Lecture 8: Power/Inverse iteration, Rayleigh quotient iteration

School of Mathematical Sciences, Xiamen University

1. Eigenvalue problem and polynomial rootfinding problem

- The eigenvalues of a matrix $\mathbf{A} \in \mathbb{C}^{m \times m}$ are the m roots of its characteristic polynomial $p(z)=\operatorname{det}(z \mathbf{I}-\mathbf{A})$.
- Suppose we have the monic polynomial

$$
p(z)=z^{m}+a_{m-1} z^{m-1}+\cdots+a_{1} z+a_{0}
$$

It is not hard to verify that $p(z)=\operatorname{det}(z \mathbf{I}-\mathbf{A})$, where the $m \times m$ matrix \mathbf{A} is

$$
\mathbf{A}=\left[\begin{array}{cccccc}
0 & & & & & -a_{0} \\
1 & 0 & & & & -a_{1} \\
& 1 & 0 & & & -a_{2} \\
& & 1 & \ddots & & \vdots \\
& & & \ddots & 0 & -a_{m-2} \\
& & & & 1 & -a_{m-1}
\end{array}\right]
$$

The matrix \mathbf{A} is called a companion matrix corresponding to $p(z)$.

- Any eigenvalue solver must be iterative because no explicit root expressing formula exists for polynomial of degree ≥ 5. The goal of an eigenvalue solver is to produce sequences of numbers that converge rapidly towards eigenvalues.
- Convergence rate

Let e_{1}, e_{2}, \ldots be a sequence of nonnegative numbers representing errors in some iterative process that converge to zero, and suppose there are a positive constant c and an exponent α such that for all sufficiently large $k, e_{k+1} \leq c\left(e_{k}\right)^{\alpha}$. Then,
(1) $\alpha=1$ and $c<1$, linear convergence or geometric convergence;
(2) $\alpha=2$, quadratic convergence;
(3) $\alpha=3$, cubic convergence; ...
2. Rayleigh quotient

- The Rayleigh quotient of a nonzero vector $\mathbf{x} \in \mathbb{C}^{m}$ with respect to A is the scalar

$$
r(\mathbf{x})=\frac{\mathbf{x}^{*} \mathbf{A} \mathbf{x}}{\mathbf{x}^{*} \mathbf{x}}
$$

Theorem 1

Let $\{\lambda, \mathbf{v}\}$ be an eigenpair of the matrix \mathbf{A}, i.e., $\mathbf{A v}=\lambda \mathbf{v}$ and $\mathbf{v} \neq 0$.
(i) If \mathbf{A} is non-normal, then the Rayleigh quotient $r(\mathbf{x})$ is generally a linearly accurate estimate of the eigenvalue λ, i.e.,

$$
|r(\mathbf{x})-\lambda|=\mathcal{O}\left(\|\mathbf{x}-\mathbf{v}\|_{2}\right), \quad \text { as } \quad \mathbf{x} \rightarrow \mathbf{v} .
$$

(ii) If \mathbf{A} is normal, then the Rayleigh quotient $r(\mathbf{x})$ is a quadratically accurate estimate of the eigenvalue λ, i.e.,

$$
|r(\mathbf{x})-\lambda|=\mathcal{O}\left(\|\mathbf{x}-\mathbf{v}\|_{2}^{2}\right), \quad \text { as } \quad \mathbf{x} \rightarrow \mathbf{v} .
$$

Hint:

For simplicity, we assume that $\|\mathbf{v}\|_{2}=1$ and consider a Schur form

$$
\mathbf{T}=\mathbf{Q}^{*} \mathbf{A Q}
$$

with $t_{11}=\lambda$ and $\mathbf{Q e}_{1}=\mathbf{v}$. Let $\mathbf{y}=\mathbf{Q}^{*} \mathbf{x}$. Then $\mathbf{y} \rightarrow \mathbf{e}_{1}$ as $\mathbf{x} \rightarrow \mathbf{v}$.
3. Power iteration

Algorithm 1: Power iteration

$$
\begin{aligned}
& \mathbf{v}^{(0)}=\text { some vector with }\left\|\mathbf{v}^{(0)}\right\|_{2}=1 \\
& \text { for } k=1,2,3, \ldots \\
& \quad \mathbf{w}=\mathbf{A} \mathbf{v}^{(k-1)} \\
& \quad \mathbf{v}^{(k)}=\mathbf{w} /\|\mathbf{w}\|_{2} \\
& \quad \lambda^{(k)}=\left(\mathbf{v}^{(k)}\right)^{*} \mathbf{A} \mathbf{v}^{(k)} \\
& \text { end }
\end{aligned}
$$

