Lecture 3: Projector, Classical/Modified Gram-Schmidt orthogonalization, QR factorization

School of Mathematical Sciences, Xiamen University

1. Projector

- A square matrix $\mathbf{P} \in \mathbb{C}^{m \times m}$ is called a projector if $\mathbf{P}^{2}=\mathbf{P}$. Any projector is diagonalizable. (Eigenvalues?) Example: $\mathbf{P}=\left[\begin{array}{ll}0 & 0 \\ \alpha & 1\end{array}\right]$

Theorem 1

Let \mathbf{P} be a projector. Then,
(1) for all $\mathbf{v} \in \operatorname{range}(\mathbf{P})$, we have $\mathbf{P v}=\mathbf{v}$;
(2) range (\mathbf{P}) and null (\mathbf{P}) satisfy

$$
\operatorname{range}(\mathbf{P}) \cap \operatorname{null}(\mathbf{P})=\{\mathbf{0}\}, \quad \operatorname{range}(\mathbf{P})+\operatorname{null}(\mathbf{P})=\mathbb{C}^{m} ;
$$

(3) $\mathbf{I}-\mathbf{P}$ is a projector, and

$$
\operatorname{range}(\mathbf{I}-\mathbf{P})=\operatorname{null}(\mathbf{P}), \quad \operatorname{null}(\mathbf{I}-\mathbf{P})=\operatorname{range}(\mathbf{P})
$$

(4) if $\mathbf{P} \neq \mathbf{0}, \mathbf{I}$, we have $\|\mathbf{I}-\mathbf{P}\|_{2}=\|\mathbf{P}\|_{2}$. (See Ref. 1 and Ref. 2)

- Two subspaces $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{C}^{m}$ are called complementary subspaces if they satisfy

$$
\mathcal{S}_{1} \cap \mathcal{S}_{2}=\{\mathbf{0}\}, \quad \mathcal{S}_{1}+\mathcal{S}_{2}=\mathbb{C}^{m} .
$$

Theorem 2

Let \mathcal{S}_{1} and \mathcal{S}_{2} be complementary subspaces. Then there exists a unique projector \mathbf{P} with $\operatorname{range}(\mathbf{P})=\mathcal{S}_{1}$ and $\operatorname{null}(\mathbf{P})=\mathcal{S}_{2}$.

Proof.

The existence is left as an exercise. Now we prove the uniqueness. Let \mathbf{e}_{j} denote the j th column of the identity matrix \mathbf{I}. Since \mathcal{S}_{1} and \mathcal{S}_{2} are complementary, we can assume $\mathbf{e}_{j}=\mathbf{s}_{j}^{1}+\mathbf{s}_{j}^{2}$, where $\mathbf{s}_{j}^{1} \in \mathcal{S}_{1}$, and $\mathbf{s}_{j}^{2} \in \mathcal{S}_{2}$. Assume both \mathbf{P}_{1} and \mathbf{P}_{2} are desired projectors. Then we have

$$
\begin{aligned}
\forall 1 \leq j \leq m, \quad\left(\mathbf{P}_{1}-\mathbf{P}_{2}\right) \mathbf{e}_{j} & =\left(\mathbf{P}_{1}-\mathbf{P}_{2}\right) \mathbf{s}_{j}^{1}+\left(\mathbf{P}_{1}-\mathbf{P}_{2}\right) \mathbf{s}_{j}^{2} \\
& =\mathbf{P}_{1} \mathbf{s}_{j}^{1}-\mathbf{P}_{2} \mathbf{s}_{j}^{1}=\mathbf{s}_{j}^{1}-\mathbf{s}_{j}^{1}=\mathbf{0} .
\end{aligned}
$$

Therefore, $\mathbf{P}_{1}=\mathbf{P}_{2}$, i.e., uniqueness.

- Let \mathcal{S}_{1} and \mathcal{S}_{2} be complementary subspaces. The unique projector \mathbf{P} with range $(\mathbf{P})=\mathcal{S}_{1}$ and null $(\mathbf{P})=\mathcal{S}_{2}$ is called the projector onto \mathcal{S}_{1} along \mathcal{S}_{2}.

