Lecture 10: Jacobi method, Bisection method, Divide-and-conquer method

School of Mathematical Sciences, Xiamen University

1. Jacobi method

- The method is based on the fact that a 2×2 real symmetric matrix A can be diagonalized in the form

$$
\mathbf{J}_{2}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right], \quad \mathbf{J}_{2}^{\top}\left[\begin{array}{ll}
a & d \\
d & b
\end{array}\right] \mathbf{J}_{2}=\left[\begin{array}{cc}
\times & 0 \\
0 & \times
\end{array}\right],
$$

where θ satisfies $(b-a) \sin (2 \theta)=2 d \cos (2 \theta)$.

- Define the $m \times m$ Jacobi rotation matrix $\mathbf{J}(i, j ; \theta), i<j$,

$$
\begin{aligned}
\mathbf{J}=\mathbf{J}(i, j ; \theta): & =\mathbf{I}+\left[\begin{array}{ll}
\mathbf{e}_{i} & \mathbf{e}_{j}
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta-1 & \sin \theta \\
-\sin \theta & \cos \theta-1
\end{array}\right]\left[\begin{array}{l}
\mathbf{e}_{i}^{\top} \\
\mathbf{e}_{j}^{\top}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\mathbf{I} & & & \\
& \cos \theta & & \sin \theta \\
& \mathbf{I} & & \\
& \text { row } i \\
& & & \cos \theta \\
& \\
& & & \mathbf{I}
\end{array}\right] \begin{array}{l}
\text { row } j
\end{array}
\end{aligned}
$$

The (i, j) and (j, i) entries of $\mathbf{B}:=\mathbf{J}^{\top} \mathbf{A J}$ are zeros via appropriate θ.

Remark 1

The Jacobi rotation matrix \mathbf{J} is orthogonal.

Remark 2

We have $\|\mathbf{B}\|_{\mathrm{F}}=\|\mathbf{A}\|_{\mathrm{F}}\left(\because\|\cdot\|_{\mathrm{F}}\right.$ is invariant under orthogonal $\left.\mathbf{J}\right)$.

Theorem 3

Suppose that $a_{i j}=a_{j i} \neq 0$ and $i<j$. Let $\mathbf{J}(i, j ; \theta)$ be the Jacobi rotation matrix such that the (i, j) and (j, i) entries of $\mathbf{B}=\mathbf{J}^{\top} \mathbf{A J}$ are zeros. Then, for $k \neq i, j, b_{k k}=a_{k k}$ and

$$
b_{i i}^{2}+b_{j j}^{2}=a_{i i}^{2}+a_{j j}^{2}+a_{i j}^{2}+a_{j i}^{2} .
$$

Remark 4

At each step a symmetric pair of zeros is introduced into the matrix (note that previous zeros maybe destroyed). The usual effect is that the sum of the squares of magnitude of off-diagonal entries shrink steadily.

2. Bisection method

- Consider an unreduced (all of its $(i+1, i)$ and $(i, i+1)$ entries are nonzero) tridiagonal real symmetric matrix \mathbf{A} :

$$
\mathbf{A}=\left[\begin{array}{ccccc}
a_{1} & b_{1} & & & \\
b_{1} & a_{2} & b_{2} & & \\
& b_{2} & a_{3} & \ddots & \\
& & \ddots & \ddots & b_{m-1} \\
& & & b_{m-1} & a_{m}
\end{array}\right], \quad b_{j} \neq 0
$$

- Let $\mathbf{A}^{(1)}, \cdots, \mathbf{A}^{(m)}$ denote its leading square principal submatrices of dimension $1, \cdots, m$.

Proposition 5

The eigenvalues of $\mathbf{A}^{(k)}$ are distinct: $\lambda_{1}^{(k)}>\lambda_{2}^{(k)}>\cdots>\lambda_{k}^{(k)}$.

Proposition 6

The eigenvalues of $\mathbf{A}^{(1)}, \cdots, \mathbf{A}^{(m)}$ strictly interlace, i.e.,

$$
\lambda_{j}^{(k+1)}>\lambda_{j}^{(k)}>\lambda_{j+1}^{(k+1)},
$$

for $k=1,2, \ldots, m-1$ and $j=1,2, \ldots, k$.

Proof: See Golub and van Loan's book: Theorem 8.4.1, Page 468, Matrix computations, 4th edition.