- Termination conditions.
- Power iteration can find only an approximate eigenpair corresponding to the eigenvalue with the largest magnitude. The convergence is linear, which is very slow if the largest two eigenvalues are close in magnitude.
- One application: Google's Pagerank.
- Assume that $\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{-1}$ is diagonalizable with $\left\|\mathbf{v}_{\mathbf{1}}\right\|_{2}=1$ and

$$
\boldsymbol{\Lambda}=\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\right\}, \quad\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{m}\right| .
$$

Let $\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{m}\end{array}\right]:=\mathbf{V}^{-1} \mathbf{v}^{(0)}$. If $\alpha_{1} \neq 0$, then we have

$$
\mathbf{A}^{k} \mathbf{v}^{(0)}=\mathbf{V} \Lambda^{k} \mathbf{V}^{-1} \mathbf{v}^{(0)}=\mathbf{V}\left[\begin{array}{c}
\alpha_{1} \lambda_{1}^{k} \\
\alpha_{2} \lambda_{2}^{k} \\
\vdots \\
\alpha_{m} \lambda_{m}^{k}
\end{array}\right]=\alpha_{1} \lambda_{1}^{k} \mathbf{V}\left[\begin{array}{c}
1 \\
\frac{\alpha_{2}}{\alpha_{1}} \frac{\lambda_{2}^{k}}{\lambda_{1}^{k}} \\
\vdots \\
\frac{\alpha_{m}}{\alpha_{1}} \frac{\lambda_{m}^{k}}{\lambda_{1}^{k}}
\end{array}\right] .
$$

$\operatorname{By~} \mathbf{v}^{(k)}=\frac{\mathbf{A}^{k} \mathbf{v}^{(0)}}{\left\|\mathbf{A}^{k} \mathbf{v}^{(0)}\right\|_{2}}$, we have $\mathrm{e}^{-\mathrm{i} \theta_{k}} \mathbf{v}^{(k)} \rightarrow \mathbf{v}_{1}$ and $\lambda^{(k)} \rightarrow \lambda_{1}$, where $\theta_{k}=k \theta+\theta_{0}$ with $\mathrm{e}^{\mathrm{i} \theta}=\lambda_{1} /\left|\lambda_{1}\right|$ and $\mathrm{e}^{\mathrm{i} \theta_{0}}=\alpha_{1} /\left|\alpha_{1}\right|$.

Theorem 2

Suppose that \mathbf{A} is diagonalizable, i.e., $\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{-1}$ with

$$
\boldsymbol{\Lambda}=\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\right\} .
$$

Furthermore, suppose $\mathbf{e}_{1}^{*} \mathbf{V}^{-1} \mathbf{v}^{(0)} \neq 0,\left\|\mathbf{v}_{1}\right\|_{2}=1$, and

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{m}\right|
$$

Then the iterates of power iteration satisfy, as $k \rightarrow \infty$,

$$
\left\|\mathrm{e}^{-\mathrm{i} \theta_{k}} \mathbf{v}^{(k)}-\mathbf{v}_{1}\right\|_{2}=\mathcal{O}\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right)
$$

and

$$
\left|\lambda^{(k)}-\lambda_{1}\right|=\mathcal{O}\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right) \quad \text { or } \quad \mathcal{O}\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{2 k}\right)
$$

4. Inverse iteration

Proposition 3

For any μ that is not an eigenvalue, the eigenvectors of $(\mathbf{A}-\mu \mathbf{I})^{-1}$ are the same as the eigenvectors of \mathbf{A}, and the corresponding eigenvalues are $\left\{\left(\lambda_{j}-\mu\right)^{-1}\right\}$, where $\left\{\lambda_{j}\right\}$ are the eigenvalues of \mathbf{A}.

Algorithm 2: Inverse iteration

$$
\begin{aligned}
& \mathbf{v}^{(0)}=\text { some vector with }\left\|\mathbf{v}^{(0)}\right\|_{2}=1 \\
& \text { for } k=1,2,3, \ldots, \\
& \quad \text { Solve }(\mathbf{A}-\mu \mathbf{I}) \mathbf{w}=\mathbf{v}^{(k-1)} \text { for } \mathbf{w} \\
& \quad \mathbf{v}^{(k)}=\mathbf{w} /\|\mathbf{w}\|_{2} \\
& \quad \lambda^{(k)}=\left(\mathbf{v}^{(k)}\right)^{*} \mathbf{A} \mathbf{v}^{(k)} \\
& \text { end }
\end{aligned}
$$

- We call μ the shift of inverse iteration. Like power iteration, inverse iteration exhibits only linear convergence.
- Other important issue about stability: TreBau Exercise 27.5

