Lecture 5: LU factorization, Cholesky factorization, Gaussian elimination with pivoting

School of Mathematical Sciences, Xiamen University

1. LU factorization

- Definition: Given $\mathbf{A} \in \mathbb{C}^{m \times m}$, an $L U$ factorization (if it exists) of \mathbf{A} is a factorization

$$
\mathbf{A}=\mathbf{L} \mathbf{U}
$$

where $\mathbf{L} \in \mathbb{C}^{m \times m}$ is unit lower-triangular and $\mathbf{U} \in \mathbb{C}^{m \times m}$ is upper-triangular.

- An approach: find a sequence of unit lower-triangular matrices \mathbf{L}_{k} such that

$$
\mathbf{L}_{m-1} \cdots \mathbf{L}_{2} \mathbf{L}_{1} \mathbf{A}=\mathbf{U}
$$

and set

$$
\mathbf{L}=\mathbf{L}_{1}^{-1} \mathbf{L}_{2}^{-1} \cdots \mathbf{L}_{m-1}^{-1}
$$

- A 4×4 example

$$
\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right] \xrightarrow{\mathbf{L}_{1}}\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\mathbf{0} & \times & \times & \times \\
\mathbf{0} & \times & \times & \times \\
\mathbf{0} & \times & \times & \times
\end{array}\right] \xrightarrow{\mathbf{A}} \underset{\mathbf{L}_{1} \mathbf{A}}{ } \quad \underset{\mathbf{L}_{2}}{\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times \\
0 & \times & \times \\
0 & \times & \times
\end{array}\right]} \xrightarrow{\mathbf{L}_{2} \mathbf{L}_{1} \mathbf{A}} \quad\left[\begin{array}{ccc}
\mathbf{L}_{3}
\end{array}\left[\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
& \times & \times \\
& \mathbf{0} & \times
\end{array}\right]\right.
$$

$\mathbf{A}=\left[\begin{array}{llll}2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8\end{array}\right]$
$\mathbf{L}_{1} \mathbf{A}=\left[\begin{array}{cccc}1 & & & \\ -2 & 1 & & \\ -4 & & 1 & \\ -3 & & & 1\end{array}\right]\left[\begin{array}{llll}2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8\end{array}\right]=\left[\begin{array}{llll}2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & 3 & 5 & 5 \\ & 4 & 6 & 8\end{array}\right]$
$\mathbf{L}_{2} \mathbf{L}_{1} \mathbf{A}=\left[\begin{array}{llll}1 & & & \\ & 1 & & \\ & -3 & 1 & \\ & -4 & & 1\end{array}\right]\left[\begin{array}{llll}2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & 3 & 5 & 5 \\ & 4 & 6 & 8\end{array}\right]=\left[\begin{array}{llll}2 & 1 & 1 & 0 \\ & 1 & 1 & 1 \\ & & 2 & 2 \\ & & 2 & 4\end{array}\right]$

$$
\left.\begin{array}{l}
\mathbf{L}_{3} \mathbf{L}_{2} \mathbf{L}_{1} \mathbf{A}=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & -1 & 1
\end{array}\right]\left[\begin{array}{llll}
2 & 1 & 1 & 0 \\
& 1 & 1 & 1 \\
& & 2 & 2 \\
& & 2 & 4
\end{array}\right]=\left[\begin{array}{llll}
2 & 1 & 1 & 0 \\
& 1 & 1 & 1 \\
& & 2 & 2 \\
& & & 2
\end{array}\right]=\mathbf{U} . \\
{\left[\begin{array}{llll}
1 & & & \\
-2 & 1 & & \\
-3 & & & 1 \\
-3 & & & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & \\
2 & 1 & \\
4 & & 1 \\
3 & & 1
\end{array}\right]} \\
{\left[\begin{array}{llll}
2 & 1 & 1 & 0 \\
4 & 3 & 3 & 1 \\
8 & 7 & 9 & 5 \\
6 & 7 & 9 & 8
\end{array}\right]=\left[\begin{array}{lll}
1 & \\
2 & 1 & \\
4 & 3 & 1 \\
3 & 4 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{llll}
2 & 1 & 1 & 0 \\
& 1 & 1 & 1 \\
& & 2 & 2 \\
& & & \\
& \mathbf{A} & 2
\end{array}\right] .
$$

