Lecture 16: From Lanczos to Gauss quadrature

School of Mathematical Sciences, Xiamen University

1. Orthogonal polynomials

- Replace \mathbb{C}^{n} by $L^{2}[-1,1]$, a vector space of real-valued functions on $[-1,1]$. The inner product of two functions $u, v \in L^{2}[-1,1]$ is defined by

$$
\langle u, v\rangle=\int_{-1}^{1} u(x) v(x) \mathrm{d} x
$$

and the norm of a function $u \in L^{2}[-1,1]$ is $\|u\|=\langle u, u\rangle^{1 / 2}$.

Proposition 1

The pointwise multiplication operator

$$
(\mathbf{A} u)(x)=x u(x)
$$

is self-adjoint with respect to the given inner product.
Proof. Note that

$$
\langle\mathbf{A} u, v\rangle=\int_{-1}^{1}(\mathbf{A} u)(x) v(x) \mathrm{d} x=\int_{-1}^{1} u(x)(\mathbf{A} v)(x) \mathrm{d} x=\langle u, \mathbf{A} v\rangle .
$$

- The Lanczos process $(\mathbf{r}=1$ and $\mathbf{A}=x)$ becomes the procedure for constructing orthogonal polynomials via a three-term recurrence relation.

Algorithm: Lanczos for orthogonal polynomials

$$
\begin{aligned}
& \beta_{0}=0, q_{0}(x)=0, q_{1}(x)=1 / \sqrt{2} \\
& \text { for } j=1,2,3, \ldots, \\
& v(x)=x q_{j}(x) \\
& v(x)=v(x)-\beta_{j-1} q_{j-1}(x) \\
& \alpha_{j}=\left\langle v, q_{j}\right\rangle \\
& v(x)=v(x)-\alpha_{j} q_{j}(x) \\
& \beta_{j}=\|v\| \\
& q_{j+1}(x)=v(x) / \beta_{j}
\end{aligned}
$$

end

Remark 2

We have $\left\langle q_{i}, q_{j}\right\rangle=\int_{-1}^{1} q_{i}(x) q_{j}(x) \mathrm{d} x=\delta_{i j}= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j .\end{cases}$

Remark 3

The function $q_{j}(x)$ is a scalar multiple of the Legendre polynomial $P_{j}(x)$ of degree $j-1$ (note that $\left.P_{j}(1)=1\right)$, i.e.,

$$
q_{j}(x)=q_{j}(1) P_{j}(x)
$$

Remark 4

The three-term recurrence takes the form

$$
x q_{j}(x)=\beta_{j-1} q_{j-1}(x)+\alpha_{j} q_{j}(x)+\beta_{j} q_{j+1}(x)
$$

The entries $\left\{\alpha_{j}\right\}$ and $\left\{\beta_{j}\right\}$ are known analytically:

$$
\alpha_{j}=0, \quad \beta_{j}=\frac{1}{2}\left(1-(2 j)^{-2}\right)^{-1 / 2}
$$

- The tridiagonal matrices $\left\{\mathbf{T}_{j}\right\}$ in Lanczos process are known as Jacobi matrices in the context of orthogonal polynomials.

Remark 5

If the inner product is modified by the inclusion of a nonconstant positive weight function $w(x)$ in the integrand, then one obtains other families of orthogonal polynomials such as Chebyshev polynomials and Jacobi polynomials.

1.1. Comparison to Gram-Schmidt

Algorithm: Gram-Schmidt for orthogonal polynomials

$$
\begin{aligned}
& \text { for } j=1,2,3, \cdots \\
& \quad q_{j}(x)=x^{j-1} \\
& \text { for } i=1 \text { to } j-1 \\
& \quad r_{i j}=\left\langle x^{j-1}, q_{i}\right\rangle \\
& \quad q_{j}(x)=q_{j}(x)-r_{i j} q_{i}(x) \\
& \quad \text { end } \\
& r_{j j}=\left\|q_{j}\right\| \\
& \quad q_{j}(x)=q_{j}(x) / r_{j j} \\
& \text { end }
\end{aligned}
$$

Remark 6

The above algorithm constructs the continuous QR factorizations of the "Krylov matrix"

$$
\mathbf{K}_{\infty}=\left[\begin{array}{lllll}
1 & x & x^{2} & x^{3} & \cdots
\end{array}\right],
$$

which is obtained by setting $\mathbf{r}=1$ and $\mathbf{A}=x$.

Remark 7

The two algorithms obtain the same sequence of functions $\left\{q_{j}\right\}$.

2. Orthogonal polynomials approximation problem

- Find a monic polynomial p^{j} of degree j such that

$$
\left\|p^{j}(x)\right\|=\min _{\text {monic } p, \operatorname{deg}(p)=j}\|p(x)\|
$$

According to Theorem 6 of Lecture 15, the unique solution is the characteristic polynomial of the matrix \mathbf{T}_{j}.

Theorem 8

Let $p^{j}(x)$ be the characteristic polynomial of \mathbf{T}_{j}. Then for $j=0,1, \cdots$,

$$
p^{j}(x)=\rho_{j} q_{j+1}(x)
$$

where ρ_{j} is a constant.
Proof. Any monic $p(x)$ of degree j can be written as

$$
p(x)=\rho_{j} q_{j+1}(x)+\sum_{i=1}^{j} y_{i} q_{i}(x)
$$

where ρ_{j} is a constant - the inverse of the leading coefficient of $q_{j+1}(x)$. Due to

$$
\|p(x)\|=\left(\rho_{j}^{2}+\|\mathbf{y}\|_{2}^{2}\right)^{1 / 2}
$$

the minimum is obtained by setting $\mathbf{y}=\mathbf{0}$.

