
Lecture 7: Eigenvalue problem
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1. Eigenvalues

The eigenvalues of a matrix A ∈ Cm×m are the m roots of its
characteristic polynomial

p(z) = det(zI−A).

We have

det(A) = λ1λ2 · · ·λm, tr(A) = λ1 + λ2 + · · ·+ λm.

Theorem 1 (Gerschgorin’s theorem)

Every eigenvalue of A lies in at least one of the m circular disks in the
complex plane with centers aii and radii

!
j ∕=i |aij |. Moreover, if n of

these disks form a connected domain that is disjoint from the other
m− n disks, then there are precisely n eigenvalues of A within this
domain.

The proof is left as an exercise.
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Theorem 2

Eigenvalues of A are continuous functions of entries of A.

Proof.

See Demmel’s book: Proposition 4.4, Page 149, Applied numerical
linear algebra.

Remark 3

Eigenvalues of A are not necessarily differentiable everywhere.

Example: Consider the m×m matrix

A =

"

#####$

0 1
0 1

. . .
. . .

0 1
ε 0

%

&&&&&'
. λj(ε) = ε

1
m exp

(
i2jπ

m

)
.
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2. Eigenvectors

A nonzero vector y ∈ Cm is called a left eigenvector of A ∈ Cm×m

corresponding to λ ∈ Λ(A) if y∗A = λy∗.

A nonzero vector x ∈ Cm is called a (right) eigenvector of
A ∈ Cm×m corresponding to λ ∈ Λ(A) if Ax = λx.

Theorem 4

If A ∈ Cm×m and if λ, µ ∈ Λ(A), with λ ∕= µ, then any left eigenvector
of A corresponding to µ is orthogonal to any right eigenvector of A
corresponding to λ.

Proof.

Let y∗A = µy∗ and Ax = λx. We have

y∗Ax = y∗(λx) = λ(y∗x), y∗Ax = (µy∗)x = µ(y∗x).

Then, y∗x = 0 follows from λ ∕= µ.
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3. Geometric multiplicity and algebraic multiplicity

The geometric multiplicity of an eigenvalue λ is the dimension of
the null-space of A− λI, which is an eigenspace corresponding to
the eigenvalue λ.

The algebraic multiplicity of an eigenvalue λ is its multiplicity as a
root of the characteristic polynomial. The algebraic multiplicity of
an eigenvalue is at least as great as its geometric multiplicity.

An eigenvalue is simple if its algebraic multiplicity is 1. Otherwise,
multiple.

Remark 5

Simple eigenvalue of A is differential at A ∈ Cm×m.

Theorem 6

An eigenvalue is multiple if and only if it has a pair of orthogonal left
and right eigenvectors.

The proof is left as an exercise.
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4. Jordan form

Theorem 7

For any square matrix A there exists a similar matrix J = SAS−1 such
that

J = diag{J1,J2, · · · ,Jk}

where each Ji is a Jordan block: Ji =

"

#####$

λi 1
λi 1

. . .
. . .

λi 1
λi

%

&&&&&'
.

Up to permuting the order of the Ji, the Jordan form is unique.

Up to a nonzero constant, there are only one left eigenvector and
one right eigenvector per Ji.

Discussion: How to determine the rank of A via its Jordan form?
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Jordan form is a discontinuous function of A, so any rounding
error can change it completely. Therefore, Jordan form is
theoretically useful only.

Example: Consider the matrix

A(ε) =

"

####$

ε 1

2ε
. . .
. . . 1

mε

%

&&&&'
.

It is easy to show that

lim
ε→0

J(A(ε)) ∕= J(A(0)) =

"

####$

0 1

0
. . .
. . . 1

0

%

&&&&'
.
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5. Schur form

Theorem 8 (Schur factorization)

If A ∈ Cm×m, then there exists a unitary matrix Q ∈ Cm×m and an
upper-triangular matrix T ∈ Cm×m such that A = QTQ∗.

Proof. By induction on the dimension m of A.

Remark 9

See Demmel’s book (Applied numerical linear algebra, Theorem 4.3,
Page 147) for real Schur form of a real matrix A.

Exercise: Let λ1, · · · ,λm be the m eigenvalues of A ∈ Cm×m. Let

M =
A+A∗

2
, N =

A−A∗

2
.

Prove that
m*

i=1

|λi|2 ≤ ‖A‖2F,
m*

i=1

|Reλi|2 ≤ ‖M‖2F,
m*

i=1

|Imλi|2 ≤ ‖N‖2F.
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Let A = QTQ∗ be a Schur factorization. If {λ,x} is an eigenpair
of T, then {λ,Qx} is an eigenpair of A.

6. Unitary diagonalization

A matrix A is called unitarily diagonalizable if there exists a
unitary matrix Q and a diagonal matrix Λ such that A = QΛQ∗.

Examples: Hermitian, skew-Hermitian, ...

A matrix A is called normal if A∗A = AA∗.

Examples: Hermitian, skew-Hermitian, ...

Theorem 10

A matrix is unitarily diagonalizable if and only if it is normal.

Proof.

“ ⇒ ”: Easy. “ ⇐ ” By Schur factorization of A.
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7. Eigenvalue perturbation theory

Theorem 11 (Bauer–Fike)

Suppose A ∈ Cm×m is diagonalizable with A = VΛV−1, and let
∆ ∈ Cm×m be arbitrary. For each eigenvalue +λ of A+∆, there exists
an eigenvalue λ of A such that

|+λ− λ| ≤ ‖V‖2‖V−1‖2‖∆‖2.

