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1. The principle of conjugate gradients

Consider a Hermitian positive definite linear system

Ax = b, A ∈ Cm×m, b ∈ Cm.

For initial guess x0, at step j, the conjugate gradient method finds
an approximate solution

xj ∈ x0 +Kj(A, r0)

satisfying
rj := b−Axj ⊥ Kj(A, r0),

where
Kj(A, r0) := span{r0,Ar0, . . . ,A

j−1r0}.

Note that the residual of GMRES satisfies

rj ⊥ AKj(A, r0).
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2. Conjugate gradients

Algorithm CG: Ax = b, A ∈ Cm×m Hermitian positive definite.

Choose arbitrary x0;
Set r0 = b−Ax0 and p0 = r0;
for j = 1, 2, . . . , do until convergence:

αj =
〈rj−1, rj−1〉

〈Apj−1,pj−1〉
=

r∗j−1rj−1

p∗
j−1Apj−1

; (step length)

xj = xj−1 + αjpj−1; (approximation solution)
rj = rj−1 − αjApj−1; (residual)

βj =
〈rj , rj〉

〈rj−1, rj−1〉
=

r∗jrj

r∗j−1rj−1
;

pj = rj + βjpj−1; (search direction)
end

M.R. Hestenes and E. Stiefel

Methods of conjugate gradients for solving linear systems

J. Research Nat. Bur. Standards 49 (1952), 409–436
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2.1. The Lanczos process

Since A is Hermitian, then Hj = Q∗
jAQj in the Arnoldi process is

also Hermitian. Since Hj is upper Hessenberg, it is tridiagonal:

Hj = Q∗
jAQj =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

a1 b2
b2 a2 b3

b3 a3
. . .

. . .
. . . bj
bj aj

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸
=: Tj .

Note that Tj ∈ Rj×j . We have the Lanczos relation

AQj = Qj+1
󰁨Tj , where 󰁨Tj := Q∗

j+1AQj .

Compared with the Arnoldi process, we have

aj = hjj , bj+1 = hj+1,j = hj,j+1.
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The tridiagonal structure means that in the inner loop of the
Arnoldi process, the limits 1 to j can be replaced by j − 1 to j.
Therefore, we have the Lanczos process.

Algorithm: Lanczos process generating the orthonormal basis

r = arbitrary nonzero vector, b1 = 0, q0 = 0
q1 = r/󰀂r󰀂2
for j = 1, 2, 3, . . . ,

v = Aqj

v = v − bjqj−1

aj = q∗
jv

v = v − ajqj

bj+1 = 󰀂v󰀂2
qj+1 = v/bj+1

end

Note that the Lanczos process can be written down easily by using
the Lanczos relation.
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2.2. Derivation of conjugate gradients

Note that the matrix

Tj = Q∗
jAQj =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

a1 b2
b2 a2 b3

. . .
. . .

. . .

bj−1 aj−1 bj
bj aj

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸

in the Lanczos process is Hermitian positive definite (since A is
HPD). Hence, Tj can be LU factorized into

Tj = LjUj =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

1
c2 1

. . .
. . .

cj−1 1
cj 1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

d1 b2
d2 b3

. . .
. . .

dj−1 bj
dj

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
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with the recurrences for cj and dj :

cj = bj/dj−1, dj =

󰀫
a1 if j = 1,

aj − cjbj if j > 1.

Assume that xj = x0 +Qjyj . By rj⊥Kj , i.e., Q
∗
jrj = 0, we have

Tjyj = 󰀂r0󰀂2e1.

Rewrite xj = x0 +Qjyj as

xj = x0 +QjT
−1
j (󰀂r0󰀂2e1) = x0 +QjU

−1
j L−1

j (󰀂r0󰀂2e1).

Let
Pj := QjU

−1
j =

󰀅
p0 p1 · · · pj−1

󰀆
,

zj := L−1
j (󰀂r0󰀂2e1) =

󰀅
ζ1 ζ2 · · · ζj

󰀆⊤
,
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where p0 = q1/a1, ζ1 = 󰀂r0󰀂2 and, for j ≥ 2,

pj−1 =
1

dj
(qj − bjpj−2), ζj = −cjζj−1.

It is now important to observe that (why?)

