Lecture 7: Eigenvalue problem

School of Mathematical Sciences, Xiamen University

1. Eigenvalues

- The eigenvalues of a matrix $\mathbf{A} \in \mathbb{C}^{m \times m}$ are the m roots of its characteristic polynomial

$$
p(z)=\operatorname{det}(z \mathbf{I}-\mathbf{A})
$$

- We have

$$
\operatorname{det}(\mathbf{A})=\lambda_{1} \lambda_{2} \cdots \lambda_{m}, \quad \operatorname{tr}(\mathbf{A})=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{m}
$$

Theorem 1 (Gerschgorin's theorem)

Every eigenvalue of A lies in at least one of the m circular disks in the complex plane with centers $a_{i i}$ and radii $\sum_{j \neq i}\left|a_{i j}\right|$. Moreover, if n of these disks form a connected domain that is disjoint from the other $m-n$ disks, then there are precisely n eigenvalues of \mathbf{A} within this domain.

The proof is left as an exercise.

Theorem 2

Eigenvalues of \mathbf{A} are continuous functions of entries of \mathbf{A}.

Proof.

See Demmel's book: Proposition 4.4, Page 149, Applied numerical linear algebra.

Remark 3

Eigenvalues of A are not necessarily differentiable everywhere.

Example: Consider the $m \times m$ matrix

$$
\mathbf{A}=\left[\begin{array}{ccccc}
0 & 1 & & & \\
& 0 & 1 & & \\
& & \ddots & \ddots & \\
& & & 0 & 1 \\
\varepsilon & & & 0
\end{array}\right] . \quad \lambda_{j}(\varepsilon)=\varepsilon^{\frac{1}{m}} \exp \left(\frac{\mathrm{i} 2 j \pi}{m}\right)
$$

2. Eigenvectors

- A nonzero vector $\mathbf{y} \in \mathbb{C}^{m}$ is called a left eigenvector of $\mathbf{A} \in \mathbb{C}^{m \times m}$ corresponding to $\lambda \in \Lambda(\mathbf{A})$ if $\mathbf{y}^{*} \mathbf{A}=\lambda \mathbf{y}^{*}$.
- A nonzero vector $\mathbf{x} \in \mathbb{C}^{m}$ is called a (right) eigenvector of $\mathbf{A} \in \mathbb{C}^{m \times m}$ corresponding to $\lambda \in \Lambda(\mathbf{A})$ if $\mathbf{A x}=\lambda \mathbf{x}$.

Theorem 4

If $\mathbf{A} \in \mathbb{C}^{m \times m}$ and if $\lambda, \mu \in \Lambda(\mathbf{A})$, with $\lambda \neq \mu$, then any left eigenvector of \mathbf{A} corresponding to μ is orthogonal to any right eigenvector of \mathbf{A} corresponding to λ.

Proof.

Let $\mathbf{y}^{*} \mathbf{A}=\mu \mathbf{y}^{*}$ and $\mathbf{A x}=\lambda \mathbf{x}$. We have

$$
\mathbf{y}^{*} \mathbf{A} \mathbf{x}=\mathbf{y}^{*}(\lambda \mathbf{x})=\lambda\left(\mathbf{y}^{*} \mathbf{x}\right), \quad \mathbf{y}^{*} \mathbf{A} \mathbf{x}=\left(\mu \mathbf{y}^{*}\right) \mathbf{x}=\mu\left(\mathbf{y}^{*} \mathbf{x}\right)
$$

Then, $\mathbf{y}^{*} \mathbf{x}=0$ follows from $\lambda \neq \mu$.

3. Geometric multiplicity and algebraic multiplicity

- The geometric multiplicity of an eigenvalue λ is the dimension of the null-space of $\mathbf{A}-\lambda \mathbf{I}$, which is an eigenspace corresponding to the eigenvalue λ.
- The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic polynomial. The algebraic multiplicity of an eigenvalue is at least as great as its geometric multiplicity.
- An eigenvalue is simple if its algebraic multiplicity is 1 . Otherwise, multiple.

