
$$

$$
a_{j}=\mathbf{q}_{j}^{*} \mathbf{v}
$$

$$
\mathbf{v}=\mathbf{v}-a_{j} \mathbf{q}_{j}
$$

$$
b_{j+1}=\|\mathbf{v}\|_{2}
$$

$$
\mathbf{q}_{j+1}=\mathbf{v} / b_{j+1}
$$

end

- Note that the Lanczos process can be written down easily by using the Lanczos relation.
2.2. Derivation of conjugate gradients
- Note that the matrix

$$
\mathbf{T}_{j}=\mathbf{Q}_{j}^{*} \mathbf{A} \mathbf{Q}_{j}=\left[\begin{array}{ccccc}
a_{1} & b_{2} & & & \\
b_{2} & a_{2} & b_{3} & & \\
& \ddots & \ddots & \ddots & \\
& & b_{j-1} & a_{j-1} & b_{j} \\
& & & b_{j} & a_{j}
\end{array}\right]
$$

in the Lanczos process is Hermitian positive definite (since \mathbf{A} is HPD). Hence, \mathbf{T}_{j} can be LU factorized into

$$
\mathbf{T}_{j}=\mathbf{L}_{j} \mathbf{U}_{j}=\left[\begin{array}{ccccc}
1 & & & & \\
c_{2} & 1 & & & \\
& \ddots & \ddots & & \\
& & c_{j-1} & 1 & \\
& & & c_{j} & 1
\end{array}\right]\left[\begin{array}{ccccc}
d_{1} & b_{2} & & & \\
& d_{2} & b_{3} & & \\
& & \ddots & \ddots & \\
& & & d_{j-1} & b_{j} \\
& & & & d_{j}
\end{array}\right]
$$

with the recurrences for c_{j} and d_{j} :

$$
c_{j}=b_{j} / d_{j-1}, \quad d_{j}= \begin{cases}a_{1} & \text { if } j=1 \\ a_{j}-c_{j} b_{j} & \text { if } j>1\end{cases}
$$

- Assume that $\mathbf{x}_{j}=\mathbf{x}_{0}+\mathbf{Q}_{j} \mathbf{y}_{j}$. By $\mathbf{r}_{j} \perp \mathcal{K}_{j}$, i.e., $\mathbf{Q}_{j}^{*} \mathbf{r}_{j}=\mathbf{0}$, we have

$$
\mathbf{T}_{j} \mathbf{y}_{j}=\left\|\mathbf{r}_{0}\right\|_{2} \mathbf{e}_{1}
$$

Rewrite $\mathbf{x}_{j}=\mathbf{x}_{0}+\mathbf{Q}_{j} \mathbf{y}_{j}$ as

$$
\mathbf{x}_{j}=\mathbf{x}_{0}+\mathbf{Q}_{j} \mathbf{T}_{j}^{-1}\left(\left\|\mathbf{r}_{0}\right\|_{2} \mathbf{e}_{1}\right)=\mathbf{x}_{0}+\mathbf{Q}_{j} \mathbf{U}_{j}^{-1} \mathbf{L}_{j}^{-1}\left(\left\|\mathbf{r}_{0}\right\|_{2} \mathbf{e}_{1}\right)
$$

Let

$$
\begin{aligned}
& \mathbf{P}_{j}:=\mathbf{Q}_{j} \mathbf{U}_{j}^{-1}=\left[\begin{array}{llll}
\mathbf{p}_{0} & \mathbf{p}_{1} & \cdots & \mathbf{p}_{j-1}
\end{array}\right] \\
& \mathbf{z}_{j}:=\mathbf{L}_{j}^{-1}\left(\left\|\mathbf{r}_{0}\right\|_{2} \mathbf{e}_{1}\right)=\left[\begin{array}{llll}
\zeta_{1} & \zeta_{2} & \cdots & \zeta_{j}
\end{array}\right]^{\top},
\end{aligned}
$$

where $\mathbf{p}_{0}=\mathbf{q}_{1} / a_{1}, \zeta_{1}=\left\|\mathbf{r}_{0}\right\|_{2}$ and, for $j \geq 2$,

$$
\mathbf{p}_{j-1}=\frac{1}{d_{j}}\left(\mathbf{q}_{j}-b_{j} \mathbf{p}_{j-2}\right), \quad \zeta_{j}=-c_{j} \zeta_{j-1}
$$