1.1. General formulas for $L U$ factorization

- Let \mathbf{x}_{k} denote the k th column of the matrix at the beginning of step k (which matrix? $\left.\mathbf{L}_{k-1} \cdots \mathbf{L}_{2} \mathbf{L}_{1} \mathbf{A}\right)$.
- The purpose is to eliminate the entries below $x_{k k}$. To do this we construct the matrix \mathbf{L}_{k} :

$$
\mathbf{L}_{k}=\left[\begin{array}{cccccc}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & -\ell_{k+1, k} & 1 & & \\
& & \vdots & & \ddots & \\
& & -\ell_{m k} & & & 1
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{I}_{k-1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & 1 & \mathbf{0} \\
\mathbf{0} & \mathbf{\star} & \mathbf{I}_{m-k}
\end{array}\right]
$$

where the multiplier

$$
\ell_{j k}=\frac{x_{j k}}{x_{k k}}, \quad k+1 \leq j \leq m
$$

Proposition 1

The matrix \mathbf{L}_{k} can be inverted by negating its subdiagonal entries. We have

$$
\mathbf{L}_{k}^{-1}=\left[\begin{array}{cccccc}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & \ell_{k+1, k} & 1 & & \\
& & \vdots & & \ddots & \\
& & \ell_{m k} & & 1
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{I}_{k-1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & 1 & \mathbf{0} \\
\mathbf{0} & -\star & \mathbf{I}_{m-k}
\end{array}\right]
$$

Proof. Define the vector

$$
\ell_{k}=\left[\begin{array}{llllll}
0 & \cdots & 0 & \ell_{k+1, k} & \cdots & \ell_{m k}
\end{array}\right]^{\top}
$$

The matrix $\mathbf{L}_{k}=\mathbf{I}-\boldsymbol{\ell}_{k} \mathbf{e}_{k}^{*}$, where \mathbf{e}_{k} is the k th column of the identity matrix I. Obviously, $\mathbf{e}_{k}^{*} \boldsymbol{\ell}_{k}=0$. Therefore, the statement follows from

$$
\left(\mathbf{I}-\boldsymbol{\ell}_{k} \mathbf{e}_{k}^{*}\right)\left(\mathbf{I}+\boldsymbol{\ell}_{k} \mathbf{e}_{k}^{*}\right)=\mathbf{I}-\boldsymbol{\ell}_{k} \mathbf{e}_{k}^{*} \ell_{k} \mathbf{e}_{k}^{*}=\mathbf{I} .
$$

Proposition 2

The product $\mathbf{L}_{1}^{-1} \mathbf{L}_{2}^{-1} \cdots \mathbf{L}_{m-1}^{-1}$, i.e., the \mathbf{L} factor \mathbf{L}, can be formed by collecting the entries $\ell_{j k}$ in the appropriate places. We have

$$
\mathbf{L}=\left[\begin{array}{ccccc}
1 & & & & \\
\ell_{21} & 1 & & & \\
\ell_{31} & \ell_{32} & 1 & & \\
\vdots & \vdots & \ddots & \ddots & \\
\ell_{m 1} & \ell_{m 2} & \cdots & \ell_{m, m-1} & 1
\end{array}\right]
$$

Proof. It follows from $\mathbf{L}_{k}^{-1}=\mathbf{I}+\boldsymbol{\ell}_{k} \mathbf{e}_{k}^{*}$ and $\mathbf{e}_{k}^{*} \ell_{j}=0(\forall j \geq k)$ that

$$
\mathbf{L}_{k}^{-1} \mathbf{L}_{k+1}^{-1}=\mathbf{I}+\boldsymbol{\ell}_{k} \mathbf{e}_{k}^{*}+\boldsymbol{\ell}_{k+1} \mathbf{e}_{k+1}^{*} .
$$

Therefore,

$$
\mathbf{L}=\mathbf{L}_{1}^{-1} \mathbf{L}_{2}^{-1} \cdots \mathbf{L}_{m-1}^{-1}=\mathbf{I}+\boldsymbol{\ell}_{1} \mathbf{e}_{1}^{*}+\boldsymbol{\ell}_{2} \mathbf{e}_{2}^{*}+\cdots+\boldsymbol{\ell}_{m-1} \mathbf{e}_{m-1}^{*} .
$$

Remark 3

- The matrices \mathbf{L}_{k}^{-1} are never formed and multiplied explicitly.
- The multipliers $\ell_{j k}$ are computed and stored directly into \mathbf{L}.