Remark 5

Simple eigenvalue of \mathbf{A} is differential at $\mathbf{A} \in \mathbb{C}^{m \times m}$.

Theorem 6

An eigenvalue is multiple if and only if it has a pair of orthogonal left and right eigenvectors.

The proof is left as an exercise.
4. Jordan form

Theorem 7

For any square matrix \mathbf{A} there exists a similar matrix $\mathbf{J}=\mathbf{S A S}{ }^{-1}$ such that

$$
\mathbf{J}=\operatorname{diag}\left\{\mathbf{J}_{1}, \mathbf{J}_{2}, \cdots, \mathbf{J}_{k}\right\}
$$

where each \mathbf{J}_{i} is a Jordan block: $\mathbf{J}_{i}=\left[\begin{array}{ccccc}\lambda_{i} & 1 & & & \\ & \lambda_{i} & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda_{i} & 1 \\ & & & & \lambda_{i}\end{array}\right]$.

- Up to permuting the order of the \mathbf{J}_{i}, the Jordan form is unique.
- Up to a nonzero constant, there are only one left eigenvector and one right eigenvector per \mathbf{J}_{i}.
- Discussion: How to determine the rank of \mathbf{A} via its Jordan form?
- Jordan form is a discontinuous function of \mathbf{A}, so any rounding error can change it completely. Therefore, Jordan form is theoretically useful only.
Example: Consider the matrix

$$
\mathbf{A}(\varepsilon)=\left[\begin{array}{cccc}
\varepsilon & 1 & & \\
& 2 \varepsilon & \ddots & \\
& & \ddots & 1 \\
& & & m \varepsilon
\end{array}\right]
$$

It is easy to show that

$$
\lim _{\varepsilon \rightarrow 0} \mathbf{J}(\mathbf{A}(\varepsilon)) \neq \mathbf{J}(\mathbf{A}(0))=\left[\begin{array}{cccc}
0 & 1 & & \\
& 0 & \ddots & \\
& & \ddots & 1 \\
& & & 0
\end{array}\right]
$$

5. Schur form

Theorem 8 (Schur factorization)

If $\mathbf{A} \in \mathbb{C}^{m \times m}$, then there exists a unitary matrix $\mathbf{Q} \in \mathbb{C}^{m \times m}$ and an upper-triangular matrix $\mathbf{T} \in \mathbb{C}^{m \times m}$ such that $\mathbf{A}=\mathbf{Q T} \mathbf{Q}^{*}$.

Proof. By induction on the dimension m of \mathbf{A}.

Remark 9

See Demmel's book (Applied numerical linear algebra, Theorem 4.3, Page 147) for real Schur form of a real matrix A.

Exercise: Let $\lambda_{1}, \cdots, \lambda_{m}$ be the m eigenvalues of $\mathbf{A} \in \mathbb{C}^{m \times m}$. Let

$$
\mathbf{M}=\frac{\mathbf{A}+\mathbf{A}^{*}}{2}, \quad \mathbf{N}=\frac{\mathbf{A}-\mathbf{A}^{*}}{2} .
$$

Prove that

$$
\sum_{i=1}^{m}\left|\lambda_{i}\right|^{2} \leq\|\mathbf{A}\|_{\mathrm{F}}^{2}, \quad \sum_{i=1}^{m}\left|\operatorname{Re} \lambda_{i}\right|^{2} \leq\|\mathbf{M}\|_{\mathrm{F}}^{2}, \quad \sum_{i=1}^{m}\left|\operatorname{Im} \lambda_{i}\right|^{2} \leq\|\mathbf{N}\|_{\mathrm{F}}^{2}
$$

- Let $\mathbf{A}=\mathbf{Q T Q}^{*}$ be a Schur factorization. If $\{\lambda, \mathbf{x}\}$ is an eigenpair of \mathbf{T}, then $\{\lambda, \mathbf{Q x}\}$ is an eigenpair of \mathbf{A}.

