Lecture 5: LU factorization, Cholesky factorization, Gaussian elimination with pivoting

School of Mathematical Sciences, Xiamen University

1. LU factorization

• Definition: Given $\mathbf{A} \in \mathbb{C}^{m \times m}$, an *LU factorization* (if it exists) of **A** is a factorization

$$\mathbf{A} = \mathbf{L}\mathbf{U}$$

where $\mathbf{L} \in \mathbb{C}^{m \times m}$ is unit lower-triangular and $\mathbf{U} \in \mathbb{C}^{m \times m}$ is upper-triangular.

 \bullet An approach: find a sequence of unit lower-triangular matrices \mathbf{L}_k such that

$$\mathbf{L}_{m-1}\cdots\mathbf{L}_{2}\mathbf{L}_{1}\mathbf{A}=\mathbf{U}$$

and set

$$\mathbf{L} = \mathbf{L}_1^{-1} \mathbf{L}_2^{-1} \cdots \mathbf{L}_{m-1}^{-1}.$$

Numerical Linear Algebra

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}$$
$$\mathbf{L}_{1}\mathbf{A} = \begin{bmatrix} 1 & & & \\ -2 & 1 & & \\ -4 & 1 & \\ -3 & -3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 1 \\ 3 & 5 & 5 \\ 4 & 6 & 8 \end{bmatrix}$$
$$\mathbf{L}_{2}\mathbf{L}_{1}\mathbf{A} = \begin{bmatrix} 1 & & & \\ 1 & & & \\ -3 & 1 & & \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 1 \\ 3 & 5 & 5 \\ 4 & 6 & 8 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 1 \\ 2 & 2 \\ 2 & 4 \end{bmatrix}$$

$$\mathbf{L}_{3}\mathbf{L}_{2}\mathbf{L}_{1}\mathbf{A} = \begin{bmatrix} 1 & & \\ 1 & & \\ & 1 & \\ & & 1 & \\ & & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 1 \\ & 2 & 2 \\ & & 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 1 \\ & 2 & 2 \\ & & 2 \end{bmatrix} = \mathbf{U}.$$

$$\begin{bmatrix} 1 & & & \\ -2 & 1 & & \\ -4 & 1 & & \\ -3 & & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & & & \\ 2 & 1 & & \\ 4 & 1 & & \\ 3 & & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ -3 & & 1 \end{bmatrix} = \begin{bmatrix} 1 & & & \\ 2 & 1 & & \\ 4 & 3 & 1 \\ 3 & 4 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 1 \\ 2 & 2 \\ & 2 \end{bmatrix}$$

$$\mathbf{A} \qquad \mathbf{L} \qquad \mathbf{U}$$

1.1. General formulas for LU factorization

- Let \mathbf{x}_k denote the *k*th column of the matrix at the beginning of step *k* (which matrix? $\mathbf{L}_{k-1} \cdots \mathbf{L}_2 \mathbf{L}_1 \mathbf{A}$).
- The purpose is to eliminate the entries below x_{kk} . To do this we construct the matrix \mathbf{L}_k :

$$\mathbf{L}_{k} = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & -\ell_{k+1,k} & 1 & \\ & & \vdots & \ddots & \\ & & -\ell_{mk} & & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{k-1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \bigstar & \mathbf{I}_{m-k} \end{bmatrix},$$

where the *multiplier*

$$\ell_{jk} = \frac{x_{jk}}{x_{kk}}, \quad k+1 \le j \le m.$$

Proposition 1

The matrix \mathbf{L}_k can be inverted by negating its subdiagonal entries. We have

Proof. Define the vector

$$\boldsymbol{\ell}_k = \begin{bmatrix} 0 & \cdots & 0 & \ell_{k+1,k} & \cdots & \ell_{mk} \end{bmatrix}^\top.$$

