Numerical Linear Algebra Assignment 19

Exercise 1. (Yousef Saad, 10 points)

Let \mathbf{A} be an $n \times n$ matrix where $n \geq 4$ and assume that

$$
\|\mathbf{A}\|_{2}=\frac{n-2}{2}, \quad\|\mathbf{A}\|_{\mathrm{F}}=\frac{n}{2}, \quad \operatorname{rank}(\mathbf{A})=r \leq n
$$

Give the sharpest possible lower bound for the 2-norm condition number of \mathbf{A}.

Exercise 2. (Zhihao Cao, 10 points)

Let $\mathbf{R} \in \mathbb{C}^{m \times m}$ be a nonsingular upper triangular matrix. Show that the 2-norm condition number

$$
\kappa_{2}(\mathbf{R}) \geq \frac{\max _{i, j}\left|r_{i j}\right|}{\min _{i}\left|r_{i i}\right|}
$$

Exercise 3. (10 points)

Let $\mathbf{A x}=\mathbf{b}$ and \mathbf{A} be nonsingular. Let $\delta \mathbf{A}$ and $\delta \mathbf{b}$ be perturbations of the data \mathbf{A} and \mathbf{b}, respectively. Let $\|\cdot\|$ denote a vector norm or the corresponding induced matrix norm. Assume that $\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{A}\|<1$. Prove the unique solution $\mathbf{x}+\delta \mathbf{x}$ of

$$
(\mathbf{A}+\delta \mathbf{A})(\mathbf{x}+\delta \mathbf{x})=\mathbf{b}+\delta \mathbf{b}
$$

satisfies

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{\kappa(\mathbf{A})}{1-\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{A}\|}\left(\frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}+\frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}\right) .
$$

Hint: you may use the following lemma: If $\mathbf{E} \in \mathbb{C}^{n \times n}$ and $\|\mathbf{E}\|<1$, then $\mathbf{I}+\mathbf{E}$ is nonsingular and

$$
(\mathbf{I}+\mathbf{E})^{-1}=\mathbf{I}-\mathbf{E}+\mathbf{E}^{2}-\mathbf{E}^{3}+\cdots, \quad\left\|(\mathbf{I}+\mathbf{E})^{-1}\right\| \leq \frac{1}{1-\|\mathbf{E}\|}
$$

Exercise 4. (10 points)

Prove $\widehat{\kappa}(f(x))=\|\mathbf{J}(f(x))\|$ for all differentiable f.

Exercise 5. (10 points)

Suppose that λ is a simple eigenvalue of the matrix \mathbf{A}. Let \mathbf{y} and \mathbf{x} be the left and right eigenvectors corresponding to λ. Prove that

$$
\frac{\partial \lambda}{\partial a_{i j}}=\frac{\overline{y_{i}} x_{j}}{\mathbf{y}^{*} \mathbf{x}}
$$

What is the condition number of a simple eigenvalue?