1.2. LU factorization algorithm

```
Algorithm: LU factorization \(\mathbf{A}=\mathbf{L U}\)
\(\mathbf{U}=\mathbf{A}, \quad \mathbf{L}=\mathbf{I}\)
for \(k=1\) to \(m-1\)
    for \(j=k+1\) to \(m\)
        \(\ell_{j k}=u_{j k} / u_{k k}\)
        \(u_{j, k: m}=u_{j, k: m}-\ell_{j k} u_{k, k: m}\)
    end
    end
```

1.3. Gaussian elimination for $\mathbf{A x}=\mathbf{b}$

- $\mathbf{A}=\mathbf{L U}, \quad \mathbf{L y}=\mathbf{b}, \quad \mathbf{U x}=\mathbf{y}$

Algorithm: Forward elimination solving $\mathbf{L y}=\mathbf{b}$
for $k=1$ to m

$$
y_{k}=b_{k}-\sum_{j=1}^{k-1} \ell_{k j} y_{j}
$$

end

Algorithm: Back substitution solving $\mathbf{U x}=\mathbf{y}$
for $k=m$ downto 1

$$
x_{k}=\left(y_{k}-\sum_{j=k+1}^{m} u_{k j} x_{j}\right) / u_{k k}
$$

end

2. Cholesky factorization

- Every Hermitian positive definite matrix A has a factorization

$$
\mathbf{A}=\mathbf{L D L}^{*}
$$

where \mathbf{L} is the unit lower-triangular matrix in its LU factorization $\mathbf{A}=\mathbf{L} \mathbf{U}$ and \mathbf{D} is a diagonal matrix with diagonal entries $d_{i i}>0$.

- Definition: Given $\mathbf{A} \in \mathbb{C}^{m \times m}$, a Cholesky factorization (if it exists) of \mathbf{A} is a factorization

$$
\mathbf{A}=\mathbf{R}^{*} \mathbf{R}
$$

where $\mathbf{R} \in \mathbb{C}^{m \times m}$ is upper-triangular.

Theorem 4

Every Hermitian positive definite matrix $\mathbf{A} \in \mathbb{C}^{m \times m}$ has a unique Cholesky factorization

$$
\mathbf{A}=\mathbf{R}^{*} \mathbf{R}
$$

where $\mathbf{R} \in \mathbb{C}^{m \times m}$ is upper-triangular and $r_{j j}>0$.

Proof. (By induction on the dimension).

It is easy for the case of dimension 1. Assume it is true for the case of dimension $m-1$. We prove the case of dimension m. Let $\alpha=\sqrt{a_{11}}$. We have

$$
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{cc}
a_{11} & \mathbf{w}^{*} \\
\mathbf{w} & \mathbf{K}
\end{array}\right]=\left[\begin{array}{cc}
\alpha & \mathbf{0} \\
\mathbf{w} / \alpha & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0} & \mathbf{K}-\mathbf{w w}^{*} / a_{11}
\end{array}\right]\left[\begin{array}{cc}
\alpha & \mathbf{w}^{*} / \alpha \\
\mathbf{0} & \mathbf{I}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\alpha & \mathbf{0} \\
\mathbf{w} / \alpha & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0} & \widehat{\mathbf{R}}^{*} \widehat{\mathbf{R}}
\end{array}\right]\left[\begin{array}{cc}
\alpha & \mathbf{w}^{*} / \alpha \\
\mathbf{0} & \mathbf{I}
\end{array}\right]
\end{aligned}
$$

(by $\mathbf{K}-\mathbf{w w}^{*} / a_{11}$ is HPD and the induction hypothesis)
$=\left[\begin{array}{cc}\alpha & \mathbf{0} \\ \mathbf{w} / \alpha & \widehat{\mathbf{R}}^{*}\end{array}\right]\left[\begin{array}{cc}\alpha & \mathbf{w}^{*} / \alpha \\ \mathbf{0} & \widehat{\mathbf{R}}\end{array}\right]=\mathbf{R}^{*} \mathbf{R}$.
The first row of \mathbf{R} is uniquely determined by $r_{11}>0$ and the factorization itself. The uniqueness of \mathbf{R} follows from the induction hypothesis that $\widehat{\mathbf{R}}$ is unique.
2.1. A 4×4 example

