Lecture 1: Inner product, Orthogonality, Vector/Matrix norms

School of Mathematical Sciences, Xiamen University

1. Inner product on a linear space \mathbb{V} over a number field $\mathbb{F}(\mathbb{C}$ or $\mathbb{R})$

- Definition: A function $\langle\cdot, \cdot\rangle: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{F}$ is called an inner product, if it satisfies the following three conditions $(\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{V}, \forall \alpha \in \mathbb{F})$:
(1) Conjugate symmetry:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\overline{\langle\mathbf{y}, \mathbf{x}\rangle}
$$

(2) Positive definiteness:

$$
\langle\mathbf{x}, \mathbf{x}\rangle \geq 0, \quad\langle\mathbf{x}, \mathbf{x}\rangle=0 \Leftrightarrow \mathbf{x}=\mathbf{0}
$$

(3) Linearity in the first variable:

$$
\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle, \quad\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle
$$

Example: the standard inner product on the space $\mathbb{V}=\mathbb{C}^{m}$:

$$
\forall \mathbf{x}, \mathbf{y} \in \mathbb{C}^{m}, \quad\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{y}^{*} \mathbf{x}=\sum_{i=1}^{m} x_{i} \bar{y}_{i}
$$

Example: the A-inner product on the space $\mathbb{V}=\mathbb{C}^{m}$:

$$
\forall \mathbf{x}, \mathbf{y} \in \mathbb{C}^{m}, \quad\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{y}^{*} \mathbf{A} \mathbf{x}
$$

where \mathbf{A} is a given Hermitian positive definite matrix.

2. Orthogonality

- Orthogonality is a mathematical concept with respect to a given inner product $\langle\cdot, \cdot\rangle$.
(1) Two vectors \mathbf{x} and \mathbf{y} are called orthogonal if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.
(2) Two sets of vectors \mathcal{X} and \mathcal{Y} are called orthogonal if $\forall \mathbf{x} \in \mathcal{X}$ and $\mathbf{y} \in \mathcal{Y},\langle\mathbf{x}, \mathbf{y}\rangle=0$.
(3) A set of nonzero vectors \mathcal{S} is orthogonal if $\forall \mathbf{x}, \mathbf{y} \in \mathcal{S}$ and $\mathbf{x} \neq \mathbf{y},\langle\mathbf{x}, \mathbf{y}\rangle=0$; if further $\forall \mathbf{x} \in \mathcal{S},\langle\mathbf{x}, \mathbf{x}\rangle=1, \mathcal{S}$ is called orthonormal.

Proposition 1

The vectors in an orthogonal set \mathcal{S} are linearly independent.

2.1. Orthogonal components of a vector

- Inner products can be used to decompose arbitrary vectors into orthogonal components. Given an orthonormal set $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{n}\right\}$ and an arbitrary vector \mathbf{v}, let

$$
\mathbf{r}=\mathbf{v}-\left\langle\mathbf{v}, \mathbf{q}_{1}\right\rangle \mathbf{q}_{1}-\left\langle\mathbf{v}, \mathbf{q}_{2}\right\rangle \mathbf{q}_{2}-\cdots-\left\langle\mathbf{v}, \mathbf{q}_{n}\right\rangle \mathbf{q}_{n} .
$$

Obviously,

$$
\mathbf{r} \in \operatorname{span}\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{n}\right\}^{\perp}
$$

Thus we see that \mathbf{v} can be decomposed into $n+1$ orthogonal components:

$$
\mathbf{v}=\mathbf{r}+\left\langle\mathbf{v}, \mathbf{q}_{1}\right\rangle \mathbf{q}_{1}+\left\langle\mathbf{v}, \mathbf{q}_{2}\right\rangle \mathbf{q}_{2}+\cdots+\left\langle\mathbf{v}, \mathbf{q}_{n}\right\rangle \mathbf{q}_{n} .
$$

We call $\left\langle\mathbf{v}, \mathbf{q}_{i}\right\rangle \mathbf{q}_{i}$ the part of \mathbf{v} in the direction of \mathbf{q}_{i}, and \mathbf{r} the part of \mathbf{v} orthogonal to the subspace $\operatorname{span}\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{n}\right\}$.