The matrix $\mathbf{L}_k = \mathbf{I} - \boldsymbol{\ell}_k \mathbf{e}_k^*$, where \mathbf{e}_k is the *k*th column of the identity matrix \mathbf{I} . Obviously, $\mathbf{e}_k^* \boldsymbol{\ell}_k = 0$. Therefore, the statement follows from

$$(\mathbf{I} - \boldsymbol{\ell}_k \mathbf{e}_k^*)(\mathbf{I} + \boldsymbol{\ell}_k \mathbf{e}_k^*) = \mathbf{I} - \boldsymbol{\ell}_k \mathbf{e}_k^* \boldsymbol{\ell}_k \mathbf{e}_k^* = \mathbf{I}.$$

Proposition 2

The product $\mathbf{L}_1^{-1}\mathbf{L}_2^{-1}\cdots\mathbf{L}_{m-1}^{-1}$, *i.e.*, the L factor L, can be formed by collecting the entries ℓ_{jk} in the appropriate places. We have

$$\mathbf{L} = \begin{bmatrix} 1 & & & \\ \ell_{21} & 1 & & \\ \ell_{31} & \ell_{32} & 1 & \\ \vdots & \vdots & \ddots & \ddots & \\ \ell_{m1} & \ell_{m2} & \cdots & \ell_{m,m-1} & 1 \end{bmatrix}.$$

Proof. It follows from $\mathbf{L}_k^{-1} = \mathbf{I} + \boldsymbol{\ell}_k \mathbf{e}_k^*$ and $\mathbf{e}_k^* \boldsymbol{\ell}_j = 0 \ (\forall \ j \ge k)$ that

$$\mathbf{L}_k^{-1}\mathbf{L}_{k+1}^{-1} = \mathbf{I} + \boldsymbol{\ell}_k \mathbf{e}_k^* + \boldsymbol{\ell}_{k+1}\mathbf{e}_{k+1}^*.$$

Therefore,

$$\mathbf{L} = \mathbf{L}_1^{-1} \mathbf{L}_2^{-1} \cdots \mathbf{L}_{m-1}^{-1} = \mathbf{I} + \boldsymbol{\ell}_1 \mathbf{e}_1^* + \boldsymbol{\ell}_2 \mathbf{e}_2^* + \cdots + \boldsymbol{\ell}_{m-1} \mathbf{e}_{m-1}^*.$$

Remark 3

- The matrices \mathbf{L}_k^{-1} are never formed and multiplied explicitly.
- The multipliers ℓ_{jk} are computed and stored directly into **L**.

1.2. LU factorization algorithm

Algorithm: LU factorization $\mathbf{A} = \mathbf{LU}$ $\mathbf{U} = \mathbf{A}, \quad \mathbf{L} = \mathbf{I}$ for k = 1 to m - 1for j = k + 1 to m $\ell_{jk} = u_{jk}/u_{kk}$ $u_{j,k:m} = u_{j,k:m} - \ell_{jk}u_{k,k:m}$ end end 1.3. Gaussian elimination for Ax = b

•
$$\mathbf{A} = \mathbf{L}\mathbf{U}, \quad \mathbf{L}\mathbf{y} = \mathbf{b}, \quad \mathbf{U}\mathbf{x} = \mathbf{y}$$

Algorithm: Forward elimination solving Ly = b

for
$$k = 1$$
 to m
 $y_k = b_k - \sum_{j=1}^{k-1} \ell_{kj} y_j$
end

Algorithm: Back substitution solving $\mathbf{U}\mathbf{x} = \mathbf{y}$

for
$$k = m$$
 downto 1

$$x_k = \left(y_k - \sum_{j=k+1}^m u_{kj} x_j\right) / u_{kk}$$
end

2. Cholesky factorization

• Every Hermitian positive definite matrix **A** has a factorization

$$\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^*,$$

where **L** is the unit lower-triangular matrix in its LU factorization $\mathbf{A} = \mathbf{L}\mathbf{U}$ and **D** is a diagonal matrix with diagonal entries $d_{ii} > 0$.