It is now important to observe that (why?)

$$
\begin{aligned}
& \mathbf{P}_{j}=\left[\begin{array}{llll}
\mathbf{p}_{0} & \mathbf{p}_{1} & \cdots & \mathbf{p}_{j-1}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{P}_{j-1} & \mathbf{p}_{j-1}
\end{array}\right], \\
& \mathbf{z}_{j}=\left[\begin{array}{llll}
\zeta_{1} & \zeta_{2} & \cdots & \zeta_{j}
\end{array}\right]^{\top}=\left[\begin{array}{c}
\mathbf{z}_{j-1} \\
\zeta_{j}
\end{array}\right]
\end{aligned}
$$

With this formulation, we arrive at a simple recurrence for \mathbf{x}_{j} :

$$
\mathbf{x}_{j}=\mathbf{x}_{0}+\mathbf{P}_{j} \mathbf{z}_{j}=\mathbf{x}_{0}+\mathbf{P}_{j-1} \mathbf{z}_{j-1}+\zeta_{j} \mathbf{p}_{j-1}=\mathbf{x}_{j-1}+\zeta_{j} \mathbf{p}_{j-1}
$$

- The residual \mathbf{r}_{j} is essentially a multiple of \mathbf{q}_{j+1} (see below for a proof), therefore, all residuals are mutually orthogonal.

In fact, we have $\mathbf{r}_{0}=\left\|\mathbf{r}_{0}\right\|_{2} \mathbf{q}_{1}$ and, for $j \geq 1$,

$$
\begin{aligned}
\mathbf{r}_{j} & =\mathbf{b}-\mathbf{A} \mathbf{x}_{j}=\mathbf{b}-\mathbf{A}\left(\mathbf{x}_{0}+\mathbf{Q}_{j} \mathbf{y}_{j}\right) \\
& =\mathbf{r}_{0}-\mathbf{A} \mathbf{Q}_{j} \mathbf{y}_{j}=\mathbf{r}_{0}-\mathbf{Q}_{j+1} \widetilde{\mathbf{T}}_{j} \mathbf{y}_{j} \\
& =\mathbf{r}_{0}-\mathbf{Q}_{j} \mathbf{T}_{j} \mathbf{y}_{j}-b_{j+1}\left(\mathbf{e}_{j}^{*} \mathbf{y}_{j}\right) \mathbf{q}_{j+1} \\
& =\left\|\mathbf{r}_{0}\right\|_{2} \mathbf{q}_{1}-\mathbf{Q}_{j}\left(\left\|\mathbf{r}_{0}\right\|_{2} \mathbf{e}_{1}\right)-b_{j+1}\left(\mathbf{e}_{j}^{*} \mathbf{y}_{j}\right) \mathbf{q}_{j+1} \\
& =-b_{j+1}\left(\mathbf{e}_{j}^{*} \mathbf{y}_{j}\right) \mathbf{q}_{j+1} .
\end{aligned}
$$

- If we allow \mathbf{p}_{j-1} to scale and compensate for the scaling in the scalars, we potentially can have simpler recurrences of the form: $\mathbf{p}_{0}=\mathbf{r}_{0}$ and for $j \geq 1$,

$$
\begin{aligned}
\mathbf{x}_{j} & =\mathbf{x}_{j-1}+\alpha_{j} \mathbf{p}_{j-1}, \\
\mathbf{r}_{j} & =\mathbf{r}_{j-1}-\alpha_{j} \mathbf{A} \mathbf{p}_{j-1}, \\
\mathbf{p}_{j} & =\mathbf{r}_{j}+\beta_{j} \mathbf{p}_{j-1}
\end{aligned}
$$