Exercise: Write the expression for \mathbf{v} when the set $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{n}\right\}$ is only orthogonal.

- Cauchy-Schwarz inequality: For any given inner product $\langle\cdot, \cdot\rangle$,

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq \sqrt{\langle\mathbf{x}, \mathbf{x}\rangle} \sqrt{\langle\mathbf{y}, \mathbf{y}\rangle}
$$

The equality holds if and only if \mathbf{x} and \mathbf{y} are linearly dependent.
Exercise: Prove the inequality. Hint: write

$$
\mathbf{x}=\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\langle\mathbf{y}, \mathbf{y}\rangle} \mathbf{y}+\mathbf{z}
$$

Then $\langle\mathbf{z}, \mathbf{y}\rangle=0$. Consider $\langle\mathbf{x}, \mathbf{x}\rangle$.
Application: For any Hermitian positive definite matrix A,

$$
\left|\mathbf{y}^{*} \mathbf{A} \mathbf{x}\right|^{2} \leq\left(\mathbf{x}^{*} \mathbf{A} \mathbf{x}\right)\left(\mathbf{y}^{*} \mathbf{A} \mathbf{y}\right)
$$

3. Norm on a linear space \mathbb{V} over a number field $\mathbb{F}(\mathbb{C}$ or $\mathbb{R})$

- Definition: A function $\|\cdot\|: \mathbb{V} \rightarrow \mathbb{R}$ is called a norm if it satisfies the following three conditions $(\forall \mathbf{x}, \mathbf{y} \in \mathbb{V}$ and $\forall \alpha \in \mathbb{F})$:
(1) Nonnegativity:

$$
\|\mathbf{x}\| \geq 0, \quad\|\mathbf{x}\|=0 \Leftrightarrow \mathbf{x}=\mathbf{0}
$$

(2) Positive homogeneity:

$$
\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|
$$

(3) Triangle inequality:

$$
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|
$$

Exercise: Show that any norm is continuous.

- More on metric, norm, and inner product

Exercise: For any given inner product $\langle\cdot, \cdot\rangle$, let $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$.
(1) Prove that the function $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$ is a norm.
(2) Prove the parallelogram law

$$
\|\mathbf{u}+\mathbf{v}\|^{2}+\|\mathbf{u}-\mathbf{v}\|^{2}=2\|\mathbf{u}\|^{2}+2\|\mathbf{v}\|^{2}
$$

(3) For a set of n orthogonal (with respect to the inner product $\langle\cdot, \cdot\rangle)$ vectors $\left\{\mathbf{x}_{i}\right\}$, prove that

$$
\left\|\sum_{i=1}^{n} \mathbf{x}_{i}\right\|^{2}=\sum_{i=1}^{n}\left\|\mathbf{x}_{i}\right\|^{2}
$$

The function $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$ is called the norm induced by the inner product $\langle\cdot, \cdot\rangle$. Using this norm, we can write the Cauchy-Schwarz inequality as

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\|
$$

Theorem 2 (Equivalence of norms)

For each pair of norms $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ on a finite-dimensional linear space \mathbb{V}, there exist positive constants $a>0$ and $b>0$ (depending only on the norms) such that

$$
a\|\mathbf{x}\|_{\beta} \leq\|\mathbf{x}\|_{\alpha} \leq b\|\mathbf{x}\|_{\beta}, \quad \forall \mathbf{x} \in \mathbb{V} .
$$

Proof.