• Definition: Given $\mathbf{A} \in \mathbb{C}^{m \times m}$, a Cholesky factorization (if it exists) of \mathbf{A} is a factorization

$$\mathbf{A} = \mathbf{R}^* \mathbf{R}$$

where $\mathbf{R} \in \mathbb{C}^{m \times m}$ is upper-triangular.

Theorem 4

Every Hermitian positive definite matrix $\mathbf{A} \in \mathbb{C}^{m \times m}$ has a unique Cholesky factorization

$$\mathbf{A} = \mathbf{R}^* \mathbf{R}$$

where $\mathbf{R} \in \mathbb{C}^{m \times m}$ is upper-triangular and $r_{jj} > 0$.

Proof. (By induction on the dimension).

It is easy for the case of dimension 1. Assume it is true for the case of dimension m - 1. We prove the case of dimension m. Let $\alpha = \sqrt{a_{11}}$. We have

$$\mathbf{A} = \begin{bmatrix} a_{11} & \mathbf{w}^* \\ \mathbf{w} & \mathbf{K} \end{bmatrix} = \begin{bmatrix} \alpha & \mathbf{0} \\ \mathbf{w}/\alpha & \mathbf{I} \end{bmatrix} \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{K} - \mathbf{w}\mathbf{w}^*/a_{11} \end{bmatrix} \begin{bmatrix} \alpha & \mathbf{w}^*/\alpha \\ \mathbf{0} & \mathbf{I} \end{bmatrix}$$
$$= \begin{bmatrix} \alpha & \mathbf{0} \\ \mathbf{w}/\alpha & \mathbf{I} \end{bmatrix} \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \widehat{\mathbf{R}}^* \widehat{\mathbf{R}} \end{bmatrix} \begin{bmatrix} \alpha & \mathbf{w}^*/\alpha \\ \mathbf{0} & \mathbf{I} \end{bmatrix}$$
(by $\mathbf{K} - \mathbf{w}\mathbf{w}^*/a_{11}$ is HPD and the induction hypothesis)
$$= \begin{bmatrix} \alpha & \mathbf{0} \\ \mathbf{w}/\alpha & \widehat{\mathbf{R}}^* \end{bmatrix} \begin{bmatrix} \alpha & \mathbf{w}^*/\alpha \\ \mathbf{0} & \widehat{\mathbf{R}} \end{bmatrix} = \mathbf{R}^* \mathbf{R}.$$

The first row of \mathbf{R} is uniquely determined by $r_{11} > 0$ and the factorization itself. The uniqueness of \mathbf{R} follows from the induction hypothesis that $\widehat{\mathbf{R}}$ is unique.

2.1. A 4×4 example

$$\mathbf{A} = \begin{bmatrix} 4 & 4\mathbf{i} & 6 & 2\\ -4\mathbf{i} & 5 & -4\mathbf{i} & 5-2\mathbf{i}\\ 6 & 4\mathbf{i} & 17 & 3-8\mathbf{i}\\ 2 & 5+2\mathbf{i} & 3+8\mathbf{i} & 36 \end{bmatrix}, \ \mathbf{w} = \begin{bmatrix} -4\mathbf{i}\\ 6\\ 2 \end{bmatrix}, \ \mathbf{K} = \begin{bmatrix} 5 & -4\mathbf{i} & 5-2\mathbf{i}\\ \times & 17 & 3-8\mathbf{i}\\ \times & \times & 36 \end{bmatrix}$$

 ${\bullet}\,$ Compute the upper triangular matrix ${\bf R}$ row by row

Row 1:
$$\begin{bmatrix} 2 & & \\ -2i & 1 & \\ 3 & 1 & \\ 1 & & 1 \end{bmatrix} \begin{bmatrix} 1 & & & \\ 1 & 2i & 5 \\ \times & 8 & -8i \\ \times & \times & 35 \end{bmatrix} \begin{bmatrix} 2 & 2i & 3 & 1 \\ 1 & & \\ 1 & & \\ & 1 & \\ & & 1 \end{bmatrix}$$