$$
\mathbf{A}=\left[\begin{array}{cccc}
4 & 4 \mathrm{i} & 6 & 2 \\
-4 \mathrm{i} & 5 & -4 \mathrm{i} & 5-2 \mathrm{i} \\
6 & 4 \mathrm{i} & 17 & 3-8 \mathrm{i} \\
2 & 5+2 \mathrm{i} & 3+8 \mathrm{i} & 36
\end{array}\right], \mathbf{w}=\left[\begin{array}{c}
-4 \mathrm{i} \\
6 \\
2
\end{array}\right], \mathbf{K}=\left[\begin{array}{ccc}
5 & -4 \mathrm{i} & 5-2 \mathrm{i} \\
\times & 17 & 3-8 \mathrm{i} \\
\times & \times & 36
\end{array}\right]
$$

- Compute the upper triangular matrix \mathbf{R} row by row

Row 1: $\left[\begin{array}{cccc}2 & & & \\ -2 \mathrm{i} & 1 & & \\ 3 & & 1 & \\ 1 & & & 1\end{array}\right]\left[\begin{array}{cccc}1 & & & \\ & 1 & 2 \mathrm{i} & 5 \\ & \times & 8 & -8 \mathrm{i} \\ & \times & \times & 35\end{array}\right]\left[\begin{array}{cccc}2 & 2 \mathrm{i} & 3 & 1 \\ & 1 & & \\ & & 1 & \\ & & & 1\end{array}\right]$
Row 2: $\left[\begin{array}{ccc}1 & 2 \mathrm{i} & 5 \\ \times & 8 & -8 \mathrm{i} \\ \times & \times & 35\end{array}\right]=\left[\begin{array}{ccc}1 & & \\ -2 \mathrm{i} & 1 & \\ 5 & & 1\end{array}\right]\left[\begin{array}{ccc}1 & & \\ & 4 & 2 \mathrm{i} \\ & \times & 10\end{array}\right]\left[\begin{array}{ccc}1 & 2 \mathrm{i} & 5 \\ & 1 & \\ & & 1\end{array}\right]$
Row 3: $\left[\begin{array}{cc}4 & 2 \mathrm{i} \\ \times & 10\end{array}\right]=\left[\begin{array}{cc}2 & \\ -1 \mathrm{i} & 1\end{array}\right]\left[\begin{array}{ll}1 & \\ & 9\end{array}\right]\left[\begin{array}{cc}2 & 1 \mathrm{i} \\ & 1\end{array}\right]$
Row 4: $9=3 \times 1 \times 3$

- The Cholesky factor $\mathbf{R}=\left[\begin{array}{cccc}2 & 2 \mathrm{i} & 3 & 1 \\ & 1 & 2 \mathrm{i} & 5 \\ & & 2 & 1 \mathrm{i} \\ & & & 3\end{array}\right]$.

2.2. Algorithm for Cholesky factorization

Algorithm: Cholesky factorization
$\mathbf{R}=\operatorname{triu}(\mathbf{A})$
for $k=1$ to m

$$
\begin{aligned}
& \text { for } j=k+1 \text { to } m \\
& \quad r_{j, j: m}=r_{j, j: m}-r_{k, j: m} \bar{r}_{k j} / r_{k k} \\
& \text { end } \\
& r_{k, k: m}=r_{k, k: m} / \sqrt{r_{k k}}
\end{aligned}
$$

end

- Exercise: Design an algorithm to compute \mathbf{R}^{*} column by column.
2.3. Other factorization of HPD matrix
- For any HPD matrix \mathbf{A}, there exists a unique HPD matrix \mathbf{B} satisfying

$$
\mathbf{A}=\mathbf{B}^{2}
$$

\mathbf{B} is called the square root of \mathbf{A}. (Proof? HPSD case?)
3. Gaussian elimination with partial pivoting (GEPP)

- Partial pivoting: Here it means only rows are interchanged.
$\left[\begin{array}{ccccc}\times & \times & \times & \times & \times \\ & \times & \times & \times & \times \\ & \times & \times & \times & \times\end{array}\right]$

$$
\left.\begin{array}{cccc}
\times & \times & \times & \times \\
x_{i k} & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right]
$$

