Numerical Linear Algebra Assignment 7

Exercise 1. (10 points)

Prove that an eigenvalue is multiple if and only if it has a pair of orthogonal left and right eigenvectors.

Exercise 2. (10 points)

Let $\lambda_1, \dots, \lambda_m$ be the *m* eigenvalues of $\mathbf{A} \in \mathbb{C}^{m \times m}$. Let

$$\mathbf{M} = \frac{\mathbf{A} + \mathbf{A}^*}{2}, \quad \mathbf{N} = \frac{\mathbf{A} - \mathbf{A}^*}{2}$$

Prove that

$$\sum_{i=1}^m |\lambda_i|^2 \le \|\mathbf{A}\|_{\mathrm{F}}^2, \quad \sum_{i=1}^m |\mathrm{Re}\lambda_i|^2 \le \|\mathbf{M}\|_{\mathrm{F}}^2, \quad \sum_{i=1}^m |\mathrm{Im}\lambda_i|^2 \le \|\mathbf{N}\|_{\mathrm{F}}^2.$$

Exercise 3. (TreBau Exercise 24.2, 10 points)

Gerschgorin's theorem: Every eigenvalue of $\mathbf{A} \in \mathbb{C}^{m \times m}$ lies in at least one of the *m* circular disks in the complex plane with centers a_{ii} and radii $\sum_{j \neq i} |a_{ij}|$. Moreover, if *n* of these disks form a connected domain that is disjoint from the other m - n disks, then there are precisely *n* eigenvalues of **A** within this domain.

- (a) Prove the first part of Gerschgorin's theorem. (Hint: Let λ be any eigenvalue of **A**, and **x** a corresponding eigenvector with largest entry 1.)
- (b) Prove the second part. (Hint: Deform **A** to a diagonal matrix and use the fact that the eigenvalues of a matrix are continuous functions of its entries.)
- (c) Give estimates based on Gerschgorin's theorem for the eigenvalues of

$$\mathbf{A} = \begin{bmatrix} 8 & 1 & 0 \\ 1 & 4 & \varepsilon \\ 0 & \varepsilon & 1 \end{bmatrix}, \qquad |\varepsilon| < 1.$$

(d) Find a way to establish the tighter bound $|\lambda_3 - 1| \leq \varepsilon^2$ on the smallest eigenvalue of **A**. (Hint: Consider diagonal similarity transformations.)

Exercise 4. (TreBau Exercise 25.1, 10 points)

- (a) Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be tridiagonal and Hermitian, with all its sub- and superdiagonal entries nonzero. Prove that the eigenvalues of \mathbf{A} are distinct. (Hint: Show that for any $\lambda \in \mathbb{C}$, $\mathbf{A} - \lambda \mathbf{I}$ has rank at least m - 1.)
- (b) On the other hand, let \mathbf{A} be upper-Hessenberg, with all its subdiagonal entries nonzero. Give an example that shows that the eigenvalues of \mathbf{A} are not necessarily distinct.

Exercise 5. (10 points)

A subspace X of \mathbb{C}^n is an *invariant subspace* for A if $AX \subseteq X$. Let the columns of the matrix $X \in \mathbb{C}^{n \times p}$ form a basis for X. Prove:

- (a) X is an invariant subspace for **A** if and only if $\mathbf{A}\mathbf{X} = \mathbf{X}\mathbf{B}$ for some $\mathbf{B} \in \mathbb{C}^{p \times p}$.
- (b) The p eigenvalues of **B** are also eigenvalues of **A**.

Exercise 6. (10 points)

Suppose that \mathbf{A} is normal and triangular. Show that \mathbf{A} must be diagonal.

Exercise 7. (10 points)

Let $\mathbf{A} \in \mathbb{C}^{m \times m}$, $\mathbf{B} \in \mathbb{C}^{n \times n}$ and $\mathbf{C} \in \mathbb{C}^{m \times n}$ be given. Prove that the Sylvester equation $\mathbf{A}\mathbf{X} - \mathbf{X}\mathbf{B} = \mathbf{C}$ has a unique solution $\mathbf{X} \in \mathbb{C}^{m \times n}$ if and only if $\Lambda(\mathbf{A}) \cap \Lambda(\mathbf{B}) = \emptyset$. (You MUST use Schur factorizations of \mathbf{A} and \mathbf{B} to prove the conclusion. Any other approach is NOT accepted.)

Exercise 8. (10 points)

Let $\mathbf{H} \in \mathbb{C}^{m \times m}$ be an irreducible $(h_{i+1,i} \neq 0 \text{ for } i = 1 : m - 1)$ upper Hessenberg matrix. Prove that any eigenvalue of \mathbf{H} has geometric multiplicity 1.

Exercise 9. (Programming, 10 points)

Design an algorithm to solve the Sylvester equation $\mathbf{AX} - \mathbf{XB} = \mathbf{C}$ (assume that $\Lambda(\mathbf{A}) \cap \Lambda(\mathbf{B}) = \emptyset$). Test your code via a numerical experiment. Hint: Use the MATLAB command schur.