For all $\mathbf{x}=\sum_{i} x_{i} \mathbf{v}_{i}$, where $\left\{\mathbf{v}_{i}\right\}$ is a basis of $\mathbb{V},\|\mathbf{x}\|=\sum_{i}\left|x_{i}\right|$ is a norm on \mathbb{V}. By $\|\mathbf{x}\|_{\alpha}=\left\|\sum_{i} x_{i} \mathbf{v}_{i}\right\|_{\alpha} \leq \sum_{i}\left|x_{i}\right|\left\|\mathbf{v}_{i}\right\|_{\alpha} \leq\|\mathbf{x}\| \cdot \max _{i}\left\|\mathbf{v}_{i}\right\|_{\alpha}$, we know $\|\cdot\|_{\alpha}$ is a continuous function with respect to $\|\cdot\|$, which attains its minimum c and maximum C on the unit sphere $\{\mathbf{x} \in \mathbb{V},\|\mathbf{x}\|=1\}$ (because it is a compact set). Then, $\forall \mathbf{x} \in \mathbb{V}, c\|\mathbf{x}\| \leq\|\mathbf{x}\|_{\alpha} \leq C\|\mathbf{x}\|$.

- Convergence of a sequence $\left\{\mathbf{x}_{k}\right\} \subset \mathbb{V}: \mathbf{x}_{k} \rightarrow \mathbf{x}$

We say \mathbf{x}_{k} converges to \mathbf{x} if $\lim _{k \rightarrow \infty}\left\|\mathbf{x}_{k}-\mathbf{x}\right\|=0$.
3.1. Vector norms on \mathbb{C}^{m}

- ℓ_{p}-norm: $\|\mathbf{x}\|_{1}=\sum_{i=1}^{m}\left|x_{i}\right|$,

$$
\begin{aligned}
& \|\mathbf{x}\|_{2}=\left(\sum_{i=1}^{m}\left|x_{i}\right|^{2}\right)^{1 / 2}=\sqrt{\mathbf{x}^{*} \mathbf{x}} \\
& \|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq m}\left|x_{i}\right| \\
& \|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{m}\left|x_{i}\right|^{p}\right)^{1 / p}, \quad(1 \leq p<\infty)
\end{aligned}
$$

Minkowski's inequality: $\|\mathbf{x}+\mathbf{y}\|_{p} \leq\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}$.
Equivalence of ℓ_{1}, ℓ_{2}, and ℓ_{∞} norms: $\|\mathbf{x}\|_{2} \leq\|\mathbf{x}\|_{1} \leq \sqrt{m}\|\mathbf{x}\|_{2}$,

$$
\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{2} \leq \sqrt{m}\|\mathbf{x}\|_{\infty}, \quad\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{1} \leq m\|\mathbf{x}\|_{\infty}
$$

- Weighted norm: Let $\|\cdot\|$ denote any norm on \mathbb{C}^{m}. Suppose a diagonal matrix $\mathbf{W}=\operatorname{diag}\left\{w_{1}, \ldots, w_{m}\right\}, w_{i} \neq 0$. Then

$$
\|\mathbf{x}\|_{\mathbf{w}}=\|\mathbf{W} \mathbf{x}\|
$$

is a norm, called weighted norm. For example, weighted 2-norm

$$
\|\mathbf{x}\|_{\mathbf{w}}=\|\mathbf{W} \mathbf{x}\|_{2}=\left(\sum_{i=1}^{m}\left|w_{i} x_{i}\right|^{2}\right)^{1 / 2}
$$

- Dual norm: Let $\|\cdot\|$ denote any norm on \mathbb{C}^{m}. The corresponding dual norm $\|\cdot\|^{\prime}$ (with respect to an inner product $\langle\cdot, \cdot\rangle$) is defined by

$$
\|\mathbf{x}\|^{\prime}=\sup _{\mathbf{y} \in \mathbb{C}^{m},\|\mathbf{y}\|=1}|\langle\mathbf{x}, \mathbf{y}\rangle| .
$$

Exercise: If $p, q \in[1, \infty]$ with $1 / p+1 / q=1$, then $\|\cdot\|_{p}^{\prime}=\|\cdot\|_{q}$. Hölder inequality: $|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}$.
3.2. Matrix norms on $\mathbb{C}^{m \times n}$

