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1. The Rayleigh–Ritz method for Hermitian eigenproblems

Let Q =
!
Qk Qc

"
be any n× n unitary matrix, where Qk ∈ Cn×k

and Qc ∈ Cn×(n−k). Assume that A ∈ Cn×n is Hermitian. We will
use the following notation:

T = Q∗AQ =
!
Qk Qc

"∗
A

!
Qk Qc

"
=

#
Q∗

kAQk Q∗
kAQc

Q∗
cAQk Q∗

cAQc

$

=

#
Tk Tck

Tkc Tc

$
=

#
Tk T∗

kc

Tkc Tc

$
.

The Rayleigh–Ritz procedure is to approximate the eigenvalues of
A by the eigenvalues of Tk = Q∗

kAQk. These approximations are
called Ritz values.

Let Tk = VΛkV
∗ be the eigendecomposition. The columns of

QkV, called Ritz vectors, are the corresponding eigenvector
approximations.
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Theorem 1

We have the following optimality property

Tk = arg min
S∈Ck×k,S=S∗

‖AQk −QkS‖2.

Proof. ‖AQk −QkS‖22
= λmax[(AQk −QkS)

∗(AQk −QkS)]

= λmax[(AQk −QkTk −QkZ)
∗(AQk −QkTk −QkZ)]

= λmax[(AQk −QkTk)
∗(AQk −QkTk)− (AQk −QkTk)

∗QkZ

− (QkZ)
∗(AQk −QkTk) + (QkZ)

∗(QkZ)]

= λmax[(AQk −QkTk)
∗(AQk −QkTk)− (Q∗

kAQk −Tk)Z

− Z∗(Q∗
kAQk −Tk) + Z∗Z]

= λmax[(AQk −QkTk)
∗(AQk −QkTk) + Z∗Z]

≥ λmax[(AQk −QkTk)
∗(AQk −QkTk)]

= ‖AQk −QkTk‖22 = ‖QcTkc‖22 = ‖Tkc‖22.
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The columns of QkV (the Ritz vectors) are the “best”
approximate eigenvectors and the diagonal entries of Λk (the Ritz
values) are the “best” approximate eigenvalues in the sense of
minimizing the residual

‖APk −PkD‖2,

over range(Pk) = range(Qk), P
∗
kPk = Ik and real and diagonal D.

Theorem 2

Let Tk = VΛkV
∗ be the eigendecomposition of Tk. We have

min
range(Pk)=range(Qk), P∗

kPk=Ik, D real, diagonal
‖APk −PkD‖2 = ‖Tkc‖2.

The minimum is attained by Pk = QkV and D = Λk.

Proof. The proof is left as an exercise.
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Theorem 3

Let Tk = VΛkV
∗ be the eigendecomposition. Let V =

!
v1 · · · vk

"

and Λk = diag{θ1, · · · , θk}. Then

(i) There are k eigenvalues λ1, · · · ,λk of A (not necessarily the
largest k ones) such that

|θi − λi| ≤ ‖Tkc‖2, i = 1, · · · , k.

(ii) We have
‖A(Qkvi)− θi(Qkvi)‖2 = ‖Tkcvi‖2.

Proof. (i) The eigenvalues of

%T =

#
Tk 0
0 Tc

$

include θi.
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It follows from Weyl’s theorem (see Lecture 7) and

‖%T−T‖2 =
&&&&

#
0 T∗

kc

Tkc 0

$&&&&
2

= ‖Tkc‖2

that the eigenvalues of %T and T differ by at most ‖Tkc‖2. The
eigenvalues of T and A are identical, proving the result.

(ii) We compute

‖A(Qkvi)− θi(Qkvi)‖2 = ‖Q∗A(Qkvi)− θiQ
∗(Qkvi)‖2

=

&&&&

#
Tk

Tkc

$
vi − θi

#
vi

0

$&&&&
2

=

&&&&

#
0

Tkcvi

$&&&&
2

= ‖Tkcvi‖2.
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2. Lanczos algorithm for Hermitian eigenproblems

If T and Q is computed by the Lanczos process, then

T =

'

(((((((((((((()

α1 β1

β1
. . .

. . .
. . .

. . . βk−1

βk−1 αk βk
βk αk+1 βk+1

βk+1
. . .

. . .
. . .

. . . βn−1

βn−1 αn

*

++++++++++++++,

.

All the quantities in the above theorem can be computed easily.
This is because there are good algorithms for finding eigenvalues
and eigenvectors of the Hermitian tridiagonal matrix Tk.
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Remark 4

Extreme eigenvalues, i.e., the largest and smallest ones, converge first,
and the interior eigenvalues converge last. Furthermore, convergence is
monotonic, with the ith largest (smallest) eigenvalue of Tk increasing
(decreasing) to the ith largest (smallest) eigenvalue of A, provided that
the Lanczos algorithm does not stop prematurely with some βk = 0.