Pj =
󰀅
p0 p1 · · · pj−1

󰀆
=

󰀅
Pj−1 pj−1

󰀆
,

zj =
󰀅
ζ1 ζ2 · · · ζj

󰀆⊤
=

󰀗
zj−1

ζj

󰀘
,

.

With this formulation, we arrive at a simple recurrence for xj :

xj = x0 +Pjzj = x0 +Pj−1zj−1 + ζjpj−1 = xj−1 + ζjpj−1.

The residual rj is essentially a multiple of qj+1 (see below for a
proof), therefore, all residuals are mutually orthogonal.
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In fact, we have r0 = 󰀂r0󰀂2q1 and, for j ≥ 1,

rj = b−Axj = b−A(x0 +Qjyj)

= r0 −AQjyj = r0 −Qj+1
󰁨Tjyj

= r0 −QjTjyj − bj+1(e
∗
jyj)qj+1

= 󰀂r0󰀂2q1 −Qj(󰀂r0󰀂2e1)− bj+1(e
∗
jyj)qj+1

= −bj+1(e
∗
jyj)qj+1.

If we allow pj−1 to scale and compensate for the scaling in the
scalars, we potentially can have simpler recurrences of the form:
p0 = r0 and for j ≥ 1,

xj = xj−1 + αjpj−1,

rj = rj−1 − αjApj−1,

pj = rj + βjpj−1.
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Note that at present we have

Pj+1 =
󰀅
p0 p1 · · · pj

󰀆
= Qj+1U

−1
j+1Dj+1,

where Dj+1 is a diagonal matrix with scaling parameters as
diagonal entries. We now derive the A-conjugacy of pj , i.e., for
each 0 ≤ i < j,

p∗
iApj = 0.

It suffices to show that P∗
j+1APj+1 is diagonal. Since

P∗
j+1APj+1 = D∗

j+1U
−∗
j+1Q

∗
j+1AQj+1U

−1
j+1Dj+1

= D∗
j+1U

−∗
j+1Tj+1U

−1
j+1Dj+1

= D∗
j+1U

−∗
j+1Lj+1Dj+1

is Hermitian and lower triangular simultaneously, then
P∗

j+1APj+1 must be diagonal.
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Now we can derive the scalar factors αj and βj by solely imposing
the orthogonality of rj and A-conjugacy of pj . Due to the
orthogonality of rj , it is necessary that

r∗j−1rj = r∗j−1(rj−1 − αjApj−1) = 0.

As a result,

αj =
r∗j−1rj−1

r∗j−1Apj−1

=
r∗j−1rj−1

(pj−1 − βj−1pj−2)∗Apj−1

=
r∗j−1rj−1

p∗
j−1Apj−1

.

Similarly, due to the A-conjugacy of pj , it is necessary that

p∗
jApj−1 = (rj + βjpj−1)

∗Apj−1 = 0.

As a result,

βj = −
r∗jApj−1

p∗
j−1Apj−1

= −
r∗j (rj−1 − rj)

αjp∗
j−1Apj−1

=
r∗jrj

r∗j−1rj−1
.
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2.3. Convergence of conjugate gradients

Theorem 1

Assume CG does not converge at step l (i.e., rj ∕= 0, 0 ≤ j ≤ l). Then
∀ 1 ≤ j ≤ l:

(1) The jth residual rj satisfies r∗i rj = 0 for 0 ≤ i < j. (orthogonal)

(2) The jth search direction pj is nonzero (pj ∕= 0) and satisfies
p∗
iApj = 0 for 0 ≤ i < j. (A-conjugate or 〈·, ·〉A-orthogonal)

(3) The Krylov subspace

Kj+1(A, r0) : = span{r0,Ar0, · · · ,Ajr0}
= span{x1 − x0,x2 − x0, · · · ,xj+1 − x0}
= span{p0,p1, · · · ,pj}
= span{r0, r1, · · · , rj}.

A direct result of Theorem 1: There exists k ≤ m such that

rj ∕= 0, rj⊥Kj , j = 1, . . . , k − 1, and rk = 0,

i.e., CG finds the exact solution at step k.
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Since A is Hermitian positive definite, the function 󰀂 · 󰀂A defined
by 󰀂x󰀂A =

√
x∗Ax is a norm, called A-norm.

