
Lecture 5: LU factorization, Cholesky factorization,
Gaussian elimination with pivoting
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1. LU factorization

Definition: Given A ∈ Cm×m, an LU factorization (if it exists) of
A is a factorization

A = LU

where L ∈ Cm×m is unit lower-triangular and U ∈ Cm×m is
upper-triangular.

An approach: find a sequence of unit lower-triangular matrices Lk

such that
Lm−1 · · ·L2L1A = U

and set
L = L−1

1 L−1
2 · · ·L−1

m−1.

A 4× 4 example
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1.1. General formulas for LU factorization

Let xk denote the kth column of the matrix at the beginning of
step k (which matrix? Lk−1 · · ·L2L1A).

The purpose is to eliminate the entries below xkk. To do this we
construct the matrix Lk:

Lk =

!

""""""""#

1
. . .

1
−ℓk+1,k 1

...
. . .

−ℓmk 1

$

%%%%%%%%&

=

!

#
Ik−1 0 0
0 1 0
0 ! Im−k

$

& ,

where the multiplier

ℓjk =
xjk
xkk

, k + 1 ≤ j ≤ m.
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Proposition 1

The matrix Lk can be inverted by negating its subdiagonal entries. We
have

L−1
k =

!

""""""""#

1
. . .

1
ℓk+1,k 1

...
. . .

ℓmk 1

$

%%%%%%%%&

=

!

#
Ik−1 0 0
0 1 0
0 −! Im−k

$

& .

Proof. Define the vector

ℓk =
'
0 · · · 0 ℓk+1,k · · · ℓmk

(⊤
.

The matrix Lk = I− ℓke
∗
k, where ek is the kth column of the identity

matrix I. Obviously, e∗kℓk = 0. Therefore, the statement follows from

(I− ℓke
∗
k)(I+ ℓke

∗
k) = I− ℓke

∗
kℓke

∗
k = I.
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Proposition 2

The product L−1
1 L−1

2 · · ·L−1
m−1, i.e., the L factor L, can be formed by

collecting the entries ℓjk in the appropriate places. We have

L =

!

"""""#

1
ℓ21 1
ℓ31 ℓ32 1
...

...
. . .

. . .

ℓm1 ℓm2 · · · ℓm,m−1 1

$

%%%%%&
.

Proof. It follows from L−1
k = I+ ℓke

∗
k and e∗kℓj = 0 (∀ j ≥ k) that

L−1
k L−1

k+1 = I+ ℓke
∗
k + ℓk+1e

∗
k+1.

Therefore,

L = L−1
1 L−1

2 · · ·L−1
m−1 = I+ ℓ1e

∗
1 + ℓ2e

∗
2 + · · ·+ ℓm−1e

∗
m−1.
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Remark 3

The matrices L−1
k are never formed and multiplied explicitly.

The multipliers ℓjk are computed and stored directly into L.

1.2. LU factorization algorithm

Algorithm: LU factorization A = LU

U = A, L = I
for k = 1 to m− 1

for j = k + 1 to m
ℓjk = ujk/ukk
uj,k:m = uj,k:m − ℓjkuk,k:m

end
end
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1.3. Gaussian elimination for Ax = b

A = LU, Ly = b, Ux = y

Algorithm: Forward elimination solving Ly = b

for k = 1 to m

yk = bk −
k−1)

j=1

ℓkjyj

end

Algorithm: Back substitution solving Ux = y

for k = m downto 1

xk =

*

+yk −
m)

j=k+1

ukjxj

,

-
.
ukk

end
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2. Cholesky factorization

Every Hermitian positive definite matrix A has a factorization

A = LDL∗,

where L is the unit lower-triangular matrix in its LU factorization
A = LU and D is a diagonal matrix with diagonal entries dii > 0.

Definition: Given A ∈ Cm×m, a Cholesky factorization (if it exists)
of A is a factorization

A = R∗R

where R ∈ Cm×m is upper-triangular.

Theorem 4

Every Hermitian positive definite matrix A ∈ Cm×m has a unique
Cholesky factorization

A = R∗R,

where R ∈ Cm×m is upper-triangular and rjj > 0.
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Proof. (By induction on the dimension).