- Note that at present we have

$$
\mathbf{P}_{j+1}=\left[\begin{array}{llll}
\mathbf{p}_{0} & \mathbf{p}_{1} & \cdots & \mathbf{p}_{j}
\end{array}\right]=\mathbf{Q}_{j+1} \mathbf{U}_{j+1}^{-1} \mathbf{D}_{j+1}
$$

where \mathbf{D}_{j+1} is a diagonal matrix with scaling parameters as diagonal entries. We now derive the A-conjugacy of \mathbf{p}_{j}, i.e., for each $0 \leq i<j$,

$$
\mathbf{p}_{i}^{*} \mathbf{A} \mathbf{p}_{j}=0
$$

It suffices to show that $\mathbf{P}_{j+1}^{*} \mathbf{A} \mathbf{P}_{j+1}$ is diagonal. Since

$$
\begin{aligned}
\mathbf{P}_{j+1}^{*} \mathbf{A} \mathbf{P}_{j+1} & =\mathbf{D}_{j+1}^{*} \mathbf{U}_{j+1}^{-*} \mathbf{Q}_{j+1}^{*} \mathbf{A} \mathbf{Q}_{j+1} \mathbf{U}_{j+1}^{-1} \mathbf{D}_{j+1} \\
& =\mathbf{D}_{j+1}^{*} \mathbf{U}_{j+1}^{-*} \mathbf{T}_{j+1} \mathbf{U}_{j+1}^{-1} \mathbf{D}_{j+1} \\
& =\mathbf{D}_{j+1}^{*} \mathbf{U}_{j+1}^{-*} \mathbf{L}_{j+1} \mathbf{D}_{j+1}
\end{aligned}
$$

is Hermitian and lower triangular simultaneously, then $\mathbf{P}_{j+1}^{*} \mathbf{A} \mathbf{P}_{j+1}$ must be diagonal.

- Now we can derive the scalar factors α_{j} and β_{j} by solely imposing the orthogonality of \mathbf{r}_{j} and A-conjugacy of \mathbf{p}_{j}. Due to the orthogonality of \mathbf{r}_{j}, it is necessary that

$$
\mathbf{r}_{j-1}^{*} \mathbf{r}_{j}=\mathbf{r}_{j-1}^{*}\left(\mathbf{r}_{j-1}-\alpha_{j} \mathbf{A} \mathbf{p}_{j-1}\right)=0
$$

As a result,

$$
\alpha_{j}=\frac{\mathbf{r}_{j-1}^{*} \mathbf{r}_{j-1}}{\mathbf{r}_{j-1}^{*} \mathbf{A} \mathbf{p}_{j-1}}=\frac{\mathbf{r}_{j-1}^{*} \mathbf{r}_{j-1}}{\left(\mathbf{p}_{j-1}-\beta_{j-1} \mathbf{p}_{j-2}\right)^{*} \mathbf{A} \mathbf{p}_{j-1}}=\frac{\mathbf{r}_{j-1}^{*} \mathbf{r}_{j-1}}{\mathbf{p}_{j-1}^{*} \mathbf{A} \mathbf{p}_{j-1}}
$$

Similarly, due to the A-conjugacy of \mathbf{p}_{j}, it is necessary that

$$
\mathbf{p}_{j}^{*} \mathbf{A} \mathbf{p}_{j-1}=\left(\mathbf{r}_{j}+\beta_{j} \mathbf{p}_{j-1}\right)^{*} \mathbf{A} \mathbf{p}_{j-1}=0
$$

As a result,

$$
\beta_{j}=-\frac{\mathbf{r}_{j}^{*} \mathbf{A} \mathbf{p}_{j-1}}{\mathbf{p}_{j-1}^{*} \mathbf{A} \mathbf{p}_{j-1}}=-\frac{\mathbf{r}_{j}^{*}\left(\mathbf{r}_{j-1}-\mathbf{r}_{j}\right)}{\alpha_{j} \mathbf{p}_{j-1}^{*} \mathbf{A} \mathbf{p}_{j-1}}=\frac{\mathbf{r}_{j}^{*} \mathbf{r}_{j}}{\mathbf{r}_{j-1}^{*} \mathbf{r}_{j-1}}
$$