6. Unitary diagonalization

- A matrix \mathbf{A} is called unitarily diagonalizable if there exists a unitary matrix \mathbf{Q} and a diagonal matrix $\boldsymbol{\Lambda}$ such that $\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{*}$. Examples: Hermitian, skew-Hermitian, ...
- A matrix \mathbf{A} is called normal if $\mathbf{A}^{*} \mathbf{A}=\mathbf{A} \mathbf{A}^{*}$.

Examples: Hermitian, skew-Hermitian, ...

Theorem 10

A matrix is unitarily diagonalizable if and only if it is normal.

```
Proof.
" }=>\mathrm{ ": Easy. " }\Leftarrow\mathrm{ " By Schur factorization of A.
```


7. Eigenvalue perturbation theory

Theorem 11 (Bauer-Fike)

Suppose $\mathbf{A} \in \mathbb{C}^{m \times m}$ is diagonalizable with $\mathbf{A}=\mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$, and let
$\boldsymbol{\Delta} \in \mathbb{C}^{m \times m}$ be arbitrary. For each eigenvalue $\widehat{\lambda}$ of $\mathbf{A}+\boldsymbol{\Delta}$, there exists an eigenvalue λ of \mathbf{A} such that

$$
|\widehat{\lambda}-\lambda| \leq\|\mathbf{V}\|_{2}\left\|\mathbf{V}^{-1}\right\|_{2}\|\boldsymbol{\Delta}\|_{2}
$$

Proof. Assume that $\{\widehat{\lambda}, \mathbf{V} \mathbf{y}\}$ is an eigenpair of $\mathbf{A}+\boldsymbol{\Delta}$. Then we have

$$
(\widehat{\lambda} \mathbf{I}-\boldsymbol{\Lambda}) \mathbf{y}=\mathbf{V}^{-1} \boldsymbol{\Delta} \mathbf{V} \mathbf{y}
$$

Thus, $\min _{\lambda \in \Lambda(\mathbf{A})}|\widehat{\lambda}-\lambda| \leq \frac{\|(\widehat{\lambda} \mathbf{I}-\boldsymbol{\Lambda}) \mathbf{y}\|_{2}}{\|\mathbf{y}\|_{2}} \leq\|\mathbf{V}\|_{2}\left\|\mathbf{V}^{-1}\right\|_{2}\|\boldsymbol{\Delta}\|_{2} . \quad \square$

Corollary 12

If \mathbf{A} is normal, i.e., $\mathbf{A A}^{*}=\mathbf{A}^{*} \mathbf{A}$, then for each eigenvalue $\widehat{\lambda}$ of $\mathbf{A}+\boldsymbol{\Delta}$, there is an eigenvalue λ of \mathbf{A} such that $|\hat{\lambda}-\lambda| \leq\|\boldsymbol{\Delta}\|_{2}$.

8. Hermitian matrix eigenvalues

Theorem 13 (Courant-Fisher)

If $\mathbf{A} \in \mathbb{C}^{m \times m}$ is Hermitian, then the eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{m}$ satisfy

$$
\begin{aligned}
\lambda_{k} & =\max _{\mathcal{S} \subseteq \mathbb{C}^{m}, \operatorname{dim}(\mathcal{S})=k} \min _{\mathbf{0} \neq \mathbf{y} \in \mathcal{S}} \frac{\mathbf{y}^{*} \mathbf{A} \mathbf{y}}{\mathbf{y}^{*} \mathbf{y}} \\
& =\min _{\mathcal{S} \subseteq \mathbb{C}^{m}, \operatorname{dim}(\mathcal{S})=m-k+1} \max _{\mathbf{0} \neq \mathbf{y} \in \mathcal{S}} \frac{\mathbf{y}^{*} \mathbf{A} \mathbf{y}}{\mathbf{y}^{*} \mathbf{y}},
\end{aligned}
$$