- Frobenius norm: $\forall \mathbf{A}=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right] \in \mathbb{C}^{m \times n}$, define

$$
\|\mathbf{A}\|_{\mathrm{F}}:=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}=\left(\sum_{j=1}^{n}\left\|\mathbf{a}_{j}\right\|_{2}^{2}\right)^{1 / 2}
$$

or

$$
\|\mathbf{A}\|_{\mathrm{F}}=\sqrt{\operatorname{tr}\left(\mathbf{A}^{*} \mathbf{A}\right)}=\sqrt{\operatorname{tr}\left(\mathbf{A} \mathbf{A}^{*}\right)} .
$$

- Max norm:

$$
\|\mathbf{A}\|_{\max }:=\max _{i, j}\left|a_{i j}\right| .
$$

- Induced matrix norm (operator norm): $\forall \mathbf{A} \in \mathbb{C}^{m \times n}$, define

$$
\|\mathbf{A}\|_{\alpha, \beta}:=\sup _{\substack{\mathbf{x} \in \mathbb{C}^{n} \\ \mathbf{x} \neq 0}} \frac{\|\mathbf{A} \mathbf{x}\|_{\alpha}}{\|\mathbf{x}\|_{\beta}}=\sup _{\substack{\mathbf{x} \in \in^{n} \\\|\times\|_{\beta}=1}}\|\mathbf{A} \mathbf{x}\|_{\alpha}=\sup _{\substack{\mathbf{x} \in \mathbb{C}^{n} \\\|\mathbf{x}\|_{\beta} \leq 1}}\|\mathbf{A} \mathbf{x}\|_{\alpha},
$$

where $\|\cdot\|_{\alpha}$ is a norm on \mathbb{C}^{m} and $\|\cdot\|_{\beta}$ is a norm on \mathbb{C}^{n}. We say that $\|\cdot\|_{\alpha, \beta}$ is the matrix norm induced by $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$.

Exercise: $\forall \mathbf{x} \in \mathbb{C}^{n}$, prove that

$$
\|\mathbf{A} \mathbf{x}\|_{\alpha} \leq\|\mathbf{A}\|_{\alpha, \beta}\|\mathbf{x}\|_{\beta} .
$$

Exercise: Let $\mathbf{A} \in \mathbb{C}^{m \times n}, \mathbf{B} \in \mathbb{C}^{n \times r}$ and let $\|\cdot\|_{\alpha},\|\cdot\|_{\beta}$, and $\|\cdot\|_{\gamma}$ be norms on $\mathbb{C}^{m}, \mathbb{C}^{n}$, and \mathbb{C}^{r}, respectively. Prove the induced matrix norms $\|\cdot\|_{\alpha, \gamma},\|\cdot\|_{\alpha, \beta}$, and $\|\cdot\|_{\beta, \gamma}$ satisfy

$$
\|\mathbf{A B}\|_{\alpha, \gamma} \leq\|\mathbf{A}\|_{\alpha, \beta}\|\mathbf{B}\|_{\beta, \gamma}
$$

Exercise: Prove that

$$
\|\mathbf{A}\|_{\infty, 1}=\max _{i, j}\left|a_{i j}\right|
$$

i.e., $\|\mathbf{A}\|_{\text {max }}$ is the matrix norm induced by $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$.