1.1. Orthogonal and oblique projectors

- For a projector \mathbf{P}, if range (\mathbf{P}) and $\operatorname{null}(\mathbf{P})$ are orthogonal, then it is called an orthogonal projector. Otherwise, oblique.
Warning: orthogonal projector " \neq " orthogonal matrix!!!
- Geometric interpretation: consider projector \mathbf{P} s.t. range $(\mathbf{P})=\mathcal{S}_{1}$

The orthogonal projection

An oblique projection

Theorem 3

A matrix \mathbf{P} is an orthogonal projector if and only if it is idempotent $\left(\mathbf{P}^{2}=\mathbf{P}\right)$ and Hermitian $\left(\mathbf{P}=\mathbf{P}^{*}\right)$.

- $\mathbf{P}=\left[\begin{array}{ll}0 & 0 \\ \alpha & 1\end{array}\right]:$ oblique (if $\alpha \neq 0$) or orthogonal (if $\alpha=0$) projector.

Theorem 4

Let the columns of \mathbf{Q}_{r} be an orthonormal basis of an r-dimensional subspace \mathcal{S}. Then the orthogonal projector onto \mathcal{S} is given by $\mathbf{Q}_{r} \mathbf{Q}_{r}^{*}$, and the orthogonal projector onto \mathcal{S}^{\perp} is given by $\mathbf{I}-\mathbf{Q}_{r} \mathbf{Q}_{r}^{*}$.

- $\mathbf{a} \neq \mathbf{0}, \quad \mathbf{P}_{\mathbf{a}}=\frac{\mathbf{\mathbf { a a } ^ { * }}}{\mathbf{a}^{*} \mathbf{a}}, \quad \mathbf{P}_{\mathbf{a}^{\perp}}=\mathbf{I}-\frac{\mathbf{a a}^{*}}{\mathbf{a}^{*} \mathbf{a}}$
- Let $\mathbf{A} \in \mathbb{C}^{m \times n}$. The orthogonal projector onto range (\mathbf{A}) is given by $\mathbf{U}_{r} \mathbf{U}_{r}^{*}$, where \mathbf{U}_{r} is the matrix in SVD of \mathbf{A}.
- Others: $\mathbf{A} \mathbf{A}^{\dagger}$ onto range $(\mathbf{A}), \mathbf{A}^{\dagger} \mathbf{A}$ onto range $\left(\mathbf{A}^{*}\right)$

1.2. Distance between subspaces and CS decomposition

Definition 5

Let $\mathcal{X}, \mathcal{Y} \subseteq \mathbb{C}^{m}$ be two subspaces with $\operatorname{dim}(\mathcal{X})=\operatorname{dim}(\mathcal{Y})$. Let $\mathbf{P}_{\mathcal{X}}$ and $\mathbf{P}_{\mathcal{Y}}$ be the orthogonal projectors onto \mathcal{X} and \mathcal{Y}, respectively. The distance between \mathcal{X} and \mathcal{Y} is defined as

$$
\operatorname{dist}(\mathcal{X}, \mathcal{Y})=\left\|\mathbf{P}_{\mathcal{X}}-\mathbf{P}_{\mathcal{Y}}\right\|_{2} .
$$

- Example: Let $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{2}$ with $\|\mathbf{x}\|_{2}=\|\mathbf{y}\|_{2}=1$ and $\mathbf{x} \neq \mathbf{y}$. By

$$
\begin{aligned}
\mathbf{x x}^{*}-\mathbf{y y}^{*} & =\mathbf{x}\left(\mathbf{x}-\mathbf{y}^{*} \mathbf{x y}\right)^{*}+\left(\mathbf{x}^{*} \mathbf{y x}-\mathbf{y}\right) \mathbf{y}^{*} \\
& =\left[\begin{array}{ll}
\mathbf{x} & \frac{\mathbf{x}^{*} \mathbf{y x}-\mathbf{y}}{\left\|\mathbf{x}^{*} \mathbf{y x}-\mathbf{y}\right\|_{2}}
\end{array}\right]\left[\begin{array}{ll}
\sigma_{1} & \\
& \sigma_{2}
\end{array}\right]\left[\begin{array}{ll}
\frac{\mathbf{x}-\mathbf{y}^{*} \mathbf{x y}}{\left\|\mathbf{x}-\mathbf{y}^{*} \mathbf{x y}\right\|_{2}} & \mathbf{y}
\end{array}\right]^{*}
\end{aligned}
$$