for $k=1,2, \ldots, m$.
Theorem 14 (Interlacing property)
If $\mathbf{A} \in \mathbb{C}^{m \times m}$ is Hermitian and $\mathbf{A}_{k}=\mathbf{A}(1: k, 1: k)$, then

$$
\begin{aligned}
& \lambda_{k+1}\left(\mathbf{A}_{k+1}\right) \leq \lambda_{k}\left(\mathbf{A}_{k}\right) \leq \lambda_{k}\left(\mathbf{A}_{k+1}\right) \\
& \cdots \leq \lambda_{2}\left(\mathbf{A}_{k+1}\right) \leq \lambda_{1}\left(\mathbf{A}_{k}\right) \leq \lambda_{1}\left(\mathbf{A}_{k+1}\right)
\end{aligned}
$$

for $k=1: m-1$.

Theorem 15 (Weyl)

Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ and $\mathbf{B} \in \mathbb{C}^{m \times m}$ be Hermitian. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{m}$ be eigenvalues. Then

$$
\left|\lambda_{k}(\mathbf{A})-\lambda_{k}(\mathbf{B})\right| \leq\|\mathbf{A}-\mathbf{B}\|_{2}, \quad k=1,2, \ldots, m .
$$

Corollary 16

Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ and $\mathbf{B} \in \mathbb{C}^{m \times n}$ be arbitrary. Let $p=\min \{m, n\}$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p}$ be singular values. Then

$$
\left|\sigma_{k}(\mathbf{A})-\sigma_{k}(\mathbf{B})\right| \leq\|\mathbf{A}-\mathbf{B}\|_{2}, \quad k=1,2, \ldots, p .
$$

Theorem 17

Let $\mathbf{A} \in \mathbb{C}^{l \times m}$ and $\mathbf{B} \in \mathbb{C}^{m \times n}$ be arbitrary. Let $p=\min \{l, m, n\}$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p}$ be singular values. Then

$$
\sigma_{k}(\mathbf{A B}) \leq \sigma_{1}(\mathbf{A}) \sigma_{k}(\mathbf{B}), \quad k=1,2, \ldots, p .
$$

9. Generalized eigenvalue problem

- For $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{m \times m}$ and $z \in \mathbb{C}$, we call $p(z)=\operatorname{det}(z \mathbf{B}-\mathbf{A})$ the characteristic polynomial of the pencil $z \mathbf{B}-\mathbf{A}$.
- The pencil $z \mathbf{B}-\mathbf{A}$ is called regular if $p(z)$ is not identically zero. Otherwise it is called singular.
- The eigenvalues of a regular pencil $z \mathbf{B}-\mathbf{A}$ are defined to be the roots of $p(z)=0$ and ∞ with multiplicity $m-\operatorname{deg}(p)$.
- Assume that λ is an eigenvalue of the regular pencil $z \mathbf{B}-\mathbf{A}$. We call $\{\lambda, \mathbf{x}\}$ an eigenpair if it satisfies $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{A x}=\lambda \mathbf{B x}$.
- Generalized Schur factorization for (\mathbf{A}, \mathbf{B}):

$$
\mathbf{Q}^{*} \mathbf{A Z}=\mathbf{S}, \quad \mathbf{Q}^{*} \mathbf{B Z}=\mathbf{T}
$$

where \mathbf{Q} and \mathbf{Z} are unitary, and \mathbf{S} and \mathbf{T} are upper-triangular.

- Real generalized Schur forms for real matrices \mathbf{A} and \mathbf{B}.
- QZ algorithm for generalized eigenvalue problem.