It is easy for the case of dimension 1. Assume it is true for the case of
dimension m− 1. We prove the case of dimension m. Let α =

√
a11.

We have

A =

/
a11 w∗

w K

0
=

/
α 0

w/α I

0 /
1 0
0 K−ww∗/a11

0 /
α w∗/α
0 I

0

=

/
α 0

w/α I

0 /
1 0

0 1R∗ 1R

0 /
α w∗/α
0 I

0

(by K−ww∗/a11 is HPD and the induction hypothesis)

=

/
α 0

w/α 1R∗

0 /
α w∗/α

0 1R

0
= R∗R.

The first row of R is uniquely determined by r11 > 0 and the
factorization itself. The uniqueness of R follows from the induction
hypothesis that 1R is unique.
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2.1. A 4× 4 example

A =

!

""#

4 4i 6 2
−4i 5 −4i 5− 2i
6 4i 17 3− 8i
2 5 + 2i 3 + 8i 36

$

%%& , w =

!

#
−4i
6
2

$

& , K =

!

#
5 −4i 5− 2i
× 17 3− 8i
× × 36

$

&

Compute the upper triangular matrix R row by row

Row 1:

!

""#

2
−2i 1
3 1
1 1

$

%%&

!

""#

1
1 2i 5
× 8 −8i
× × 35

$

%%&

!

""#

2 2i 3 1
1

1
1

$

%%&

Row 2:

!

#
1 2i 5
× 8 −8i
× × 35

$

& =

!

#
1

−2i 1
5 1

$

&

!

#
1

4 2i
× 10

$

&

!

#
1 2i 5

1
1

$

&

Row 3:

'
4 2i
× 10

(
=

'
2

−1i 1

( '
1

9

( '
2 1i

1

(

Row 4: 9 = 3× 1× 3

The Cholesky factor R =

!

""#

2 2i 3 1
1 2i 5

2 1i
3

$

%%& .
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2.2. Algorithm for Cholesky factorization

Algorithm: Cholesky factorization

R=triu(A)
for k = 1 to m

for j = k + 1 to m
rj,j:m = rj,j:m − rk,j:mrkj/rkk

end
rk,k:m = rk,k:m/

√
rkk

end

Exercise: Design an algorithm to compute R∗ column by column.

2.3. Other factorization of HPD matrix

For any HPD matrix A, there exists a unique HPD matrix B
satisfying

A = B2.

B is called the square root of A. (Proof? HPSD case?)
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3. Gaussian elimination with partial pivoting (GEPP)

Partial pivoting: Here it means only rows are interchanged.

After m− 1 steps, A becomes an upper-triangular matrix U:

Lm−1Pm−1 · · ·L2P2L1P1A = U,

where Pk is an elementary permutation matrix (Pk = P⊤
k = P−1

k ).

Remark 5

Absolute values of all the entries of Lk in GEPP are ≤ 1 due to the
property at step k (after pivoting)

|xkk| = max
k≤j≤m

|xjk|.
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3.1. A 4× 4 Example

Step 1. Interchange the first and third rows by P1

First elimination by L1

Step 2. Interchange the second and fourth rows by P2
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Second elimination by L2

Step 3. Interchange the third and fourth rows by P3

Final elimination by L3
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A = P−1
1 L−1

1 P−1
2 L−1

2 P−1
3 L−1

3 U

PA = LU with P = P3P2P1 and L = P3P2L
−1
1 P−1

2 L−1
2 P−1

3 L−1
3

3.2. General formulas for PA = LU

The matrix Lm−1Pm−1 · · ·L2P2L1P1 can be rewritten in the form

Lm−1Pm−1 · · ·L2P2L1P1 = 1Lm−1 · · · 1L2
1L1Pm−1 · · ·P2P1,

where 1Lk = Pm−1 · · ·Pk+2Pk+1LkP
−1
k+1P

−1
k+2 · · ·P

−1
m−1.