Pivot selection

$$
\xrightarrow{\mathbf{P}_{k}}\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
& x_{i k} & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times
\end{array}\right]
$$

$\xrightarrow{\mathbf{L}_{k}}\left[\begin{array}{cccc}\times & \times & \times & \times \\ & \times \\ x_{i k} & \times & \times & \times \\ 0 & \times & \times & \times \\ \mathbf{0} & \times & \times & \times \\ 0 & \times & \times & \times\end{array}\right]$
Elimination

- After $m-1$ steps, \mathbf{A} becomes an upper-triangular matrix \mathbf{U} :

$$
\mathbf{L}_{m-1} \mathbf{P}_{m-1} \cdots \mathbf{L}_{2} \mathbf{P}_{2} \mathbf{L}_{1} \mathbf{P}_{1} \mathbf{A}=\mathbf{U}
$$

where \mathbf{P}_{k} is an elementary permutation matrix $\left(\mathbf{P}_{k}=\mathbf{P}_{k}^{\top}=\mathbf{P}_{k}^{-1}\right)$.

Remark 5

Absolute values of all the entries of \mathbf{L}_{k} in GEPP are ≤ 1 due to the property at step k (after pivoting)

$$
\left|x_{k k}\right|=\max _{k \leq j \leq m}\left|x_{j k}\right|
$$

3.1. A 4×4 Example

- Step 1. Interchange the first and third rows by \mathbf{P}_{1}

$$
\left[\begin{array}{llll}
& & 1 & \\
& 1 & & \\
1 & & & \\
& & & 1
\end{array}\right]\left[\begin{array}{llll}
2 & 1 & 1 & 0 \\
4 & 3 & 3 & 1 \\
8 & 7 & 9 & 5 \\
6 & 7 & 9 & 8
\end{array}\right]=\left[\begin{array}{llll}
8 & 7 & 9 & 5 \\
4 & 3 & 3 & 1 \\
2 & 1 & 1 & 0 \\
6 & 7 & 9 & 8
\end{array}\right]
$$

First elimination by \mathbf{L}_{1}

$$
\left[\begin{array}{cccc}
1 & & & \\
-\frac{1}{2} & 1 & & \\
-\frac{1}{4} & & 1 & \\
-\frac{3}{4} & & & 1
\end{array}\right]\left[\begin{array}{llll}
8 & 7 & 9 & 5 \\
4 & 3 & 3 & 1 \\
2 & 1 & 1 & 0 \\
6 & 7 & 9 & 8
\end{array}\right]=\left[\begin{array}{rrrr}
8 & 7 & 9 & 5 \\
& -\frac{1}{2} & -\frac{3}{2} & -\frac{3}{2} \\
-\frac{3}{4} & -\frac{5}{4} & -\frac{5}{4} \\
& \frac{7}{4} & \frac{9}{4} & \frac{17}{4}
\end{array}\right]
$$

- Step 2. Interchange the second and fourth rows by \mathbf{P}_{2}

$$
\left[\begin{array}{llll}
1 & & & \\
& & & 1 \\
& & 1 & \\
& 1 & &
\end{array}\right]\left[\begin{array}{rrrr}
8 & 7 & 9 & 5 \\
& -\frac{1}{2} & -\frac{3}{2} & -\frac{3}{2} \\
& -\frac{3}{4} & -\frac{5}{4} & -\frac{5}{4} \\
& \frac{7}{4} & \frac{9}{4} & \frac{17}{4}
\end{array}\right]=\left[\begin{array}{rrrr}
8 & 7 & 9 & 5 \\
& \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\
& -\frac{3}{4} & -\frac{5}{4} & -\frac{5}{4} \\
& -\frac{1}{2} & -\frac{3}{2} & -\frac{3}{2}
\end{array}\right]
$$

Second elimination by \mathbf{L}_{2}

$$
\left[\begin{array}{lllll}
1 & & & \\
& 1 & & \\
& \frac{3}{7} & 1 & \\
& \frac{2}{7} & & \\
& &
\end{array}\right]\left[\begin{array}{rrrr}
8 & 7 & 9 & 5 \\
& \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\
& -\frac{3}{4} & -\frac{5}{4} & -\frac{5}{4} \\
& -\frac{1}{2} & -\frac{3}{2} & -\frac{3}{2}
\end{array}\right]=\left[\begin{array}{rrrr}
8 & 7 & 9 & 5 \\
& \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\
& & -\frac{2}{7} & \frac{4}{7} \\
& & -\frac{6}{7} & -\frac{2}{7}
\end{array}\right]
$$