2.3. Convergence of conjugate gradients

Theorem 1

Assume CG does not converge at step $l\left(\right.$ i.e., $\left.\mathbf{r}_{j} \neq \mathbf{0}, 0 \leq j \leq l\right)$. Then $\forall 1 \leq j \leq l$:
(1) The j th residual \mathbf{r}_{j} satisfies $\mathbf{r}_{i}^{*} \mathbf{r}_{j}=0$ for $0 \leq i<j$. (orthogonal)
(2) The j th search direction \mathbf{p}_{j} is nonzero $\left(\mathbf{p}_{j} \neq \mathbf{0}\right)$ and satisfies $\mathbf{p}_{i}^{*} \mathbf{A} \mathbf{p}_{j}=0$ for $0 \leq i<j$. (A-conjugate or $\langle\cdot, \cdot\rangle_{\mathbf{A}}$-orthogonal)
(3) The Krylov subspace

$$
\begin{aligned}
\mathcal{K}_{j+1}\left(\mathbf{A}, \mathbf{r}_{0}\right): & =\operatorname{span}\left\{\mathbf{r}_{0}, \mathbf{A} \mathbf{r}_{0}, \cdots, \mathbf{A}^{j} \mathbf{r}_{0}\right\} \\
& =\operatorname{span}\left\{\mathbf{x}_{1}-\mathbf{x}_{0}, \mathbf{x}_{2}-\mathbf{x}_{0}, \cdots, \mathbf{x}_{j+1}-\mathbf{x}_{0}\right\} \\
& =\operatorname{span}\left\{\mathbf{p}_{0}, \mathbf{p}_{1}, \cdots, \mathbf{p}_{j}\right\} \\
& =\operatorname{span}\left\{\mathbf{r}_{0}, \mathbf{r}_{1}, \cdots, \mathbf{r}_{j}\right\} .
\end{aligned}
$$

- A direct result of Theorem 1: There exists $k \leq m$ such that

$$
\mathbf{r}_{j} \neq \mathbf{0}, \quad \mathbf{r}_{j} \perp \mathcal{K}_{j}, \quad j=1, \ldots, k-1, \quad \text { and } \quad \mathbf{r}_{k}=\mathbf{0}
$$

i.e., CG finds the exact solution at step k.

- Since \mathbf{A} is Hermitian positive definite, the function $\|\cdot\|_{\mathbf{A}}$ defined by $\|\mathbf{x}\|_{\mathbf{A}}=\sqrt{\mathbf{x}^{*} \mathbf{A x}}$ is a norm, called \mathbf{A}-norm.

Theorem 2 (Optimality of CG)

Let \mathbf{x}_{\star} denote the exact solution $\mathbf{A}^{-1} \mathbf{b}$. We consider the \mathbf{A}-norm of the vector $\boldsymbol{\varepsilon}_{j}=\mathbf{x}_{\star}-\mathbf{x}_{j}$, the error at step j. If $\mathbf{r}_{j-1} \neq \mathbf{0}$, then \mathbf{x}_{j} is the unique vector in $\mathbf{x}_{0}+\mathcal{K}_{j}\left(\mathbf{A}, \mathbf{r}_{0}\right)$ such that

$$
\left\|\varepsilon_{j}\right\|_{\mathbf{A}}=\left\|\mathbf{x}_{\star}-\mathbf{x}_{j}\right\|_{\mathbf{A}}=\min _{\mathbf{x} \in \mathbf{x}_{0}+\mathcal{K}_{j}\left(\mathbf{A}, \mathbf{r}_{0}\right)}\left\|\mathbf{x}_{\star}-\mathbf{x}\right\|_{\mathbf{A}} .
$$

- A direct result of Theorem 2 and $\mathbf{r}_{j}=\mathbf{A} \boldsymbol{\varepsilon}_{j}$: There exists $k \leq m$ such that

$$
\left\|\varepsilon_{0}\right\|_{\mathbf{A}} \geq\left\|\varepsilon_{1}\right\|_{\mathbf{A}} \geq \cdots \geq\left\|\varepsilon_{k-1}\right\|_{\mathbf{A}}>\left\|\varepsilon_{k}\right\|_{\mathbf{A}}=0
$$

That is to say CG converges monotonically and finds the exact solution at step k.