Theorem 4

Suppose that \mathbf{A} is diagonalizable, i.e., $\mathbf{A}=\mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$ with

$$
\boldsymbol{\Lambda}=\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\right\} .
$$

Suppose λ_{j} is the closest eigenvalue to μ and λ_{l} is the second closest, that is,

$$
\left|\lambda_{j}-\mu\right|<\left|\lambda_{l}-\mu\right| \leq\left|\lambda_{i}-\mu\right|
$$

for each $i \neq j$. Furthermore, suppose $\mathbf{e}_{j}^{*} \mathbf{V}^{-1} \mathbf{v}^{(0)} \neq 0$ and $\left\|\mathbf{v}_{j}\right\|_{2}=1$. Then the iterates of inverse iteration satisfy, as $k \rightarrow \infty$,

$$
\left\|\mathrm{e}^{-\mathrm{i} \theta_{k}} \mathbf{v}^{(k)}-\mathbf{v}_{j}\right\|_{2}=\mathcal{O}\left(\left|\frac{\lambda_{j}-\mu}{\lambda_{l}-\mu}\right|^{k}\right), \quad\left(\text { Exercise : } \theta_{k}=?\right)
$$

and

$$
\left|\lambda^{(k)}-\lambda_{j}\right|=\mathcal{O}\left(\left|\frac{\lambda_{j}-\mu}{\lambda_{l}-\mu}\right|^{k}\right) \quad \text { or } \quad \mathcal{O}\left(\left|\frac{\lambda_{j}-\mu}{\lambda_{l}-\mu}\right|^{2 k}\right) .
$$

5. Rayleigh quotient iteration

Algorithm 3: Rayleigh quotient iteration

$$
\begin{aligned}
& \mathbf{v}^{(0)}=\text { some vector with }\left\|\mathbf{v}^{(0)}\right\|_{2}=1 \\
& \lambda^{(0)}=\left(\mathbf{v}^{(0)}\right)^{*} \mathbf{A} \mathbf{v}^{(0)}
\end{aligned}
$$

$$
\text { for } k=1,2,3, \ldots,
$$

$$
\text { Solve }\left(\mathbf{A}-\lambda^{(k-1)} \mathbf{I}\right) \mathbf{w}=\mathbf{v}^{(k-1)} \text { for } \mathbf{w}
$$

$$
\mathbf{v}^{(k)}=\mathbf{w} /\|\mathbf{w}\|_{2}
$$

$$
\lambda^{(k)}=\left(\mathbf{v}^{(k)}\right)^{*} \mathbf{A} \mathbf{v}^{(k)}
$$

end

Theorem 5

Rayleigh quotient iteration converges to an eigenpair

$$
\{\lambda, \mathbf{v}\}, \quad\|\mathbf{v}\|_{2}=1
$$

for all except a set of measure zero of starting vectors $\mathbf{v}^{(0)}$. When it converges, the convergence is ultimately quadratic $(\alpha=2)$ for non-normal case or cubic $(\alpha=3)$ for normal case in the sense that if $\mathrm{e}^{-\mathrm{i} \theta_{k}} \mathbf{v}^{(k)}$ is sufficiently close to the eigenvector \mathbf{v}, then

$$
\left\|\mathrm{e}^{-\mathrm{i} \theta_{k+1}} \mathbf{v}^{(k+1)}-\mathbf{v}\right\|_{2}=\mathcal{O}\left(\left\|\mathrm{e}^{-\mathrm{i} \theta_{k}} \mathbf{v}^{(k)}-\mathbf{v}\right\|_{2}^{\alpha}\right)
$$

and

$$
\left|\lambda^{(k+1)}-\lambda\right|=\mathcal{O}\left(\left|\lambda^{(k)}-\lambda\right|^{\alpha}\right)
$$

as $k \rightarrow \infty$.

Example:

$$
\mathbf{A}=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 4
\end{array}\right], \quad \mathbf{v}^{(0)}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] / \sqrt{3}
$$

The eigenvalue $\lambda=5.214319743377$
Power iteration:

$$
\begin{aligned}
& \lambda^{(0)}=5.1818 \ldots \\
& \lambda^{(1)}=5.2081 \ldots \\
& \lambda^{(2)}=5.2130 \ldots
\end{aligned}
$$

Rayleigh quotient iteration: $\quad \lambda^{(0)}=5$

$$
\begin{aligned}
& \lambda^{(1)}=5.2131 \ldots \\
& \lambda^{(2)}=5.214319743184 \ldots
\end{aligned}
$$

The convergence of Rayleigh quotient iteration is spectacular: each iteration triples the number of digits of accuracy.