Row 2:
$$\begin{bmatrix} 1 & 2i & 5 \\ \times & 8 & -8i \\ \times & \times & 35 \end{bmatrix} = \begin{bmatrix} 1 & & \\ -2i & 1 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 1 & & \\ 4 & 2i \\ \times & 10 \end{bmatrix} \begin{bmatrix} 1 & 2i & 5 \\ 1 & \\ & 1 \end{bmatrix}$$

Row 3:
$$\begin{bmatrix} 4 & 2i \\ \times & 10 \end{bmatrix} = \begin{bmatrix} 2 \\ -1i & 1 \end{bmatrix} \begin{bmatrix} 1 & & \\ 9 \end{bmatrix} \begin{bmatrix} 2 & 1i \\ & 1 \end{bmatrix}$$

Row 4:
$$9 = 3 \times 1 \times 3$$

• The Cholesky factor
$$\mathbf{R} = \begin{bmatrix} 2 & 2i & 3 & 1 \\ 1 & 2i & 5 \\ & 2 & 1i \\ & & 3 \end{bmatrix}$$
.

2.2. Algorithm for Cholesky factorization

Algorithm: Cholesky factorization R=triu(A) for k = 1 to mfor j = k + 1 to m $r_{j,j:m} = r_{j,j:m} - r_{k,j:m}\overline{r}_{kj}/r_{kk}$ end $r_{k,k:m} = r_{k,k:m}/\sqrt{r_{kk}}$ end

- Exercise: Design an algorithm to compute \mathbf{R}^* column by column.
- 2.3. Other factorization of HPD matrix
 - For any HPD matrix **A**, there exists a unique HPD matrix **B** satisfying

$$\mathbf{A}=\mathbf{B}^2.$$

B is called the *square root* of **A**. (Proof? HPSD case?)

3. Gaussian elimination with partial pivoting (GEPP)

• Partial pivoting: Here it means only rows are interchanged.

$[\times \times \times \times \times]$	$[\times \times \times \times \times]$	$[\times \times \times \times \times]$
× × × ×	\mathbf{P}_k $x_{ik} \times \times \times$ \mathbf{L}_k	$x_{ik} \times \times \times$
$\times \times \times \times$	\rightarrow $\times \times \times \times$ \rightarrow	0 × × ×
$x_{ik} \times \times \times$	× × × × ×	0 x x x
		[0 x x x]
Pivot selection	Row interchange	Elimination

• After m-1 steps, **A** becomes an upper-triangular matrix **U**:

$$\mathbf{L}_{m-1}\mathbf{P}_{m-1}\cdots\mathbf{L}_{2}\mathbf{P}_{2}\mathbf{L}_{1}\mathbf{P}_{1}\mathbf{A}=\mathbf{U},$$

where \mathbf{P}_k is an elementary permutation matrix $(\mathbf{P}_k = \mathbf{P}_k^{\top} = \mathbf{P}_k^{-1})$.

Remark 5

Absolute values of all the entries of \mathbf{L}_k in GEPP are ≤ 1 due to the property at step k (after pivoting)