Theorem 3

Let \mathbb{P}_{j} denote the set of polynomials p of degree $\leq j$. If $\mathbf{r}_{j-1} \neq \mathbf{0}$, then we have

$$
\frac{\left\|\varepsilon_{j}\right\|_{\mathbf{A}}}{\left\|\varepsilon_{0}\right\|_{\mathbf{A}}}=\min _{p \in \mathbb{P}_{j}, p(0)=1} \frac{\left\|p(\mathbf{A}) \varepsilon_{0}\right\|_{\mathbf{A}}}{\left\|\varepsilon_{0}\right\|_{\mathbf{A}}} \leq \min _{p \in \mathbb{P}_{j}, p(0)=1} \max _{\lambda \in \Lambda(\mathbf{A})}|p(\lambda)|
$$

where $\Lambda(\mathbf{A})$ denotes the spectrum of \mathbf{A}.
Exercise: Prove that if $\mathbf{r}_{j-1} \neq \mathbf{0}$, then the j th error ε_{j} of CG can be uniquely expressed as $\boldsymbol{\varepsilon}_{j}=p_{j}(\mathbf{A}) \varepsilon_{0}$ with $\operatorname{deg}\left(p_{j}\right)=j$ and $p_{j}(0)=1$. What is the unique polynomial?

Theorem 4

If A has only n distinct eigenvalues, then the CG iteration converges in at most n steps.

Hint: construct a special polynomial of degree n and prove that $\varepsilon_{n}=\mathbf{0}$.

Theorem 5 (rate of convergence)

Let \mathbf{A} have the 2 -norm condition number $\kappa=\lambda_{\max }(\mathbf{A}) / \lambda_{\min }(\mathbf{A})$. Then the \mathbf{A}-norms of the errors satisfy

$$
\frac{\left\|\varepsilon_{j}\right\|_{\mathbf{A}}}{\left\|\varepsilon_{0}\right\|_{\mathbf{A}}} \leq 2 /\left[\left(\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1}\right)^{j}+\left(\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1}\right)^{-j}\right] \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{j} .
$$

Proof. Consider the scaled and shifted Chebyshev polynomial

$$
p(x)=T_{j}\left(\gamma-\frac{2 x}{\lambda_{\max }-\lambda_{\min }}\right) / T_{j}(\gamma)
$$

where $T_{j}(x)$ is the Chebyshev polynomial of degree j (for $|x| \leq 1$, $T_{j}(x)=\cos (j \arccos (x))$, and for $\left.|x| \geq 1, T_{j}(x)=\cosh (j \operatorname{arccosh}(x))\right)$, and

$$
\gamma=\frac{\lambda_{\max }+\lambda_{\min }}{\lambda_{\max }-\lambda_{\min }}=\frac{\kappa+1}{\kappa-1} .
$$

For $x \in\left[\lambda_{\min }, \lambda_{\max }\right]$, it follows from $\gamma-\frac{2 x}{\lambda_{\max }-\lambda_{\min }} \in[-1,1]$, that

$$
\left|T_{j}\left(\gamma-\frac{2 x}{\lambda_{\max }-\lambda_{\min }}\right)\right| \leq 1 \text {, i.e., } \max _{x \in\left[\lambda_{\min }, \lambda_{\max }\right]}|p(x)| \leq \frac{1}{\left|T_{j}(\gamma)\right|}
$$