- The Frobenius norm $\|\cdot\|_{\mathrm{F}}$ on $\mathbb{C}^{m \times n}$ is not induced by norms on \mathbb{C}^{m} and \mathbb{C}^{n}. (See Ref. 1 and Ref. 2)
- Induced matrix p-norm of $\mathbf{A} \in \mathbb{C}^{m \times n}$: For $p \in[1,+\infty]$,

$$
\|\mathbf{A}\|_{p}:=\|\mathbf{A}\|_{p, p}=\sup _{\mathbf{x} \in \mathbb{C}^{n},\|\mathbf{x}\|_{p}=1}\|\mathbf{A} \mathbf{x}\|_{p}
$$

Example: For any diagonal matrix $\mathbf{D}=\operatorname{diag}\left\{d_{1}, \ldots, d_{m}\right\}$, we have

$$
\|\mathbf{D}\|_{p}=\max _{1 \leq i \leq m}\left|d_{i}\right|
$$

Example: 1, 2, ∞-norm

$$
\begin{aligned}
\|\mathbf{A}\|_{1} & =\max _{j} \sum_{i}\left|a_{i j}\right|, \quad\|\mathbf{A}\|_{\infty}=\max _{i} \sum_{j}\left|a_{i j}\right| \\
\|\mathbf{A}\|_{2} & =\sqrt{\lambda_{\max }\left(\mathbf{A}^{*} \mathbf{A}\right)}=\sqrt{\lambda_{\max }\left(\mathbf{A} \mathbf{A}^{*}\right)} \leq\|\mathbf{A}\|_{\mathrm{F}}
\end{aligned}
$$

The norm $\|\cdot\|_{2}$ on $\mathbb{C}^{m \times n}$ is also called the spectral norm.
Inequalities: $\quad\|\mathbf{A}\|_{\infty} \leq \sqrt{n}\|\mathbf{A}\|_{2}, \quad\|\mathbf{A}\|_{2} \leq \sqrt{m}\|\mathbf{A}\|_{\infty}$.

- Matlab: norm for $1,2, \infty$-norm

Example: $\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right]$

3.3. Unitary invariance of $\|\cdot\|_{2}$ and $\|\cdot\|_{\mathrm{F}}: \forall \mathbf{A} \in \mathbb{C}^{m \times n}$

- If \mathbf{P} has orthonormal columns, i.e.,

$$
\mathbf{P} \in \mathbb{C}^{p \times m}, \quad p \geq m, \quad \mathbf{P}^{*} \mathbf{P}=\mathbf{I}_{m},
$$

then

$$
\|\mathbf{P A}\|_{2}=\|\mathbf{A}\|_{2}, \quad\|\mathbf{P A}\|_{\mathrm{F}}=\|\mathbf{A}\|_{\mathrm{F}} .
$$

- If \mathbf{Q} has orthonormal rows, i.e.,

$$
\mathbf{Q} \in \mathbb{C}^{n \times q}, \quad n \leq q, \quad \mathbf{Q Q}^{*}=\mathbf{I}_{n}
$$

then

$$
\|\mathbf{A Q}\|_{2}=\|\mathbf{A}\|_{2}, \quad\|\mathbf{A} \mathbf{Q}\|_{\mathrm{F}}=\|\mathbf{A}\|_{\mathrm{F}}
$$

4. Unitary matrix

- For $\mathbf{Q} \in \mathbb{C}^{m \times m}$, if $\mathbf{Q}^{*}=\mathbf{Q}^{-1}$, i.e., $\mathbf{Q}^{*} \mathbf{Q}=\mathbf{I}, \mathbf{Q}$ is called unitary (or orthogonal in the real case).

$$
\left[\begin{array}{cc|c|c}
\mathbf{q}_{1}^{*} \\
\hline \mathbf{q}_{2}^{*} \\
\hline \vdots & \mathbf{q}_{m}^{*}
\end{array}\right]\left[\mathbf{q}_{1}\left|\mathbf{q}_{2}\right| \cdots \mid \mathbf{q}_{m}\right]=\left[\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

Exercise: Let $\mathbf{Q} \in \mathbb{C}^{m \times m}$ be a unitary matrix. Prove

$$
\|\mathbf{Q}\|_{2}=1, \quad\|\mathbf{Q}\|_{\mathrm{F}}=\sqrt{m}
$$

- A unitary matrix has both orthonormal rows and orthonormal columns.
- The columns of a unitary matrix form an orthonormal basis of \mathbb{C}^{m} and vice versa.

