Numerical Linear Algebra Assignment 16

Exercise 1. (TreBau Exercise 37.1, 10 points)

The standard recurrence relation for Legendre polynomials is

$$
\begin{equation*}
P_{n}(x)=\frac{2 n-1}{n} x P_{n-1}(x)-\frac{n-1}{n} P_{n-2}(x) \tag{1}
\end{equation*}
$$

with initial values $P_{0}(x)=1, P_{1}(x)=x$.
(a) Compute $P_{2}(x)$ and $P_{3}(x)$.
(b) Since $\left\{P_{n}(x)\right\}$ and $\left\{q_{n+1}(x)\right\}$ are normalized differently, (1) is not the same as the recurrence

$$
x q_{n}(x)=\beta_{n-1} q_{n-1}(x)+\alpha_{n} q_{n}(x)+\beta_{n} q_{n+1}(x)
$$

with coefficients

$$
\alpha_{n}=0, \quad \beta_{n}=\frac{1}{2}\left(1-(2 n)^{-2}\right)^{-1 / 2} .
$$

Write down the two tridiagonal matrices corresponding to these formulas, and derive the relationship between them.
(c) Use the result of (b) to determine a formula for $q_{n+1}(1)$, or equivalently, for $\left\|P_{n}\right\|$.

Exercise 2. (Programming, TreBau Exercise 37.4, 10 points)

(a) Write a six-line Matlab program that computes the nodes and weights for the n-point GaussLegendre quadrature formula and applies these numbers to compute the approximate integral of the function f.
(b) Taking $f(x)=\mathrm{e}^{x}$ and $n=4$, confirm the example in the text. Then plot $\left|I\left(\mathrm{e}^{x}\right)-I_{n}\left(\mathrm{e}^{x}\right)\right|$ on a log scale for $n=1,2, \ldots, 40$ and comment on the results.
(c) Produce a similar plot for $f(x)=\mathrm{e}^{|x|}$, and comment.