- The interlacing property makes it possible to count the exact number of negative eigenvalues of a real symmetric tridiagonal matrix. For example,

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 1 & & \\
1 & 0 & 1 & \\
& 1 & 2 & 1 \\
& & 1 & -1
\end{array}\right], \quad \begin{aligned}
& \operatorname{det}\left(\mathbf{A}^{(1)}\right)=1 \\
& \operatorname{det}\left(\mathbf{A}^{(2)}\right)=-1 \\
& \operatorname{det}\left(\mathbf{A}^{(3)}\right)=-3 \\
& \operatorname{det}\left(\mathbf{A}^{(4)}\right)=4
\end{aligned}
$$

Remark 7

In general, for any unreduced tridiagonal real symmetric \mathbf{A}, the number of negative eigenvalues is equal to the number of sign changes in the sequence

$$
1, \operatorname{det}\left(\mathbf{A}^{(1)}\right), \operatorname{det}\left(\mathbf{A}^{(2)}\right), \cdots, \operatorname{det}\left(\mathbf{A}^{(m)}\right)
$$

which is known as a Sturm sequence. Here, we define a "sign change" to mean a transition from + or 0 to - or from - or 0 to + but not from + or - to 0 .

Remark 8

By shifting A by a multiple of the identity, we can determine the number of eigenvalues in any interval $[a, b)$: it is the number of eigenvalues in $(-\infty, b)$ minus the number in $(-\infty, a)$; i.e., we only need consider two matrices $\mathbf{A}-b \mathbf{I}$ and $\mathbf{A}-a \mathbf{I}$.

Remark 9

The determinants of the matrices $\left\{\mathbf{A}^{(k)}\right\}$ are related by a three-term recurrence relation:

$$
\operatorname{det}\left(\mathbf{A}^{(k)}\right)=a_{k} \operatorname{det}\left(\mathbf{A}^{(k-1)}\right)-b_{k-1}^{2} \operatorname{det}\left(\mathbf{A}^{(k-2)}\right)
$$

Introducing the shift by $z \mathbf{I}$ and writing $p^{(k)}(z)=\operatorname{det}\left(\mathbf{A}^{(k)}-z \mathbf{I}\right)$, we get

$$
p^{(k)}(z)=\left(a_{k}-z\right) p^{(k-1)}(z)-b_{k-1}^{2} p^{(k-2)}(z)
$$

where $p^{(-1)}(z)=0, p^{(0)}(z)=1$.

3. Secular equation

Proposition 10

Let $\mathbf{D} \in \mathbb{R}^{m \times m}$ be a diagonal matrix with distinct diagonal entries $\left\{d_{j}\right\}$ and $\mathbf{w} \in \mathbb{R}^{m}$ be a vector with $w_{j} \neq 0$ for all j. Assume $\beta \in \mathbb{R}$ and $\beta \neq 0$. The eigenvalues of $\mathbf{D}+\beta \mathbf{w}^{\top}$ are the roots of the rational function

$$
f(\lambda)=1+\beta \sum_{j=1}^{m} \frac{w_{j}^{2}}{d_{j}-\lambda}
$$

Proof.

Suppose \mathbf{q} is an eigenvector of $\mathbf{D}+\beta \mathbf{w} \mathbf{w}^{\top}$. The statement follows from $\mathbf{w}^{\top} \mathbf{q} \neq 0, \lambda \neq d_{j}(w h y ?)$ and $\mathbf{w}^{\top} \mathbf{q}\left(1+\beta \mathbf{w}^{\top}(\mathbf{D}-\lambda \mathbf{I})^{-1} \mathbf{w}\right)=0$.

Remark 11

The equation $f(\lambda)=0$ is known as the secular equation.

Exercise: Assume \mathbf{D}, β and \mathbf{w} are those in Proposition 10. If λ is an eigenvalue of $\mathbf{D}+\beta \mathbf{w} \mathbf{w}^{\top}$, then $(\mathbf{D}-\lambda \mathbf{I})^{-1} \mathbf{w}$ is a corresponding eigenvector.

- Plot of the function $f(\lambda)$ for a problem of dimension 4 . The poles of $f(\lambda)$ are the eigenvalues $\left\{d_{j}\right\}$ of \mathbf{D}, and the roots of $f(\lambda)$ (solid dots) are the eigenvalues of $\mathbf{D}+\beta \mathbf{w} \mathbf{w}^{\top}$. These roots can be determined rapidly.