Theorem 2 (Optimality of CG)

Let x󰂏 denote the exact solution A−1b. We consider the A-norm of
the vector εj = x󰂏 − xj, the error at step j. If rj−1 ∕= 0, then xj is the
unique vector in x0 +Kj(A, r0) such that

󰀂εj󰀂A = 󰀂x󰂏 − xj󰀂A = min
x∈x0+Kj(A,r0)

󰀂x󰂏 − x󰀂A.

A direct result of Theorem 2 and rj = Aεj : There exists k ≤ m
such that

󰀂ε0󰀂A ≥ 󰀂ε1󰀂A ≥ · · · ≥ 󰀂εk−1󰀂A > 󰀂εk󰀂A = 0.

That is to say CG converges monotonically and finds the exact
solution at step k.
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Theorem 3

Let Pj denote the set of polynomials p of degree ≤ j. If rj−1 ∕= 0, then
we have

󰀂εj󰀂A
󰀂ε0󰀂A

= min
p∈Pj ,p(0)=1

󰀂p(A)ε0󰀂A
󰀂ε0󰀂A

≤ min
p∈Pj ,p(0)=1

max
λ∈Λ(A)

|p(λ)|,

where Λ(A) denotes the spectrum of A.

Exercise: Prove that if rj−1 ∕= 0, then the jth error εj of CG can be
uniquely expressed as εj = pj(A)ε0 with deg(pj) = j and pj(0) = 1.
What is the unique polynomial?

Theorem 4

If A has only n distinct eigenvalues, then the CG iteration converges in
at most n steps.

Hint: construct a special polynomial of degree n and prove that εn = 0.
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Theorem 5 (rate of convergence)

Let A have the 2-norm condition number κ = λmax(A)/λmin(A). Then
the A-norms of the errors satisfy

󰀂εj󰀂A
󰀂ε0󰀂A

≤ 2
󰀱󰀥󰀕√

κ+ 1√
κ− 1

󰀖j

+

󰀕√
κ+ 1√
κ− 1

󰀖−j
󰀦
≤ 2

󰀕√
κ− 1√
κ+ 1

󰀖j

.

Proof. Consider the scaled and shifted Chebyshev polynomial

p(x) = Tj

󰀕
γ − 2x

λmax − λmin

󰀖
/Tj(γ),

where Tj(x) is the Chebyshev polynomial of degree j (for |x| ≤ 1,
Tj(x) = cos(j arccos(x)), and for |x| ≥ 1, Tj(x) = cosh(j arccosh(x))),
and

γ =
λmax + λmin

λmax − λmin
=

κ+ 1

κ− 1
.

For x ∈ [λmin,λmax], it follows from γ − 2x

λmax − λmin
∈ [−1, 1], that
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󰀏󰀏󰀏󰀏Tj

󰀕
γ − 2x

λmax − λmin

󰀖󰀏󰀏󰀏󰀏 ≤ 1, i.e., max
x∈[λmin,λmax]

|p(x)| ≤ 1

|Tj(γ)|
.

By the change of variables x =
1

2
(z + z−1), we have

Tj(x) =
(x+

√
x2 − 1)j + (x−

√
x2 − 1)j

2
=

1

2
(zj + z−j),

which is standard in the study of Chebyshev polynomials. Note that

x =
κ+ 1

κ− 1
⇒ z =

√
κ+ 1√
κ− 1

or

√
κ− 1√
κ+ 1

.

Thus

Tj(γ) = Tj

󰀕
κ+ 1

κ− 1

󰀖
=

1

2

󰀥󰀕√
κ+ 1√
κ− 1

󰀖j

+

󰀕√
κ+ 1√
κ− 1

󰀖−j
󰀦
.

The second inequality in Theorem 5 is obvious.
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2.4. A numerical example

Consider a 500× 500 matrix A constructed as follows. (i) aii = 1,
aij = aji = rand(1) for i ∕= j. (ii) Set off-diagonal entry aij = 0
(i ∕= j) if |aij | > τ , where τ is a parameter. b is random, x0 = 0.
For τ close to zero, A is well-conditioned positive definite.
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3. CG as an optimization algorithm

Consider minimizing the nonlinear function ϕ(x) of x ∈ Rm:

ϕ(x) =
1

2
x⊤Ax− x⊤b, A ∈ Rm×m (SPD), b ∈ Rm.