10. Matrix polynomial eigenvalue problem

- We consider the matrix polynomial

$$
\mathcal{A}(z):=\sum_{i=0}^{d} z^{i} \mathbf{A}_{i}=z^{d} \mathbf{A}_{d}+z^{d-1} \mathbf{A}_{d-1}+\cdots+z \mathbf{A}_{1}+\mathbf{A}_{0}
$$

where $\mathbf{A}_{i} \in \mathbb{C}^{m \times m}$.

- The characteristic polynomial of the matrix polynomial $\mathcal{A}(z)$ is

$$
p(z)=\operatorname{det}(\mathcal{A}(z))
$$

Assume that $p(z)$ is not identically zero. The roots of $p(z)=0$ and ∞ with multiplicity $m d-\operatorname{deg}(p)$ are defined to be the eigenvalues.

- Suppose that λ is an eigenvalue. A nonzero vector \mathbf{x} satisfying $\mathcal{A}(\lambda) \mathbf{x}=\mathbf{0}$ is a right eigenvector for λ. A left eigenvector \mathbf{y} is defined analogously by $\mathbf{y}^{*} \mathcal{A}(\lambda)=\mathbf{0}$.
- The case for $d=1$ is a generalized eigenvalue problem, and the case for $d \geq 2$ is a nonlinear eigenvalue problem.

10.1. The quadratic eigenvalue problem

- F. Tisseur and K. Meerbergen, SIAM Review, 43: 235-286, 2001.

Consider the ODE system

$$
\mathbf{M} \ddot{\mathbf{x}}(t)+\mathbf{B} \dot{\mathbf{x}}(t)+\mathbf{K} \mathbf{x}(t)=\mathbf{0}
$$

where $\mathbf{M}, \mathbf{B}, \mathbf{K} \in \mathbb{C}^{m \times m}$. If we seek solutions of the form $\mathbf{x}(t)=\mathrm{e}^{\lambda t} \mathbf{x}(0)$, we get

$$
\mathrm{e}^{\lambda t}\left(\lambda^{2} \mathbf{M} \mathbf{x}(0)+\lambda \mathbf{B} \mathbf{x}(0)+\mathbf{K} \mathbf{x}(0)\right)=\mathbf{0}
$$

i.e.,

$$
\lambda^{2} \mathbf{M} \mathbf{x}(0)+\lambda \mathbf{B x}(0)+\mathbf{K} \mathbf{x}(0)=\mathbf{0} .
$$

Thus λ is an eigenvalue and $\mathbf{x}(0)$ is an eigenvector of the matrix polynomial

$$
z^{2} \mathbf{M}+z \mathbf{B}+\mathbf{K}
$$

- Tacoma Narrows Bridge, London Millennium Bridge, Humen Bridge
10.2. Linearization of matrix polynomial eigenvalue problem
- The generalized eigenvalue problem:

$$
z\left[\begin{array}{ccccc}
\mathbf{A}_{d} & & & & \\
& \mathbf{I} & & & \\
& & \mathbf{I} & & \\
& & & \ddots & \\
& & & & \mathbf{I}
\end{array}\right]-\left[\begin{array}{ccccc}
-\mathbf{A}_{d-1} & -\mathbf{A}_{d-2} & \cdots & \cdots & -\mathbf{A}_{0} \\
\mathbf{I} & & & & \\
& \mathbf{I} & & & \\
& & \ddots & &
\end{array}\right]
$$

- The standard eigenvalue problem if \mathbf{A}_{d} is nonsingular:

$$
z \mathbf{I}-\left[\begin{array}{ccccc}
-\mathbf{A}_{d}^{-1} \mathbf{A}_{d-1} & -\mathbf{A}_{d}^{-1} \mathbf{A}_{d-2} & \cdots & \cdots & -\mathbf{A}_{d}^{-1} \mathbf{A}_{0} \\
\mathbf{I} & \mathbf{I} & & & \\
& & \ddots & & \\
& & & \mathbf{I} &
\end{array}\right]
$$

