Numerical Linear Algebra Assignment 7

Exercise 1. (10 points)

Prove that an eigenvalue is multiple if and only if it has a pair of orthogonal left and right eigenvectors.

Exercise 2. (10 points)

Let $\lambda_{1}, \cdots \lambda_{m}$ be the m eigenvalues of $\mathbf{A} \in \mathbb{C}^{m \times m}$. Let

$$
\mathbf{M}=\frac{\mathbf{A}+\mathbf{A}^{*}}{2}, \quad \mathbf{N}=\frac{\mathbf{A}-\mathbf{A}^{*}}{2} .
$$

Prove that

$$
\sum_{i=1}^{m}\left|\lambda_{i}\right|^{2} \leq\|\mathbf{A}\|_{\mathrm{F}}^{2}, \quad \sum_{i=1}^{m}\left|\operatorname{Re} \lambda_{i}\right|^{2} \leq\|\mathbf{M}\|_{\mathrm{F}}^{2}, \quad \sum_{i=1}^{m}\left|\operatorname{Im} \lambda_{i}\right|^{2} \leq\|\mathbf{N}\|_{\mathrm{F}}^{2}
$$

Exercise 3. (TreBau Exercise 24.2, 10 points)

Gerschgorin's theorem: Every eigenvalue of $\mathbf{A} \in \mathbb{C}^{m \times m}$ lies in at least one of the m circular disks in the complex plane with centers $a_{i i}$ and radii $\sum_{j \neq i}\left|a_{i j}\right|$. Moreover, if n of these disks form a connected domain that is disjoint from the other $m-n$ disks, then there are precisely n eigenvalues of \mathbf{A} within this domain.
(a) Prove the first part of Gerschgorin's theorem. (Hint: Let λ be any eigenvalue of \mathbf{A}, and \mathbf{x} a corresponding eigenvector with largest entry 1.)
(b) Prove the second part. (Hint: Deform A to a diagonal matrix and use the fact that the eigenvalues of a matrix are continuous functions of its entries.)
(c) Give estimates based on Gerschgorin's theorem for the eigenvalues of

$$
\mathbf{A}=\left[\begin{array}{lll}
8 & 1 & 0 \\
1 & 4 & \varepsilon \\
0 & \varepsilon & 1
\end{array}\right], \quad|\varepsilon|<1
$$

(d) Find a way to establish the tighter bound $\left|\lambda_{3}-1\right| \leq \varepsilon^{2}$ on the smallest eigenvalue of \mathbf{A}. (Hint: Consider diagonal similarity tranformations.)

Exercise 4. (TreBau Exercise 25.1, 10 points)

(a) Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be tridiagonal and Hermitian, with all its sub- and superdiagonal entries nonzero. Prove that the eigenvalues of \mathbf{A} are distinct. (Hint: Show that for any $\lambda \in \mathbb{C}$, $\mathbf{A}-\lambda \mathbf{I}$ has rank at least $m-1$.)
(b) On the other hand, let \mathbf{A} be upper-Hessenberg, with all its subdiagonal entries nonzero. Give an example that shows that the eigenvalues of \mathbf{A} are not necessarily distinct.

Exercise 5. (10 points)

A subspace \mathbb{X} of \mathbb{C}^{n} is an invariant subspace for \mathbf{A} if $\mathbf{A} \mathbb{X} \subseteq \mathbb{X}$. Let the columns of the matrix $\mathbf{X} \in \mathbb{C}^{n \times p}$ form a basis for \mathbb{X}. Prove:
(a) \mathbb{X} is an invariant subspace for \mathbf{A} if and only if $\mathbf{A X}=\mathbf{X B}$ for some $\mathbf{B} \in \mathbb{C}^{p \times p}$.
(b) The p eigenvalues of \mathbf{B} are also eigenvalues of \mathbf{A}.

Exercise 6. (10 points)

Suppose that A is normal and triangular. Show that A must be diagonal.

Exercise 7. (10 points)

Let $\mathbf{A} \in \mathbb{C}^{m \times m}, \mathbf{B} \in \mathbb{C}^{n \times n}$ and $\mathbf{C} \in \mathbb{C}^{m \times n}$ be given. Prove that the Sylvester equation $\mathbf{A X}-\mathbf{X B}=$ \mathbf{C} has a unique solution $\mathbf{X} \in \mathbb{C}^{m \times n}$ if and only if $\Lambda(\mathbf{A}) \cap \Lambda(\mathbf{B})=\emptyset$. (You MUST use Schur factorizations of \mathbf{A} and \mathbf{B} to prove the conclusion. Any other approach is NOT accepted.)

Exercise 8. (10 points)

Let $\mathbf{H} \in \mathbb{C}^{m \times m}$ be an irreducible ($h_{i+1, i} \neq 0$ for $i=1: m-1$) upper Hessenberg matrix. Prove that any eigenvalue of \mathbf{H} has geometric multiplicity 1 .

Exercise 9. (Programming, 10 points)

Design an algorithm to solve the Sylvester equation $\mathbf{A X}-\mathbf{X B}=\mathbf{C}$ (assume that $\Lambda(\mathbf{A}) \cap \Lambda(\mathbf{B})=\emptyset$). Test your code via a numerical experiment. Hint: Use the MATLAB command schur.