A standard algorithm (line search): At each step, an iterate

xj = xj−1 + αjpj−1

is computed. The optimal step length αj is given by

αj =
p⊤
j−1rj−1

p⊤
j−1Apj−1

= argmin
α

ϕ(xj−1 + αpj−1),

which ensures that

xj = argmin
x∈xj−1+span{pj−1}

ϕ(x).

The steepest descent iteration uses the negative gradient direction:

pj−1 = −∇ϕ(xj−1) = rj−1.

Numerical Linear Algebra Lecture 12 Xiamen University 18 / 24



Example: A = diag{λ1,λ2}
b =

󰀅
0 0

󰀆⊤

!"

!#

$"

!"

!#

$"

$#

%
&'(

%
&'(

%
&'(

%
&'(

Steepest descent Conjugate gradients

CG uses the A-conjugate direction

pj−1 = rj−1 + βj−1pj−2,

which has the special property

xj = argmin
x∈xj−1+span{pj−1}

ϕ(x) = argmin
x∈x0+span{p0,p1,··· ,pj−1}

ϕ(x).
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4. Preconditioning

A good preconditioner M, which accelerates the convergence,
needs to be cheap to perform M−1z. Moreover, the preconditioned
matrix should have eigenvalues clustering behavior.

For CG, we will assume that M is also Hermitian positive definite.
However, we can not apply CG straightaway for the explicitly
preconditioned systems

M−1Ax = M−1b, or AM−1z = b, (x = M−1z)

because M−1A and AM−1 are most likely not Hermitian.

One way out is to apply the two-sided preconditioning strategy:

M = LL∗, (L−1AL−∗)L∗x = L−1b.

The matrix L−1AL−∗ is HPD, so that CG is applicable. We
emphasize that this is a formalism; in practice, the only thing
needed is to be able to perform M−1z, and L is not required.
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Applying CG to the two-sided preconditioned system and using
simple variable substitutions yield PCG. (Exercise)

There is an alternative for the derivation of PCG.

For the left and right preconditioned matrices M−1A and AM−1,
replace the standard inner product

〈x,y〉 = y∗x

by
〈x,y〉L = 〈Mx,y〉 and 〈x,y〉R = 〈M−1x,y〉,

respectively.

It is easy to verify that M−1A and AM−1 are self-adjoint and
positive definite with respect to the inner products 〈·, ·〉L and
〈·, ·〉R, respectively. For example,

〈AM−1x,y〉R = 〈M−1AM−1x,y〉 = 〈M−1x,AM−1y〉
= 〈x,AM−1y〉R.
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Algorithm PCG: AM−1z = b, x = M−1z

Choose x = x0; set r0 = b−Ax0 and p0 = M−1r0;
for j = 1, 2, . . . , do until convergence:

xj = xj−1 + αjpj−1;
rj = rj−1 − αjApj−1;
pj = M−1rj + βjpj−1;

where

αj =
r∗j−1M

−1rj−1

p∗
j−1Apj−1

; βj =
r∗jM

−1rj

r∗j−1M
−1rj−1

.

We now are minimizing (note that x0 = M−1z0 and x = M−1z)

〈AM−1(z󰂏 − z), z󰂏 − z〉R = 〈AM−1(z󰂏 − z),M−1(z󰂏 − z)〉
= 〈A(x󰂏 − x),x󰂏 − x〉
= 󰀂ε󰀂2A,

over z0 +Kj(AM−1, r0) or x0 +M−1Kj(AM−1, r0).
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CG and PCG convergence curves for a 1000× 1000 matrix

j

󰀂rj󰀂2
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5. CGN = CG applied to the normal equations

Let A ∈ Cm×m be nonsingular but not necessarily Hermitian. We
can solve the linear system Ax = b via applying the CG method
to the normal equations

A∗Ax = A∗b.

The matrix A∗A is not formed explicitly. Instead, each
matrix-vector product A∗Av is evaluated in two steps as A∗(Av).

We have

󰀂rj󰀂2 = 󰀂εj󰀂A∗A = 󰀂x󰂏 − xj󰀂A∗A

= min
x∈x0+Kj(A∗A,A∗r0)

󰀂x󰂏 − x󰀂A∗A,

and

󰀂rj󰀂2
󰀂r0󰀂2

≤ 2

󰀕
κ− 1

κ+ 1

󰀖j

, where κ =
σmax(A)

σmin(A)
.
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