Proposition 12

Let $\mathbf{D} \in \mathbb{R}^{m \times m}$ be a diagonal matrix and $\mathbf{w} \in \mathbb{R}^{m}$ be a vector. Assume $\beta \in \mathbb{R}$ and $\beta \neq 0$. Then there exist a permutation matrix \mathbf{P} and an orthogonal matrix \mathbf{V} such that

$$
\mathbf{P}^{\top} \mathbf{V}^{\top}\left(\mathbf{D}+\beta \mathbf{w} \mathbf{w}^{\top}\right) \mathbf{V P}=\left[\begin{array}{cc}
\mathbf{D}_{1}+\beta \mathbf{w}_{1} \mathbf{w}_{1}^{\top} & \mathbf{0} \\
\mathbf{0} & \mathbf{D}_{2}
\end{array}\right]
$$

where $\mathbf{D}_{1} \in \mathbb{R}^{r \times r}$ is a diagonal matrix with distinct diagonal entries, $\mathbf{D}_{2} \in \mathbb{R}^{(m-r) \times(m-r)}$ is a diagonal matrix, and $\mathbf{w}_{1} \in \mathbb{R}^{r}$ is a vector with nonzero entries. More precisely,

$$
\mathbf{V}^{\top} \mathbf{D V}=\mathbf{D}, \quad \mathbf{P}^{\top} \mathbf{D P}=\left[\begin{array}{ll}
\mathbf{D}_{1} & \\
& \mathbf{D}_{2}
\end{array}\right], \quad \mathbf{P}^{\top} \mathbf{V}^{\top} \mathbf{w}=\left[\begin{array}{c}
\mathbf{w}_{1} \\
\mathbf{0}
\end{array}\right] .
$$

- Exercise: Prove Proposition 12.

4. Divide-and-conquer

Remark 13

A symmetric tridiagonal matrix can be written as the sum of a 2×2 block diagonal matrix with tridiagonal blocks and a rank-one correction.

- Let $\mathbf{T} \in \mathbb{R}^{m \times m}$ be symmetric, tridiagonal, and unreduced. For any n in the range $1 \leq n<m$, we can write

$$
\mathbf{T}=\left[\begin{array}{ll}
\widehat{\mathbf{T}}_{1} & \\
& \widehat{\mathbf{T}}_{2}
\end{array}\right]+\beta\left[\begin{array}{l}
\mathbf{e}_{n} \\
\mathbf{e}_{1}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{e}_{n}^{\top} & \mathbf{e}_{1}^{\top}
\end{array}\right] .
$$

- Suppose that the eigen decompositions $\widehat{\mathbf{T}}_{1}=\mathbf{Q}_{1} \mathbf{D}_{1} \mathbf{Q}_{1}^{\top}$ and $\widehat{\mathbf{T}}_{2}=\mathbf{Q}_{2} \mathbf{D}_{2} \mathbf{Q}_{2}^{\top}$ have been computed $\left(\mathbf{D}_{1}\right.$ and \mathbf{D}_{2} are diagonal, and \mathbf{Q}_{1} and \mathbf{Q}_{2} are orthogonal). Then we have

$$
\mathbf{T}=\left[\begin{array}{ll}
\mathbf{Q}_{1} & \\
& \mathbf{Q}_{2}
\end{array}\right]\left(\left[\begin{array}{ll}
\mathbf{D}_{1} & \\
& \mathbf{D}_{2}
\end{array}\right]+\beta\left[\begin{array}{l}
\mathbf{u} \\
\mathbf{v}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{u}^{\top} & \mathbf{v}^{\top}
\end{array}\right]\right)\left[\begin{array}{ll}
\mathbf{Q}_{1}^{\top} & \\
& \mathbf{Q}_{2}^{\top}
\end{array}\right]
$$

where $\mathbf{u}:=\mathbf{Q}_{1}^{\top} \mathbf{e}_{n}$ and $\mathbf{v}:=\mathbf{Q}_{2}^{\top} \mathbf{e}_{1}$. The problem is reduced to find the eigenvalues of a diagonal matrix plus a rank-one correction.

Remark 14

Suppose that the eigenvalues of $\widehat{\mathbf{T}}_{1}$ and $\widehat{\mathbf{T}}_{2}$ are known. A nonlinear but rapid calculation can be used to get from the eigenvalues of $\widehat{\mathbf{T}}_{1}$ and $\widehat{\mathbf{T}}_{2}$ to those of \mathbf{T} itself by the secular equation. The divide-and-conquer algorithm is based on recursive use of this idea.