Remark 5

Full reorthogonalization and selective orthogoalization techniques in
floating point arithmetic. See Demmel’s book.

3. Arnoldi algorithm for non-Hermitian eigenproblems

The Arnoldi process for A and b gives the Arnoldi relation

AQj = Qj+1
-Hj , Hj = Q∗

jAQj .
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The eigenvalues of the Hessenberg matrix Hj are called “Ritz
values”. Some of these numbers are typically observed to converge
rapidly, often geometrically (i.e., linearly), and when they do, one
may assume with reasonable confidence that the converged values
are eigenvalues of A.

Which eigenvalues, then, does the Arnoldi algorithm find?
Typically, it finds extreme eigenvalues, that is, eigenvalues near the
edge of the spectrum of A. Fortunately, these are precisely the
eigenvalues of main interest in most applications.

4. Acceleration techniques for eigenvalue problems

Polynomial acceleration.

Shift-and-invert Arnoldi.

Restart.

Davidson and Jacobi–Davidson.

Rational Krylov. [LAA, 1984; SISC, 1998]
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5. Implicitly restarted Arnoldi (IRA) process

The storage and computational cost of enlarging the Krylov
subspace in Arnoldi algorithm grow with the subspace dimension,
j. A simple solution is to restart the iteration.

Implicitly restarted Arnoldi algorithm uses information from the
Arnoldi relation

AQj = Qj+1
-Hj = QjHj + fje

⊤
j

to refine the starting vector b in a manner that enriches
components in the direction of desired eigenvalues while damping
unwanted eigenvalues.

Perform j − k steps of QR algorithm with the shifts {µi}j−k
i=1 to

Hj , giving HjV = VH+
j , and

(Hj − µ1I)(Hj − µ2I) · · · (Hj − µj−kI) = VR,

with V being orthogonal and R being upper triangular.
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Let H+
j = V∗HjV, H+

k be the k × k leading principal submatrix

of H+
j , and

Q+
j = QjV =

.
Q+

k Q+
j−k

/
.

Then it holds the k-step Arnoldi relation

AQ+
k = Q+

k H
+
k + f+k e⊤k ,

and it is extended to the j-step Arnoldi relation in a standard way.

The starting vector for the new Arnoldi process takes the form

b+ = ψ(A)b

with

ψ(z) =

j−k0

i=1

(z − µi).

This polynomial is the so called filter polynomial.
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5.1. Implicitly restarted Arnoldi algorithm with exact shifts

Start: Build a length j Arnoldi relation AQj = QjHj + fje
⊤
j

Iteration: Until convergence

1. Compute the eigenvalues {θi : i = 1, 2, . . . , j} of Hj . Sort these
eigenvalues according to the user selection criterion into a wanted
set {θi}ki=1 and an unwanted set {θi}ji=k+1.

2. Perform j − k steps of QR algorithm with the shifts {θi}ji=k+1 to

obtain HjV = VH+
j .

3. Restart: Postmultiply the length j Arnoldi relation with the matrix
Vk consisting of the leading k columns of V to obtain the length k
Arnoldi relation

AQ+
k = Q+

k H
+
k + f+k e⊤k ,

where Q+
k = QjVk, and H+

k is the leading principal submatrix of
order k for H+

j .
4. Extend the length k Arnoldi relation to a length j Arnoldi relation.

More on IRA

IRA with exact shifts can fail. See SIMAX, 2009.
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5.2. Implicitly restarted harmonic Arnoldi (IRHA) algorithm

Start: Build a length j Arnoldi relation AQj = QjHj + fje
⊤
j

Iteration: Until convergence

1. Compute the harmonic Ritz values {θi}ji=1 of !H∗
j
!Hjy = θH∗

jy. Sort
them according to the user selection criterion into a wanted set
{θi}ki=1 and an unwanted set {θi}ji=k+1.

2. Perform j − k steps of QR algorithm with the shifts {θi}ji=k+1 to

obtain HjV = VH+
j .

3. Restart: Postmultiply the length j Arnoldi relation with the matrix
Vk consisting of the leading k columns of V to obtain the length k
Arnoldi relation

AQ+
k = Q+

k H
+
k + f+k e⊤k ,

where Q+
k = QjVk, and H+

k is the leading principal submatrix of
order k for H+

j .
4. Extend the length k Arnoldi relation to a length j Arnoldi relation.

A small research project

Can IRHA fail? Yes.
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6. Davidson [SISC, 1994]

Suppose we have a k-dimensional subspace K = span{v1, · · · ,vk},
over which the projected matrix A has a Ritz pair (θk,uk).

Compute the residual rk = Auk − θkuk, and compute p from

(DA − θkI)p = rk

where DA is the diagonal of the matrix A.