$$|x_{kk}| = \max_{k \le j \le m} |x_{jk}|.$$

3.1. A 4×4 Example

• Step 1. Interchange the first and third rows by \mathbf{P}_1

 $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} = \begin{bmatrix} 8 & 7 & 9 & 5 \\ 4 & 3 & 3 & 1 \\ 2 & 1 & 1 & 0 \\ 6 & 7 & 9 & 8 \end{bmatrix}$ First elimination by \mathbf{L}_1 $\begin{bmatrix} 1 & & \\ -\frac{1}{2} & 1 & \\ -\frac{1}{4} & 1 & \\ -\frac{3}{4} & & 1 \end{bmatrix} \begin{bmatrix} 8 & 7 & 9 & 5 \\ 4 & 3 & 3 & 1 \\ 2 & 1 & 1 & 0 \\ 6 & 7 & 9 & 8 \end{bmatrix} = \begin{bmatrix} 8 & 7 & 9 & 5 \\ -\frac{1}{2} & -\frac{3}{2} & -\frac{3}{2} \\ -\frac{3}{4} & -\frac{5}{4} & -\frac{5}{4} \\ \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \end{bmatrix}$ • Step 2. Interchange the second and fourth rows by \mathbf{P}_2 $\begin{bmatrix} 1 & & & \\ & & 1 \\ & & 1 \\ & 1 & \\ & 1 & \\ & 1 & \\ & 1 & \\ \end{bmatrix} \begin{bmatrix} 8 & 7 & 9 & 5 \\ -\frac{1}{2} & -\frac{3}{2} & -\frac{3}{2} \\ -\frac{3}{4} & -\frac{5}{4} & -\frac{5}{4} \\ -\frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ -\frac{3}{4} & -\frac{5}{4} & -\frac{5}{4} \\ -\frac{1}{2} & -\frac{3}{2} & -\frac{3}{2} \end{bmatrix} = \begin{bmatrix} 8 & 7 & 9 & 5 \\ & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ -\frac{3}{4} & -\frac{5}{4} & -\frac{5}{4} \\ -\frac{1}{2} & -\frac{3}{2} & -\frac{3}{2} \end{bmatrix}$

Second elimination by \mathbf{L}_2 $\begin{bmatrix} 1 & & \\ & 1 & \\ & \frac{3}{7} & 1 \\ & \frac{2}{7} & & 1 \end{bmatrix} \begin{bmatrix} 8 & 7 & 9 & 5 \\ & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ & -\frac{3}{4} & -\frac{5}{4} & -\frac{5}{4} \\ & -\frac{1}{2} & -\frac{3}{2} & -\frac{3}{2} \end{bmatrix} = \begin{bmatrix} 8 & 7 & 9 & 5 \\ & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ & & -\frac{2}{7} & \frac{4}{7} \\ & & -\frac{2}{7} & \frac{4}{7} \end{bmatrix}$ • Step 3. Interchange the third and fourth rows by \mathbf{P}_3 $\begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \\ & & 1 \\ & & 1 \end{bmatrix} \begin{bmatrix} 8 & 7 & 9 & 5 \\ \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ & -\frac{2}{7} & \frac{4}{7} \\ & -\frac{6}{7} & -\frac{2}{7} \end{bmatrix} = \begin{bmatrix} 8 & 7 & 9 & 5 \\ \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ & -\frac{6}{7} & -\frac{2}{7} \\ & -\frac{2}{7} & \frac{4}{7} \end{bmatrix}$ Final elimination by \mathbf{L}_3

• $\mathbf{A} = \mathbf{P}_1^{-1} \mathbf{L}_1^{-1} \mathbf{P}_2^{-1} \mathbf{L}_2^{-1} \mathbf{P}_3^{-1} \mathbf{L}_3^{-1} \mathbf{U}$					
$\begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}$	$ = \begin{bmatrix} \frac{1}{4} & -\frac{3}{7} & \frac{1}{3} \\ \frac{1}{2} & -\frac{2}{7} & 1 \\ 1 & & \\ \frac{3}{4} & 1 \end{bmatrix} $	$\begin{bmatrix} 8 & 7 & 9 & 5 \\ & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ & & -\frac{6}{7} & -\frac{2}{7} \\ & & & \frac{2}{3} \end{bmatrix}$			
$\mathbf{PA} = \mathbf{LU}$	with $\mathbf{P} = \mathbf{P}_3 \mathbf{F}$	$\mathbf{P}_2\mathbf{P}_1$ and $\mathbf{L} = \mathbf{P}_3\mathbf{P}_2\mathbf{I}_2$	$\mathbf{L}_{1}^{-1}\mathbf{P}_{2}^{-1}\mathbf{L}_{2}^{-1}\mathbf{P}_{3}^{-1}\mathbf{L}_{3}^{-1}$		
	$\begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}$	$= \begin{bmatrix} 1 & & & \\ \frac{3}{4} & 1 & & \\ \frac{1}{2} & -\frac{2}{7} & 1 & \\ \frac{1}{4} & -\frac{3}{7} & \frac{1}{3} & 1 \end{bmatrix} \begin{bmatrix} 8 \\ \end{array}$	$ \begin{bmatrix} 7 & 9 & 5 \\ \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ & -\frac{6}{7} & -\frac{2}{7} \\ & & \frac{2}{3} \end{bmatrix} $		
Р	Α	L	U		