By the change of variables $x=\frac{1}{2}\left(z+z^{-1}\right)$, we have

$$
T_{j}(x)=\frac{\left(x+\sqrt{x^{2}-1}\right)^{j}+\left(x-\sqrt{x^{2}-1}\right)^{j}}{2}=\frac{1}{2}\left(z^{j}+z^{-j}\right),
$$

which is standard in the study of Chebyshev polynomials. Note that

$$
x=\frac{\kappa+1}{\kappa-1} \Rightarrow z=\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1} \text { or } \frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1} .
$$

Thus

$$
T_{j}(\gamma)=T_{j}\left(\frac{\kappa+1}{\kappa-1}\right)=\frac{1}{2}\left[\left(\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1}\right)^{j}+\left(\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1}\right)^{-j}\right]
$$

The second inequality in Theorem 5 is obvious.
2.4. A numerical example

- Consider a 500×500 matrix A constructed as follows. (i) $a_{i i}=1$, $a_{i j}=a_{j i}=\operatorname{rand}(1)$ for $i \neq j$. (ii) Set off-diagonal entry $a_{i j}=0$ $(i \neq j)$ if $\left|a_{i j}\right|>\tau$, where τ is a parameter. \mathbf{b} is random, $\mathbf{x}_{0}=\mathbf{0}$.
- For τ close to zero, \mathbf{A} is well-conditioned positive definite.

3. CG as an optimization algorithm

- Consider minimizing the nonlinear function $\varphi(\mathbf{x})$ of $\mathbf{x} \in \mathbb{R}^{m}$:

$$
\varphi(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{x}^{\top} \mathbf{b}, \quad \mathbf{A} \in \mathbb{R}^{m \times m}(\mathrm{SPD}), \quad \mathbf{b} \in \mathbb{R}^{m} .
$$

A standard algorithm (line search): At each step, an iterate

$$
\mathbf{x}_{j}=\mathbf{x}_{j-1}+\alpha_{j} \mathbf{p}_{j-1}
$$

is computed. The optimal step length α_{j} is given by

$$
\alpha_{j}=\frac{\mathbf{p}_{j-1}^{\top} \mathbf{r}_{j-1}}{\mathbf{p}_{j-1}^{\top} \mathbf{A} \mathbf{p}_{j-1}}=\underset{\alpha}{\arg \min } \varphi\left(\mathbf{x}_{j-1}+\alpha \mathbf{p}_{j-1}\right),
$$

which ensures that

$$
\mathbf{x}_{j}=\underset{\mathbf{x} \in \mathbf{x}_{j-1}+\operatorname{span}\left\{\mathbf{p}_{j-1}\right\}}{\arg \min } \varphi(\mathbf{x}) .
$$

- The steepest descent iteration uses the negative gradient direction:

$$
\mathbf{p}_{j-1}=-\nabla \varphi\left(\mathbf{x}_{j-1}\right)=\mathbf{r}_{j-1}
$$

Example: $\mathbf{A}=\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}\right\}$
$\mathbf{b}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$

Steepest descent

Conjugate gradients

- CG uses the A-conjugate direction

$$
\mathbf{p}_{j-1}=\mathbf{r}_{j-1}+\beta_{j-1} \mathbf{p}_{j-2},
$$

which has the special property

$$
\mathbf{x}_{j}=\underset{\mathbf{x} \in \mathbf{x}_{j-1}+\operatorname{span}\left\{\mathbf{p}_{j-1}\right\}}{\arg \min } \varphi(\mathbf{x})=\underset{\mathbf{x} \in \mathbf{x}_{0}+\operatorname{span}\left\{\mathbf{p}_{0}, \mathbf{p}_{1}, \cdots, \mathbf{p}_{j-1}\right\}}{\arg \min } \varphi(\mathbf{x}) .
$$

