Lecture 16: From Lanczos to Gauss quadrature

School of Mathematical Sciences, Xiamen University

1. Orthogonal polynomials

Replace Cⁿ by L²[-1,1], a vector space of real-valued functions on [-1,1]. The inner product of two functions u, v ∈ L²[-1,1] is defined by

$$\langle u, v \rangle = \int_{-1}^{1} u(x)v(x) \mathrm{d}x,$$

and the norm of a function $u \in L^2[-1, 1]$ is $||u|| = \langle u, u \rangle^{1/2}$.

Proposition 1

The pointwise multiplication operator

$$(\mathbf{A}u)(x) = xu(x)$$

is self-adjoint with respect to the given inner product.

Proof. Note that

$$\langle \mathbf{A}u, v \rangle = \int_{-1}^{1} (\mathbf{A}u)(x)v(x) \mathrm{d}x = \int_{-1}^{1} u(x)(\mathbf{A}v)(x) \mathrm{d}x = \langle u, \mathbf{A}v \rangle. \quad \Box$$

• The Lanczos process $(\mathbf{r} = 1 \text{ and } \mathbf{A} = x)$ becomes the procedure for constructing orthogonal polynomials via a three-term recurrence relation.

Algorithm: Lanczos for orthogonal polynomials

$$\beta_{0} = 0, q_{0}(x) = 0, q_{1}(x) = 1/\sqrt{2}$$

for $j = 1, 2, 3, ...,$
 $v(x) = xq_{j}(x)$
 $v(x) = v(x) - \beta_{j-1}q_{j-1}(x)$
 $\alpha_{j} = \langle v, q_{j} \rangle$
 $v(x) = v(x) - \alpha_{j}q_{j}(x)$
 $\beta_{j} = ||v||$
 $q_{j+1}(x) = v(x)/\beta_{j}$
end

Remark 2

We have
$$\langle q_i, q_j \rangle = \int_{-1}^1 q_i(x)q_j(x)dx = \delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Numerical Linear Algebra

Remark 3

The function $q_j(x)$ is a scalar multiple of the Legendre polynomial $P_j(x)$ of degree j-1 (note that $P_j(1) = 1$), i.e.,

$$q_j(x) = q_j(1)P_j(x).$$

Remark 4

The three-term recurrence takes the form

$$xq_j(x) = \beta_{j-1}q_{j-1}(x) + \alpha_j q_j(x) + \beta_j q_{j+1}(x).$$

The entries $\{\alpha_j\}$ and $\{\beta_j\}$ are known analytically:

$$\alpha_j = 0, \qquad \beta_j = \frac{1}{2}(1 - (2j)^{-2})^{-1/2}.$$

• The tridiagonal matrices $\{\mathbf{T}_j\}$ in Lanczos process are known as *Jacobi matrices* in the context of orthogonal polynomials.

Remark 5

If the inner product is modified by the inclusion of a nonconstant positive weight function w(x) in the integrand, then one obtains other families of orthogonal polynomials such as Chebyshev polynomials and Jacobi polynomials.

1.1. Comparison to Gram–Schmidt

Algorithm: Gram–Schmidt for orthogonal polynomials

for
$$j = 1, 2, 3, \cdots$$

 $q_j(x) = x^{j-1}$
for $i = 1$ to $j - 1$
 $r_{ij} = \langle x^{j-1}, q_i \rangle$
 $q_j(x) = q_j(x) - r_{ij}q_i(x)$
end
 $r_{jj} = ||q_j||$
 $q_j(x) = q_j(x)/r_{jj}$
end

Remark 6

The above algorithm constructs the continuous QR factorizations of the "Krylov matrix"

$$\mathbf{K}_{\infty} = \begin{bmatrix} 1 & x & x^2 & x^3 & \cdots \end{bmatrix},$$

which is obtained by setting $\mathbf{r} = 1$ and $\mathbf{A} = x$.

Remark 7

The two algorithms obtain the same sequence of functions $\{q_j\}$.

2. Orthogonal polynomials approximation problem

• Find a monic polynomial p^j of degree j such that

$$||p^{j}(x)|| = \min_{p, \deg(p)=j} ||p(x)||.$$

According to Theorem 6 of Lecture 15, the unique solution is the characteristic polynomial of the matrix \mathbf{T}_{j} .

Theorem 8

Let $p^{j}(x)$ be the characteristic polynomial of \mathbf{T}_{j} . Then for $j = 0, 1, \cdots$,

$$p^j(x) = \rho_j q_{j+1}(x),$$

where ρ_j is a constant.

Proof. Any monic p(x) of degree j can be written as

$$p(x) = \rho_j q_{j+1}(x) + \sum_{i=1}^j y_i q_i(x),$$

where ρ_j is a constant – the inverse of the leading coefficient of $q_{j+1}(x)$. Due to

$$||p(x)|| = (\rho_j^2 + ||\mathbf{y}||_2^2)^{1/2},$$

the minimum is obtained by setting $\mathbf{y} = \mathbf{0}$.