- Step 3. Interchange the third and fourth rows by \mathbf{P}_{3}

$$
\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & & 1 \\
& & 1 &
\end{array}\right]\left[\begin{array}{rrrr}
8 & 7 & 9 & 5 \\
& \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\
& & -\frac{2}{7} & \frac{4}{7} \\
& & -\frac{6}{7} & -\frac{2}{7}
\end{array}\right]=\left[\begin{array}{rrrr}
8 & 7 & 9 & 5 \\
& \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\
& & -\frac{6}{7} & -\frac{2}{7} \\
& & -\frac{2}{7} & \frac{4}{7}
\end{array}\right]
$$

Final elimination by \mathbf{L}_{3}
$\left[\begin{array}{llll}1 & & & \\ & 1 & & \\ & & 1 & \\ & & -\frac{1}{3} & 1\end{array}\right]\left[\begin{array}{rrrr}8 & 7 & 9 & 5 \\ & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ & & -\frac{6}{7} & -\frac{2}{7} \\ & & -\frac{2}{7} & \frac{4}{7}\end{array}\right]=\left[\begin{array}{rrrr}8 & 7 & 9 & 5 \\ & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ & & -\frac{6}{7} & -\frac{2}{7} \\ & & & \frac{2}{3}\end{array}\right]$

- $\mathbf{A}=\mathbf{P}_{1}^{-1} \mathbf{L}_{1}^{-1} \mathbf{P}_{2}^{-1} \mathbf{L}_{2}^{-1} \mathbf{P}_{3}^{-1} \mathbf{L}_{3}^{-1} \mathbf{U}$

$$
\left[\begin{array}{llll}
2 & 1 & 1 & 0 \\
4 & 3 & 3 & 1 \\
8 & 7 & 9 & 5 \\
6 & 7 & 9 & 8
\end{array}\right]=\left[\begin{array}{rrrr}
\frac{1}{4} & -\frac{3}{7} & \frac{1}{3} & 1 \\
\frac{1}{2} & -\frac{2}{7} & 1 & \\
1 & & \\
\frac{3}{4} & 1 & &
\end{array}\right]\left[\begin{array}{rrrr}
8 & 7 & 9 & 5 \\
& \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\
& & -\frac{6}{7} & -\frac{2}{7} \\
& & & \frac{2}{3}
\end{array}\right]
$$

$\mathbf{P A}=\mathbf{L} \mathbf{U}$ with $\mathbf{P}=\mathbf{P}_{3} \mathbf{P}_{2} \mathbf{P}_{1}$ and $\mathbf{L}=\mathbf{P}_{3} \mathbf{P}_{2} \mathbf{L}_{1}^{-1} \mathbf{P}_{2}^{-1} \mathbf{L}_{2}^{-1} \mathbf{P}_{3}^{-1} \mathbf{L}_{3}^{-1}$

$$
\left[\begin{array}{lll}
& & 1 \\
& & \\
& 1 & \\
& & \\
1 & & \\
& \mathbf{P} &
\end{array}\right]\left[\begin{array}{llll}
2 & 1 & 1 & 0 \\
4 & 3 & 3 & 1 \\
8 & 7 & 9 & 5 \\
6 & 7 & 9 & 8
\end{array}\right]=\left[\begin{array}{cccc}
1 & & & \\
\frac{3}{4} & 1 & & \\
\frac{1}{2} & -\frac{2}{7} & 1 & \\
\frac{1}{4} & -\frac{3}{7} & \frac{1}{3} & 1
\end{array}\right]\left[\begin{array}{rrrr}
8 & 7 & 9 & 5 \\
& \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\
& & -\frac{6}{7} & -\frac{2}{7} \\
& & \mathbf{U} & \frac{2}{3}
\end{array}\right]
$$