3.2. General formulas for PA = LU

• The matrix $\mathbf{L}_{m-1}\mathbf{P}_{m-1}\cdots\mathbf{L}_{2}\mathbf{P}_{2}\mathbf{L}_{1}\mathbf{P}_{1}$ can be rewritten in the form

$$\mathbf{L}_{m-1}\mathbf{P}_{m-1}\cdots\mathbf{L}_{2}\mathbf{P}_{2}\mathbf{L}_{1}\mathbf{P}_{1}=\widehat{\mathbf{L}}_{m-1}\cdots\widehat{\mathbf{L}}_{2}\widehat{\mathbf{L}}_{1}\mathbf{P}_{m-1}\cdots\mathbf{P}_{2}\mathbf{P}_{1},$$

where $\widehat{\mathbf{L}}_k = \mathbf{P}_{m-1} \cdots \mathbf{P}_{k+2} \mathbf{P}_{k+1} \mathbf{L}_k \mathbf{P}_{k+1}^{-1} \mathbf{P}_{k+2}^{-1} \cdots \mathbf{P}_{m-1}^{-1}$.

Remark 6

The elementary permutation matrix \mathbf{P}_k in GEPP has the form

$$\mathbf{P}_k = egin{bmatrix} \mathbf{I}_{k-1} & \mathbf{0} \ \mathbf{0} & \widehat{\mathbf{P}}_k \end{bmatrix},$$

where $\widehat{\mathbf{P}}_k \in \mathbb{R}^{(m-k+1) \times (m-k+1)}$ is an elementary permutation matrix.

Remark 7

The unit lower triangular matrix $\hat{\mathbf{L}}_k$ in GEPP has the same sparsity pattern as that of \mathbf{L}_k . The sparsity pattern is

$$\begin{bmatrix} \mathbf{I}_{k-1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 1 & \mathbf{0} \\ \mathbf{0} & \bigstar & \mathbf{I}_{m-k} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \bigstar & \mathbf{0} \end{bmatrix} + \mathbf{I}.$$

The matrix $\widehat{\mathbf{L}}_k$ is equal to \mathbf{L}_k but with the \bigstar 's entries permuted.

24

Remark 8

By Proposition 1, $\hat{\mathbf{L}}_k^{-1}$ has the same sparsity pattern as that of $\hat{\mathbf{L}}_k$. By Proposition 2, the product $\hat{\mathbf{L}}_1^{-1}\hat{\mathbf{L}}_2^{-1}\cdots\hat{\mathbf{L}}_{m-1}^{-1}$ is unit lower triangular.

Remark 9

GEPP has the LU factorization $\mathbf{PA} = \mathbf{LU}$ where

$$\mathbf{P} = \mathbf{P}_{m-1} \cdots \mathbf{P}_2 \mathbf{P}_1, \quad \mathbf{U} = \mathbf{L}_{m-1} \mathbf{P}_{m-1} \cdots \mathbf{L}_2 \mathbf{P}_2 \mathbf{L}_1 \mathbf{P}_1 \mathbf{A}$$

$$\mathbf{L} = \widehat{\mathbf{L}}_1^{-1} \widehat{\mathbf{L}}_2^{-1} \cdots \widehat{\mathbf{L}}_{m-1}^{-1} = \mathbf{P}_{m-1} \cdots \mathbf{P}_3 \mathbf{P}_2 \mathbf{L}_1^{-1} \mathbf{P}_2^{-1} \mathbf{L}_2^{-1} \mathbf{P}_3^{-1} \cdots \mathbf{P}_{m-1}^{-1} \mathbf{L}_{m-1}^{-1}.$$

Remark 10

The matrices $\widehat{\mathbf{L}}_k^{-1}$ are never formed and multiplied explicitly. The multipliers ℓ_{jk} are computed and stored in the appropriate places.