4. Preconditioning

- A good preconditioner M, which accelerates the convergence, needs to be cheap to perform $\mathbf{M}^{-1} \mathbf{z}$. Moreover, the preconditioned matrix should have eigenvalues clustering behavior.
- For CG, we will assume that \mathbf{M} is also Hermitian positive definite. However, we can not apply CG straightaway for the explicitly preconditioned systems

$$
\mathbf{M}^{-1} \mathbf{A} \mathbf{x}=\mathbf{M}^{-1} \mathbf{b}, \quad \text { or } \quad \mathbf{A} \mathbf{M}^{-1} \mathbf{z}=\mathbf{b}, \quad\left(\mathbf{x}=\mathbf{M}^{-1} \mathbf{z}\right)
$$

because $\mathbf{M}^{-1} \mathbf{A}$ and $\mathbf{A} \mathbf{M}^{-1}$ are most likely not Hermitian.

- One way out is to apply the two-sided preconditioning strategy:

$$
\mathbf{M}=\mathbf{L L}^{*}, \quad\left(\mathbf{L}^{-1} \mathbf{A} \mathbf{L}^{-*}\right) \mathbf{L}^{*} \mathbf{x}=\mathbf{L}^{-1} \mathbf{b}
$$

The matrix $\mathbf{L}^{-1} \mathbf{A L} \mathbf{L}^{-*}$ is HPD, so that CG is applicable. We emphasize that this is a formalism; in practice, the only thing needed is to be able to perform $\mathbf{M}^{-1} \mathbf{z}$, and \mathbf{L} is not required.

- Applying CG to the two-sided preconditioned system and using simple variable substitutions yield PCG. (Exercise)
- There is an alternative for the derivation of PCG.

For the left and right preconditioned matrices $\mathbf{M}^{-1} \mathbf{A}$ and $\mathbf{A M}^{-1}$, replace the standard inner product

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{y}^{*} \mathbf{x}
$$

by

$$
\langle\mathbf{x}, \mathbf{y}\rangle_{\mathrm{L}}=\langle\mathbf{M} \mathbf{x}, \mathbf{y}\rangle \quad \text { and } \quad\langle\mathbf{x}, \mathbf{y}\rangle_{\mathrm{R}}=\left\langle\mathbf{M}^{-1} \mathbf{x}, \mathbf{y}\right\rangle
$$

respectively.
It is easy to verify that $\mathbf{M}^{-1} \mathbf{A}$ and $\mathbf{A} \mathbf{M}^{-1}$ are self-adjoint and positive definite with respect to the inner products $\langle\cdot, \cdot\rangle_{\mathrm{L}}$ and $\langle\cdot, \cdot\rangle_{\mathrm{R}}$, respectively. For example,

$$
\begin{aligned}
\left\langle\mathbf{A} \mathbf{M}^{-1} \mathbf{x}, \mathbf{y}\right\rangle_{\mathrm{R}} & =\left\langle\mathbf{M}^{-1} \mathbf{A} \mathbf{M}^{-1} \mathbf{x}, \mathbf{y}\right\rangle=\left\langle\mathbf{M}^{-1} \mathbf{x}, \mathbf{A} \mathbf{M}^{-1} \mathbf{y}\right\rangle \\
& =\left\langle\mathbf{x}, \mathbf{A} \mathbf{M}^{-1} \mathbf{y}\right\rangle_{\mathrm{R}}
\end{aligned}
$$

Algorithm PCG: $\mathbf{A M}^{-1} \mathbf{z}=\mathbf{b}, \mathbf{x}=\mathbf{M}^{-1} \mathbf{z}$
Choose $\mathbf{x}=\mathbf{x}_{0}$; set $\mathbf{r}_{0}=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}$ and $\mathbf{p}_{0}=\mathbf{M}^{-1} \mathbf{r}_{0}$; for $j=1,2, \ldots$, do until convergence:

$$
\begin{aligned}
& \mathbf{x}_{j}=\mathbf{x}_{j-1}+\alpha_{j} \mathbf{p}_{j-1} \\
& \mathbf{r}_{j}=\mathbf{r}_{j-1}-\alpha_{j} \mathbf{A} \mathbf{p}_{j-1} \\
& \mathbf{p}_{j}=\mathbf{M}^{-1} \mathbf{r}_{j}+\beta_{j} \mathbf{p}_{j-1}
\end{aligned}
$$