3.2. General formulas for $\mathbf{P A}=\mathbf{L U}$

- The matrix $\mathbf{L}_{m-1} \mathbf{P}_{m-1} \cdots \mathbf{L}_{2} \mathbf{P}_{2} \mathbf{L}_{1} \mathbf{P}_{1}$ can be rewritten in the form

$$
\mathbf{L}_{m-1} \mathbf{P}_{m-1} \cdots \mathbf{L}_{2} \mathbf{P}_{2} \mathbf{L}_{1} \mathbf{P}_{1}=\widehat{\mathbf{L}}_{m-1} \cdots \widehat{\mathbf{L}}_{2} \widehat{\mathbf{L}}_{1} \mathbf{P}_{m-1} \cdots \mathbf{P}_{2} \mathbf{P}_{1}
$$

where $\widehat{\mathbf{L}}_{k}=\mathbf{P}_{m-1} \cdots \mathbf{P}_{k+2} \mathbf{P}_{k+1} \mathbf{L}_{k} \mathbf{P}_{k+1}^{-1} \mathbf{P}_{k+2}^{-1} \cdots \mathbf{P}_{m-1}^{-1}$.

Remark 6

The elementary permutation matrix \mathbf{P}_{k} in GEPP has the form

$$
\mathbf{P}_{k}=\left[\begin{array}{cc}
\mathbf{I}_{k-1} & \mathbf{0} \\
\mathbf{0} & \widehat{\mathbf{P}}_{k}
\end{array}\right]
$$

where $\widehat{\mathbf{P}}_{k} \in \mathbb{R}^{(m-k+1) \times(m-k+1)}$ is an elementary permutation matrix.

Remark 7

The unit lower triangular matrix $\widehat{\mathbf{L}}_{k}$ in GEPP has the same sparsity pattern as that of \mathbf{L}_{k}. The sparsity pattern is

$$
\left[\begin{array}{ccc}
\mathbf{I}_{k-1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & 1 & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\star} & \mathbf{I}_{m-k}
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & 0 & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\star} & \mathbf{0}
\end{array}\right]+\mathbf{I} .
$$

The matrix $\widehat{\mathbf{L}}_{k}$ is equal to \mathbf{L}_{k} but with the \star 's entries permuted.

Remark 8

By Proposition 1, $\widehat{\mathbf{L}}_{k}^{-1}$ has the same sparsity pattern as that of $\widehat{\mathbf{L}}_{k}$. By Proposition 2, the product $\widehat{\mathbf{L}}_{1}^{-1} \widehat{\mathbf{L}}_{2}^{-1} \cdots \widehat{\mathbf{L}}_{m-1}^{-1}$ is unit lower triangular.

Remark 9
GEPP has the LU factorization $\mathbf{P A}=\mathbf{L U}$ where

$$
\begin{gathered}
\mathbf{P}=\mathbf{P}_{m-1} \cdots \mathbf{P}_{2} \mathbf{P}_{1}, \quad \mathbf{U}=\mathbf{L}_{m-1} \mathbf{P}_{m-1} \cdots \mathbf{L}_{2} \mathbf{P}_{2} \mathbf{L}_{1} \mathbf{P}_{1} \mathbf{A}, \\
\mathbf{L}=\widehat{\mathbf{L}}_{1}^{-1} \widehat{\mathbf{L}}_{2}^{-1} \cdots \widehat{\mathbf{L}}_{m-1}^{-1}=\mathbf{P}_{m-1} \cdots \mathbf{P}_{3} \mathbf{P}_{2} \mathbf{L}_{1}^{-1} \mathbf{P}_{2}^{-1} \mathbf{L}_{2}^{-1} \mathbf{P}_{3}^{-1} \cdots \mathbf{P}_{m-1}^{-1} \mathbf{L}_{m-1}^{-1} .
\end{gathered}
$$

Remark 10

The matrices $\widehat{\mathbf{L}}_{k}^{-1}$ are never formed and multiplied explicitly. The multipliers $\ell_{j k}$ are computed and stored in the appropriate places.