Remark 11

The permutation matrix \mathbf{P} is not known ahead of time.

Numerical Linear Algebra

3.3. GEPP for Ax = b

• $\mathbf{PA} = \mathbf{LU}$, $\mathbf{Ly} = \mathbf{Pb}$, $\mathbf{Ux} = \mathbf{y}$

Algorithm: LU factorization $\mathbf{PA} = \mathbf{LU}$ in GEPP U = A, L = I, P = Ifor k = 1 to m - 1Select i > k to maximize $|u_{ik}|$ $u_{k,k:m} \leftrightarrow u_{i,k:m}$ (interchange two rows) $\ell_{k,1:k-1} \leftrightarrow \ell_{i,1:k-1}$ $p_{k:i} \leftrightarrow p_{i:i}$ for j = k + 1 to m $\ell_{ik} = u_{ik}/u_{kk}$ $u_{i,k:m} = u_{i,k:m} - \ell_{ik} u_{k,k:m}$ end end

3.4. Growth factor

• Define the growth factor for **A** as the ratio $\rho = \frac{\max_{ij} |u_{ij}|}{\max_{ij} |a_{ij}|}$

Proposition 12

The growth factor ρ of Gaussian elimination with partial pivoting applied to any matrix $\mathbf{A} \in \mathbb{C}^{m \times m}$ satisfies $\rho \leq 2^{m-1}$.

Proof. Exercise 22.1.

• Worst case of ρ : Consider the 5 \times 5 matrix **A**:

The L and U factors are given by

The growth factor $\rho = 2^{m-1} = 16$.

and

,

4. Gaussian elimination with complete pivoting (GECP)

- Both rows and columns are interchanged
- After m-1 steps, **A** becomes an upper-triangular matrix **U**:

$$\mathbf{L}_{m-1}\mathbf{P}_{m-1}\cdots\mathbf{L}_{2}\mathbf{P}_{2}\mathbf{L}_{1}\mathbf{P}_{1}\mathbf{A}\mathbf{Q}_{1}\mathbf{Q}_{2}\cdots\mathbf{Q}_{m-1}=\mathbf{U}.$$

Remark 13

GE with complete pivoting has the LU factorization

 $\mathbf{PAQ} = \mathbf{LU},$

where $\mathbf{P} = \mathbf{P}_{m-1} \cdots \mathbf{P}_2 \mathbf{P}_1$, $\mathbf{Q} = \mathbf{Q}_1 \mathbf{Q}_2 \cdots \mathbf{Q}_{m-1}$, and

$$\mathbf{L} = \widehat{\mathbf{L}}_1^{-1} \widehat{\mathbf{L}}_2^{-1} \cdots \widehat{\mathbf{L}}_{m-1}^{-1} = \mathbf{P}_{m-1} \cdots \mathbf{P}_3 \mathbf{P}_2 \mathbf{L}_1^{-1} \mathbf{P}_2^{-1} \mathbf{L}_2^{-1} \mathbf{P}_3^{-1} \cdots \mathbf{P}_{m-1}^{-1} \mathbf{L}_{m-1}^{-1}.$$

Remark 14

The permutation matrices \mathbf{P} and \mathbf{Q} are not known ahead of time.

4.1. GECP for Ax = b

 $\bullet \mathbf{PAQ} = \mathbf{LU}, \quad \mathbf{Ly} = \mathbf{Pb}, \quad \mathbf{Uz} = \mathbf{y}, \quad \mathbf{x} = \mathbf{Qz}$

Algorithm: LU factorization PAQ = LU in GECP

The details are left as an exercise.

• Exercise:

Modify the pseudocode of the algorithms in this lecture to save storage.

• Further reading:

Shufang Xu, Li Gao, and Pingwen Zhang Numerical Linear Algebra. Second Edition, Peking University Press, 2013