Then p is made orthogonal to the basis vectors {v1, · · · ,vk}, and
the resulting vector is chosen as vk+1, by which K is expanded.

7. Jacobi–Davidson [SIMAX, 1996; SIREV, 2000]

1. Start: Choose v ∕= 0.

Compute v1 = v/‖v‖2, w1 = Av1, h11 = v∗
1w1;

Set V1 =
!
v1

"
, W1 =

!
w1

"
, H1 =

!
h11

"
, u = v1, θ = h11;

Compute r = w1 − θu.

2. Iteration: Until convergence
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3. Inner Loop. For k = 1, . . . ,m− 1, do
Solve (approximately) p⊥u,

(I− uu∗)(A− θI)(I− uu∗)p = −r.

Orthogonalize p against Vk via modified Gram–Schmidt and
expand Vk with this vector to Vk+1.
Compute wk+1 := Avk+1 and expand Wk with this vector to
Wk+1.
Compute V∗

k+1wk+1, the last column of

Hk+1 := V∗
k+1AVk+1

and v∗
k+1Wk, the last row of Hk+1 (only if A ∕= A∗).

Compute the largest eigenpair (θ,q) of Hk+1 (with ‖q‖2 = 1).
Compute the Ritz vector u := Vk+1q, compute

"u := Au(= Wk+1q),

and the associated residual vector r := "u− θu.
Test for convergence. Stop if satisfied.

4 Restart: Set V1 = [u], W1 = [%u], H1 = [θ], and goto 3.
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8. Bi-Lanczos algorithm for non-Hermitian eigenproblems

Bi-Lanczos relations for the biorthogonalization methods:

AVj = Vj+1
-Tj , A∗Wj = Wj+1

-Sj ,

with

-Tj :=

'

(((((((()

α1 γ1
β1 α2 γ2

β2 α3
. . .

. . .
. . . γj−1

βj−1 αj

βj

*

++++++++,

.

Tj is tridiagonal and is obtained by deleting the last row of -Tj .

The Ritz values (the eigenvalues of Tj) are the approximate
eigenvalues of A.
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9. A reference book

Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst

Templates for the Solution of Algebraic Eigenvalue Problems: A
Practical Guide, SIAM, 2000

10. Arnoldi/Lanczos approximation problem

Let j ∈ N. Define

Pj = {monic polynomial of degree j}.

The word “monic” means that the coefficient of the term of degree
j is 1.

The jth Arnoldi/Lanczos approximation problem:

Let A ∈ Cm×m and b ∈ Cm be given. Find pj ∈ Pj such that

‖pj(A)b‖2 = minimum.

If dimKj(A,b) = j, then the Arnoldi process for A and b solves
the jth Arnoldi/Lanczos approximation problem exactly.
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Theorem 6

Assume that dimKj(A,b) = j. Let Qj be the matrix in the Arnoldi
process for A and b. The jth approximation problem has a unique
solution pj, namely, the characteristic polynomial of Hj = Q∗

jAQj.

Proof. We have

Q∗
jQj = I, range(Qj) = Kj(A,b).

If p ∈ Pj , then the vector p(A)b can be written

p(A)b = Ajb−Qjy

for some y ∈ Cj . In other words, the jth approximation problem is
equivalent to a linear least squares problem: find yj such that

yj = arg min
y∈Cj

‖Ajb−Qjy‖2.

The solution is characterized by the orthogonality condition

pj(A)b ⊥ Kj(A,b).
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The equivalent condition is

Q∗
jp

j(A)b = 0.

Let
V =

!
Qj U

"
∈ Cm×m

be a unitary matrix. If the Arnoldi process does not break down at
step j, we further assume that the first column of U is qj+1, i.e.,

Ue1 = qj+1.

Then, we have

H := V∗AV =

#
Hj X1

X2 X3

$
,

where
X1 = Q∗

jAU, X2 = hj+1,je1e
⊤
j , X3 = U∗AU.

Note that if the Arnoldi process breaks down at step j, then hj+1,j = 0.
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The orthogonality condition becomes

Q∗
jVpj(H)V∗b =

!
Ij 0

"
pj(H)‖b‖2e1 = 0,

which amounts to the condition that the first j entries of the first
column of pj(H) are zero. Because the structure of H, we have

!
Ij 0

"
Hie1 = Hi

je1, ∀ i = 0, 1, . . . , j.

Then the orthogonality condition further becomes

pj(Hj)e1 = 0.

By the Cayley–Hamilton theorem, the condition is satisfied if pj is the
characteristic polynomial of Hj . Now suppose there were another
polynomial -pj ∈ Pj with

-pj(A)b ⊥ Kj(A,b).

Taking the difference would give a nonzero polynomial q = pj − -pj of
degree ≤ j − 1 with q(A)b = 0, violating dimKj(A,b) = j.
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