where

$$
\alpha_{j}=\frac{\mathbf{r}_{j-1}^{*} \mathbf{M}^{-1} \mathbf{r}_{j-1}}{\mathbf{p}_{j-1}^{*} \mathbf{A} \mathbf{p}_{j-1}} ; \quad \beta_{j}=\frac{\mathbf{r}_{j}^{*} \mathbf{M}^{-1} \mathbf{r}_{j}}{\mathbf{r}_{j-1}^{*} \mathbf{M}^{-1} \mathbf{r}_{j-1}}
$$

- We now are minimizing (note that $\mathbf{x}_{0}=\mathbf{M}^{-1} \mathbf{z}_{0}$ and $\mathbf{x}=\mathbf{M}^{-1} \mathbf{z}$)

$$
\begin{aligned}
\left\langle\mathbf{A} \mathbf{M}^{-1}\left(\mathbf{z}_{\star}-\mathbf{z}\right), \mathbf{z}_{\star}-\mathbf{z}\right\rangle_{\mathrm{R}} & =\left\langle\mathbf{A} \mathbf{M}^{-1}\left(\mathbf{z}_{\star}-\mathbf{z}\right), \mathbf{M}^{-1}\left(\mathbf{z}_{\star}-\mathbf{z}\right)\right\rangle \\
& =\left\langle\mathbf{A}\left(\mathbf{x}_{\star}-\mathbf{x}\right), \mathbf{x}_{\star}-\mathbf{x}\right\rangle \\
& =\|\varepsilon\|_{\mathbf{A}}^{2}
\end{aligned}
$$

over $\mathbf{z}_{0}+\mathcal{K}_{j}\left(\mathbf{A} \mathbf{M}^{-1}, \mathbf{r}_{0}\right)$ or $\mathbf{x}_{0}+\mathbf{M}^{-1} \mathcal{K}_{j}\left(\mathbf{A} \mathbf{M}^{-1}, \mathbf{r}_{0}\right)$.

- CG and PCG convergence curves for a 1000×1000 matrix

5. $\mathbf{C G N}=\mathrm{CG}$ applied to the normal equations

- Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be nonsingular but not necessarily Hermitian. We can solve the linear system $\mathbf{A x}=\mathbf{b}$ via applying the CG method to the normal equations

$$
\mathbf{A}^{*} \mathbf{A} \mathbf{x}=\mathbf{A}^{*} \mathbf{b}
$$

- The matrix $\mathbf{A}^{*} \mathbf{A}$ is not formed explicitly. Instead, each matrix-vector product $\mathbf{A}^{*} \mathbf{A v}$ is evaluated in two steps as $\mathbf{A}^{*}(\mathbf{A v})$.
- We have

$$
\begin{aligned}
\left\|\mathbf{r}_{j}\right\|_{2} & =\left\|\varepsilon_{j}\right\|_{\mathbf{A}^{*} \mathbf{A}}=\left\|\mathbf{x}_{\star}-\mathbf{x}_{j}\right\|_{\mathbf{A}^{*} \mathbf{A}} \\
& =\min _{\mathbf{x} \in \mathbf{x}_{0}+\mathcal{K} \mathcal{K}_{j}\left(\mathbf{A}^{*} \mathbf{A}, \mathbf{A}^{*} \mathbf{r}_{0}\right)}\left\|\mathbf{x}_{\star}-\mathbf{x}\right\|_{\mathbf{A}^{*} \mathbf{A}}
\end{aligned}
$$

and

$$
\frac{\left\|\mathbf{r}_{j}\right\|_{2}}{\left\|\mathbf{r}_{0}\right\|_{2}} \leq 2\left(\frac{\kappa-1}{\kappa+1}\right)^{j}, \quad \text { where } \quad \kappa=\frac{\sigma_{\max }(\mathbf{A})}{\sigma_{\min }(\mathbf{A})}
$$