Numerical Linear Algebra Lecture 5 Xiamen University 17 / 24



Remark 6

The elementary permutation matrix Pk in GEPP has the form

Pk =

/
Ik−1 0

0 1Pk

0
,

where 1Pk ∈ R(m−k+1)×(m−k+1) is an elementary permutation matrix.

Remark 7

The unit lower triangular matrix 1Lk in GEPP has the same sparsity
pattern as that of Lk. The sparsity pattern is

!

#
Ik−1 0 0
0 1 0
0 ! Im−k

$

& =

!

#
0 0 0
0 0 0
0 ! 0

$

&+ I.

The matrix 1Lk is equal to Lk but with the !’s entries permuted.
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Remark 8

By Proposition 1, 1L−1
k has the same sparsity pattern as that of 1Lk. By

Proposition 2, the product 1L−1
1

1L−1
2 · · · 1L−1

m−1 is unit lower triangular.

Remark 9

GEPP has the LU factorization PA = LU where

P = Pm−1 · · ·P2P1, U = Lm−1Pm−1 · · ·L2P2L1P1A,

L = 1L−1
1

1L−1
2 · · · 1L−1

m−1 = Pm−1 · · ·P3P2L
−1
1 P−1

2 L−1
2 P−1

3 · · ·P−1
m−1L

−1
m−1.

Remark 10

The matrices 1L−1
k are never formed and multiplied explicitly. The

multipliers ℓjk are computed and stored in the appropriate places.

Remark 11

The permutation matrix P is not known ahead of time.

Numerical Linear Algebra Lecture 5 Xiamen University 19 / 24



3.3. GEPP for Ax = b

PA = LU, Ly = Pb, Ux = y

Algorithm: LU factorization PA = LU in GEPP

U = A, L = I, P = I
for k = 1 to m− 1

Select i ≥ k to maximize |uik|
uk,k:m ↔ ui,k:m (interchange two rows)
ℓk,1:k−1 ↔ ℓi,1:k−1

pk,: ↔ pi,:
for j = k + 1 to m

ℓjk = ujk/ukk
uj,k:m = uj,k:m − ℓjkuk,k:m

end
end
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3.4. Growth factor

Define the growth factor for A as the ratio ρ =
maxij |uij |
maxij |aij |

.

Proposition 12

The growth factor ρ of Gaussian elimination with partial pivoting
applied to any matrix A ∈ Cm×m satisfies ρ ≤ 2m−1.

Proof. Exercise 22.1.

Worst case of ρ: Consider the 5× 5 matrix A:

A =

!

""""#

1 1
−1 1 1
−1 −1 1 1
−1 −1 −1 1 1
−1 −1 −1 −1 1

$

%%%%&
.
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The L and U factors are given by

L =

!

""""#

1
−1 1
−1 −1 1
−1 −1 −1 1
−1 −1 −1 −1 1

$

%%%%&
,

and

U =

!

""""#

1 1
1 2

1 4
1 8

16

$

%%%%&
.

The growth factor ρ = 2m−1 = 16.
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4. Gaussian elimination with complete pivoting (GECP)

Both rows and columns are interchanged

After m− 1 steps, A becomes an upper-triangular matrix U:

Lm−1Pm−1 · · ·L2P2L1P1AQ1Q2 · · ·Qm−1 = U.

Remark 13

GE with complete pivoting has the LU factorization

PAQ = LU,

where P = Pm−1 · · ·P2P1, Q = Q1Q2 · · ·Qm−1, and

L = 1L−1
1

1L−1
2 · · · 1L−1

m−1 = Pm−1 · · ·P3P2L
−1
1 P−1

2 L−1
2 P−1

3 · · ·P−1
m−1L

−1
m−1.

Remark 14

The permutation matrices P and Q are not known ahead of time.
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4.1. GECP for Ax = b

PAQ = LU, Ly = Pb, Uz = y, x = Qz

Algorithm: LU factorization PAQ = LU in GECP

The details are left as an exercise.

Exercise:

Modify the pseudocode of the algorithms in this lecture to save
storage.

Further reading:

Shufang Xu, Li Gao, and Pingwen Zhang

Numerical Linear Algebra.

Second Edition, Peking University Press, 2013
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