Corollary 9

The zeros of $q_{j+1}(x)$ are the eigenvalues of \mathbf{T}_{j}. These j zeros are distinct and lie in the open interval $(-1,1)$.

Proof. All eigenvalues of \mathbf{T}_{j} are distinct. Assume that $k<j$. For any $\left\{x_{i}\right\}_{i=1}^{k}$, we have

$$
\int_{-1}^{1} q_{j+1}(x) \mathrm{d} x=0, \quad \int_{-1}^{1} q_{j+1}(x) \prod_{i=1}^{k}\left(x-x_{i}\right) \mathrm{d} x=0
$$

The first equality shows that there exists at least one root in $(-1,1)$. Now assume there are only $k<j$ distinct roots in $(-1,1)$, denoted by $\left\{x_{i}\right\}_{i=1}^{k}$. Consider the polynomial $q_{j+1}(x) \prod_{i=1}^{k}\left(x-x_{i}\right)$, which has constant sign in $(-1,1)$. This is a contradiction of the second equality.

3. Gauss-Legendre quadrature

- Numerical quadrature: consider a j-point quadrature formula

$$
\mathcal{I}_{j}(f)=\sum_{i=1}^{j} w_{i} f\left(x_{i}\right) \quad \text { for } \quad \mathcal{I}(f)=\int_{-1}^{1} f(x) \mathrm{d} x
$$

Theorem 10

Let the nodes $\left\{x_{i}\right\}_{i=1}^{j}$ be an arbitrary set of j distinct points in $[-1,1]$. Then there is a unique choice of weights $\left\{w_{i}\right\}_{i=1}^{j}$ with the property that the quadrature formula has order of accuracy at least $j-1$ in the sense that it is exact if $f(x)$ is any polynomial of degree $\leq j-1$. The weights $\left\{w_{i}\right\}_{i=1}^{j}$ are given by

$$
w_{i}=\int_{-1}^{1} \ell_{i}(x) \mathrm{d} x, \quad \ell_{i}(x)=\prod_{k=1, k \neq i}^{j}\left(x-x_{k}\right) / \prod_{k=1, k \neq i}^{j}\left(x_{i}-x_{k}\right) .
$$

- Gauss-Legendre quadrature: $\left\{x_{i}\right\}_{i=1}^{j}$ are the zeros of $q_{j+1}(x)$.

Theorem 11

The j-point Gauss-Legendre quadrature formula has order of accuracy exactly $2 j-1$, and no quadrature formula has order of accuracy higher than this.

Proof. Consider the polynomial

$$
f(x)=\prod_{i=1}^{j}\left(x-x_{i}\right)^{2}, \quad \mathcal{I}(f)=\int_{-1}^{1} f(x) \mathrm{d} x>0
$$

Note that $\mathcal{I}_{j}(f)=0$ since $f\left(x_{i}\right)=0$. Thus the quadrature formula has order of accuracy $\leq 2 j-1$. Suppose $f(x) \in \mathbb{P}_{2 j-1}$. Then $f(x)$ can be factored in the form

$$
f(x)=g(x) q_{j+1}(x)+r(x),
$$

where $g(x) \in \mathbb{P}_{j-1}$ and $r(x) \in \mathbb{P}_{j-1}$. (In fact, $r(x)$ is the unique polynomial interpolant to $f(x)$ in the points $\left\{x_{i}\right\}$.)

Since $q_{j+1}(x)$ is orthogonal to all polynomials of lower degree, we have

$$
\mathcal{I}\left(g q_{j+1}\right)=0
$$

At the same time, since

$$
g\left(x_{i}\right) q_{j+1}\left(x_{i}\right)=0
$$

for each x_{i}, we have

$$
\mathcal{I}_{j}\left(g q_{j+1}\right)=0 .
$$

Since \mathcal{I} and \mathcal{I}_{j} are linear operators, these identities impliy

$$
\mathcal{I}(f)=\mathcal{I}(r) \quad \text { and } \quad \mathcal{I}_{j}(f)=\mathcal{I}_{j}(r)
$$

Therefore, by Theorem 10, i.e.,

$$
\mathcal{I}(r)=\mathcal{I}_{j}(r)
$$

we have

$$
\mathcal{I}(f)=\mathcal{I}_{j}(f) .
$$

Theorem 12

Let \mathbf{T}_{j} be the $j \times j$ Jacobi matrix. Let $\mathbf{T}_{j}=\mathbf{V D V}^{\top}$ be an orthogonal diagonalization of \mathbf{T}_{j} with

$$
\mathbf{D}=\operatorname{diag}\left\{\lambda_{1}, \cdots, \lambda_{j}\right\}, \quad \mathbf{V}=\left[\begin{array}{lll}
\mathbf{v}_{1} & \cdots & \mathbf{v}_{j}
\end{array}\right] .
$$

Then the nodes and weights of the Gauss-Legendre quadrature formula are given by

$$
x_{i}=\lambda_{i}, \quad w_{i}=2\left(\mathbf{v}_{i}\right)_{1}^{2}, \quad i=1, \cdots, j .
$$

- G. H. Golub and J. H. Welsch

Calculation of Gauss quadrature rules, Math. Comp. 23 (1969).
The famous $O\left(j^{2}\right)$ algorithm for Gauss quadrature nodes and weights via a tridiagonal Jacobi matrix eigenvalue problem.

- G. H. Golub and G. Meurant

Matrices, Moments and Quadrature with Applications

Princeton University Press, 2010