Remark 11

The permutation matrix \mathbf{P} is not known ahead of time.
3.3. GEPP for $\mathbf{A x}=\mathbf{b}$

- $\mathbf{P A}=\mathbf{L U}, \quad \mathbf{L y}=\mathbf{P b}, \quad \mathbf{U x}=\mathbf{y}$

Algorithm: LU factorization $\mathbf{P A}=\mathbf{L U}$ in GEPP

$$
\mathbf{U}=\mathbf{A}, \mathbf{L}=\mathbf{I}, \mathbf{P}=\mathbf{I}
$$

for $k=1$ to $m-1$
Select $i \geq k$ to maximize $\left|u_{i k}\right|$
$u_{k, k: m} \leftrightarrow u_{i, k: m}$ (interchange two rows)
$\ell_{k, 1: k-1} \leftrightarrow \ell_{i, 1: k-1}$
$p_{k,:} \leftrightarrow p_{i,:}$
for $j=k+1$ to m
$\ell_{j k}=u_{j k} / u_{k k}$
$u_{j, k: m}=u_{j, k: m}-\ell_{j k} u_{k, k: m}$
end
end

3.4. Growth factor

- Define the growth factor for \mathbf{A} as the ratio $\rho=\frac{\max _{i j}\left|u_{i j}\right|}{\max _{i j}\left|a_{i j}\right|}$.

Proposition 12

The growth factor ρ of Gaussian elimination with partial pivoting applied to any matrix $\mathbf{A} \in \mathbb{C}^{m \times m}$ satisfies $\rho \leq 2^{m-1}$.

Proof. Exercise 22.1.

- Worst case of ρ : Consider the 5×5 matrix \mathbf{A} :

$$
\mathbf{A}=\left[\begin{array}{ccccc}
1 & & & & 1 \\
-1 & 1 & & & 1 \\
-1 & -1 & 1 & & 1 \\
-1 & -1 & -1 & 1 & 1 \\
-1 & -1 & -1 & -1 & 1
\end{array}\right]
$$

The L and U factors are given by

$$
\mathbf{L}=\left[\begin{array}{ccccc}
1 & & & & \\
-1 & 1 & & & \\
-1 & -1 & 1 & & \\
-1 & -1 & -1 & 1 & \\
-1 & -1 & -1 & -1 & 1
\end{array}\right]
$$

and

$$
\mathbf{U}=\left[\begin{array}{llllc}
1 & & & & 1 \\
& 1 & & & 2 \\
& & 1 & & 4 \\
& & & 1 & 8 \\
& & & & 16
\end{array}\right]
$$

The growth factor $\rho=2^{m-1}=16$.
4. Gaussian elimination with complete pivoting (GECP)

- Both rows and columns are interchanged
- After $m-1$ steps, A becomes an upper-triangular matrix \mathbf{U} :

$$
\mathbf{L}_{m-1} \mathbf{P}_{m-1} \cdots \mathbf{L}_{2} \mathbf{P}_{2} \mathbf{L}_{1} \mathbf{P}_{1} \mathbf{A} \mathbf{Q}_{1} \mathbf{Q}_{2} \cdots \mathbf{Q}_{m-1}=\mathbf{U}
$$

Remark 13

GE with complete pivoting has the LU factorization

$$
\mathbf{P A Q}=\mathbf{L U}
$$

where $\mathbf{P}=\mathbf{P}_{m-1} \cdots \mathbf{P}_{2} \mathbf{P}_{1}, \quad \mathbf{Q}=\mathbf{Q}_{1} \mathbf{Q}_{2} \cdots \mathbf{Q}_{m-1}$, and
$\mathbf{L}=\widehat{\mathbf{L}}_{1}^{-1} \widehat{\mathbf{L}}_{2}^{-1} \cdots \widehat{\mathbf{L}}_{m-1}^{-1}=\mathbf{P}_{m-1} \cdots \mathbf{P}_{3} \mathbf{P}_{2} \mathbf{L}_{1}^{-1} \mathbf{P}_{2}^{-1} \mathbf{L}_{2}^{-1} \mathbf{P}_{3}^{-1} \cdots \mathbf{P}_{m-1}^{-1} \mathbf{L}_{m-1}^{-1}$.

Remark 14

The permutation matrices \mathbf{P} and \mathbf{Q} are not known ahead of time.
4.1. GECP for $A x=b$

- $\mathbf{P A Q}=\mathbf{L U}, \quad \mathbf{L y}=\mathbf{P b}, \quad \mathbf{U z}=\mathbf{y}, \quad \mathbf{x}=\mathbf{Q z}$

Algorithm: LU factorization $\mathbf{P A Q}=\mathbf{L U}$ in GECP

The details are left as an exercise.

- Exercise:

Modify the pseudocode of the algorithms in this lecture to save storage.

- Further reading:

Shufang Xu, Li Gao, and Pingwen Zhang
Numerical Linear Algebra.
Second Edition, Peking University Press, 2013