Corollary 9

The zeros of $q_{j+1}(x)$ are the eigenvalues of \mathbf{T}_j . These j zeros are distinct and lie in the open interval (-1, 1).

Proof. All eigenvalues of \mathbf{T}_j are distinct. Assume that k < j. For any $\{x_i\}_{i=1}^k$, we have

$$\int_{-1}^{1} q_{j+1}(x) dx = 0, \quad \int_{-1}^{1} q_{j+1}(x) \prod_{i=1}^{k} (x - x_i) dx = 0.$$

The first equality shows that there exists at least one root in (-1, 1). Now assume there are only k < j distinct roots in (-1, 1), denoted by $\{x_i\}_{i=1}^k$. Consider the polynomial $q_{j+1}(x) \prod_{i=1}^k (x - x_i)$, which has constant sign in (-1, 1). This is a contradiction of the second equality.

3. Gauss–Legendre quadrature

• Numerical quadrature: consider a *j*-point quadrature formula

$$\mathcal{I}_j(f) = \sum_{i=1}^j w_i f(x_i) \quad \text{for} \quad \mathcal{I}(f) = \int_{-1}^1 f(x) \mathrm{d}x.$$

Theorem 10

Let the nodes $\{x_i\}_{i=1}^j$ be an arbitrary set of j distinct points in [-1, 1]. Then there is a unique choice of weights $\{w_i\}_{i=1}^j$ with the property that the quadrature formula has order of accuracy at least j-1 in the sense that it is exact if f(x) is any polynomial of degree $\leq j-1$. The weights $\{w_i\}_{i=1}^j$ are given by

$$w_i = \int_{-1}^1 \ell_i(x) dx, \quad \ell_i(x) = \prod_{k=1, k \neq i}^j (x - x_k) \Big/ \prod_{k=1, k \neq i}^j (x_i - x_k).$$

• Gauss-Legendre quadrature: $\{x_i\}_{i=1}^j$ are the zeros of $q_{j+1}(x)$.

Theorem 11

The *j*-point Gauss-Legendre quadrature formula has order of accuracy exactly 2j - 1, and no quadrature formula has order of accuracy higher than this.

Proof. Consider the polynomial

$$f(x) = \prod_{i=1}^{j} (x - x_i)^2, \qquad \mathcal{I}(f) = \int_{-1}^{1} f(x) dx > 0.$$

Note that $\mathcal{I}_j(f) = 0$ since $f(x_i) = 0$. Thus the quadrature formula has order of accuracy $\leq 2j - 1$. Suppose $f(x) \in \mathbb{P}_{2j-1}$. Then f(x) can be factored in the form

$$f(x) = g(x)q_{j+1}(x) + r(x),$$

where $g(x) \in \mathbb{P}_{j-1}$ and $r(x) \in \mathbb{P}_{j-1}$. (In fact, r(x) is the unique polynomial interpolant to f(x) in the points $\{x_i\}$.)

Since $q_{j+1}(x)$ is orthogonal to all polynomials of lower degree, we have

$$\mathcal{I}(gq_{j+1}) = 0.$$

At the same time, since

$$g(x_i)q_{j+1}(x_i) = 0$$

for each x_i , we have

$$\mathcal{I}_j(gq_{j+1}) = 0.$$

Since \mathcal{I} and \mathcal{I}_j are linear operators, these identities impliy

$$\mathcal{I}(f) = \mathcal{I}(r)$$
 and $\mathcal{I}_j(f) = \mathcal{I}_j(r)$.

Therefore, by Theorem 10, i.e.,

$$\mathcal{I}(r) = \mathcal{I}_j(r),$$

we have

$$\mathcal{I}(f) = \mathcal{I}_j(f). \quad \Box$$

Theorem 12

Let \mathbf{T}_j be the $j \times j$ Jacobi matrix. Let $\mathbf{T}_j = \mathbf{V} \mathbf{D} \mathbf{V}^{\top}$ be an orthogonal diagonalization of \mathbf{T}_j with

$$\mathbf{D} = \operatorname{diag}\{\lambda_1, \cdots, \lambda_j\}, \quad \mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_j \end{bmatrix}.$$

Then the nodes and weights of the Gauss–Legendre quadrature formula are given by

$$x_i = \lambda_i, \quad w_i = 2(\mathbf{v}_i)_1^2, \quad i = 1, \cdots, j.$$

• G. H. Golub and J. H. Welsch

Calculation of Gauss quadrature rules, Math. Comp. 23 (1969). The famous $O(j^2)$ algorithm for Gauss quadrature nodes and weights via a tridiagonal Jacobi matrix eigenvalue problem.

• G. H. Golub and G. Meurant

Matrices, Moments and Quadrature with Applications

Princeton University Press, 2010