Proof. Assume that {+λ,Vy} is an eigenpair of A+∆. Then we have

(+λI−Λ)y = V−1∆Vy.

Thus, min
λ∈Λ(A)

|+λ− λ| ≤ ‖(+λI−Λ)y‖2
‖y‖2

≤ ‖V‖2‖V−1‖2‖∆‖2.

Corollary 12

If A is normal, i.e., AA∗ = A∗A, then for each eigenvalue +λ of
A+∆, there is an eigenvalue λ of A such that |+λ− λ| ≤ ‖∆‖2.
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8. Hermitian matrix eigenvalues

Theorem 13 (Courant–Fisher)

If A ∈ Cm×m is Hermitian, then the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm

satisfy

λk = max
S⊆Cm,dim(S)=k

min
0 ∕=y∈S

y∗Ay

y∗y

= min
S⊆Cm,dim(S)=m−k+1

max
0 ∕=y∈S

y∗Ay

y∗y
,

for k = 1, 2, . . . ,m.

Theorem 14 (Interlacing property)

If A ∈ Cm×m is Hermitian and Ak = A(1 : k, 1 : k), then

λk+1(Ak+1) ≤ λk(Ak) ≤ λk(Ak+1) ≤
· · · ≤ λ2(Ak+1) ≤ λ1(Ak) ≤ λ1(Ak+1)

for k = 1 : m− 1.
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Theorem 15 (Weyl)

Let A ∈ Cm×m and B ∈ Cm×m be Hermitian. Let λ1 ≥ λ2 ≥ · · · ≥ λm

be eigenvalues. Then

|λk(A)− λk(B)| ≤ ‖A−B‖2, k = 1, 2, . . . ,m.

Corollary 16

Let A ∈ Cm×n and B ∈ Cm×n be arbitrary. Let p = min{m,n} and
σ1 ≥ σ2 ≥ · · · ≥ σp be singular values. Then

|σk(A)− σk(B)| ≤ ‖A−B‖2, k = 1, 2, . . . , p.

Theorem 17

Let A ∈ Cl×m and B ∈ Cm×n be arbitrary. Let p = min{l,m, n} and
σ1 ≥ σ2 ≥ · · · ≥ σp be singular values. Then

σk(AB) ≤ σ1(A)σk(B), k = 1, 2, . . . , p.
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9. Generalized eigenvalue problem

For A,B ∈ Cm×m and z ∈ C, we call p(z) = det(zB−A) the
characteristic polynomial of the pencil zB−A.

The pencil zB−A is called regular if p(z) is not identically zero.
Otherwise it is called singular.

The eigenvalues of a regular pencil zB−A are defined to be the
roots of p(z) = 0 and ∞ with multiplicity m− deg(p).

Assume that λ is an eigenvalue of the regular pencil zB−A. We
call {λ,x} an eigenpair if it satisfies x ∕= 0 and Ax = λBx.

Generalized Schur factorization for (A,B):

Q∗AZ = S, Q∗BZ = T,

where Q and Z are unitary, and S and T are upper-triangular.

Real generalized Schur forms for real matrices A and B.

QZ algorithm for generalized eigenvalue problem.
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10. Matrix polynomial eigenvalue problem

We consider the matrix polynomial

A(z) :=
*d

i=0
ziAi = zdAd + zd−1Ad−1 + · · ·+ zA1 +A0,

where Ai ∈ Cm×m.

The characteristic polynomial of the matrix polynomial A(z) is

p(z) = det(A(z)).

Assume that p(z) is not identically zero. The roots of p(z) = 0 and
∞ with multiplicity md− deg(p) are defined to be the eigenvalues.

Suppose that λ is an eigenvalue. A nonzero vector x satisfying
A(λ)x = 0 is a right eigenvector for λ. A left eigenvector y is
defined analogously by y∗A(λ) = 0.

The case for d = 1 is a generalized eigenvalue problem, and the
case for d ≥ 2 is a nonlinear eigenvalue problem.
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10.1. The quadratic eigenvalue problem

F. Tisseur and K. Meerbergen, SIAM Review, 43: 235–286, 2001.

Consider the ODE system

Mẍ(t) +Bẋ(t) +Kx(t) = 0,

where M,B,K ∈ Cm×m. If we seek solutions of the form
x(t) = eλtx(0), we get

eλt(λ2Mx(0) + λBx(0) +Kx(0)) = 0,

i.e.,
λ2Mx(0) + λBx(0) +Kx(0) = 0.

Thus λ is an eigenvalue and x(0) is an eigenvector of the matrix
polynomial

z2M+ zB+K.

Tacoma Narrows Bridge, London Millennium Bridge, Humen Bridge
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10.2. Linearization of matrix polynomial eigenvalue problem

The generalized eigenvalue problem:

z

"

#####$

Ad

I
I

. . .

I

%

&&&&&'
−

"

#####$

−Ad−1 −Ad−2 · · · · · · −A0

I
I

. . .

I

%

&&&&&'

The standard eigenvalue problem if Ad is nonsingular:

zI−

"

#####$

−A−1
d Ad−1 −A−1

d Ad−2 · · · · · · −A−1
d A0

I
I

. . .

I

%

&&&&&'
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