with $\sigma_{1}=\left\|\mathbf{x}-\mathbf{y}^{*} \mathbf{x y}\right\|_{2}$ and $\sigma_{2}=\left\|\mathbf{x}^{*} \mathbf{y x}-\mathbf{y}\right\|_{2}$, we have

$$
\begin{aligned}
\operatorname{dist}(\operatorname{span}\{\mathbf{x}\}, \operatorname{span}\{\mathbf{y}\}) & =\left\|\mathbf{x} \mathbf{x}^{*}-\mathbf{y} \mathbf{y}^{*}\right\|_{2}=\sigma_{1}=\sigma_{2} \\
& =\sqrt{1-\left|\mathbf{x}^{*} \mathbf{y}\right|^{2}}=\sin \theta
\end{aligned}
$$

- Geometric interpretation for the case $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2},\|\mathbf{x}\|_{2}=\|\mathbf{y}\|_{2}=1$

The distance between $\operatorname{span}\{\mathbf{x}\}$ and $\operatorname{span}\{\mathbf{y}\}$ is

$$
\operatorname{dist}(\operatorname{span}\{\mathbf{x}\}, \operatorname{span}\{\mathbf{y}\})=\sqrt{1-\left|\mathbf{x}^{*} \mathbf{y}\right|^{2}}=\sin \theta
$$

- Can this result be generalized to higher dimensional subspaces? Read Pages 33-41 of Numerical Linear Algebra by Zhihao Cao.

Theorem 6 (CS decomposition of unitary matrix)

Let

$$
\mathbf{Q}=\left[\begin{array}{ll}
\mathbf{Q}_{11} & \mathbf{Q}_{12} \\
\mathbf{Q}_{21} & \mathbf{Q}_{22}
\end{array}\right] \in \mathbb{C}^{m \times m}
$$

be unitary, where $\mathbf{Q}_{11} \in \mathbb{C}^{r \times r}, \mathbf{Q}_{12} \in \mathbb{C}^{r \times(m-r)}$, $\mathbf{Q}_{21} \in \mathbb{C}^{(m-r) \times r}$, and $\mathbf{Q}_{22} \in \mathbb{C}^{(m-r) \times(m-r)}$. Assume that $r \leq m / 2$. Then there exist unitary matrices $\mathbf{U}_{1}, \mathbf{V}_{1} \in \mathbb{C}^{r \times r}$, and $\mathbf{U}_{2}, \mathbf{V}_{2} \in \mathbb{C}^{(m-r) \times(m-r)}$ such that

$$
\left[\begin{array}{ll}
\mathbf{Q}_{11} & \mathbf{Q}_{12} \\
\mathbf{Q}_{21} & \mathbf{Q}_{22}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{U}_{1} & \\
& \mathbf{U}_{2}
\end{array}\right]\left[\begin{array}{ccc}
\mathbf{C} & -\mathbf{S} & \mathbf{0} \\
\mathbf{S} & \mathbf{C} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{I}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{V}_{1} & \\
& \mathbf{V}_{2}
\end{array}\right]^{*}
$$

where

$$
\mathbf{C}=\operatorname{diag}\left\{c_{1}, \ldots, c_{r}\right\}, \quad \mathbf{S}=\operatorname{diag}\left\{s_{1}, \ldots, s_{r}\right\}
$$

with

$$
c_{i}=\cos \theta_{i}, \quad s_{i}=\sin \theta_{i}, \quad \frac{\pi}{2} \geq \theta_{1} \geq \cdots \geq \theta_{r} \geq 0
$$

Theorem 7

Let \mathcal{X} and \mathcal{Y} be two r-dimensional subspaces of \mathbb{C}^{m}. Let the columns of \mathbf{X}_{r} and \mathbf{Y}_{r} be orthonormal bases of \mathcal{X} and \mathcal{Y}, respectively. Then,

$$
\operatorname{dist}(\mathcal{X}, \mathcal{Y})=\sqrt{1-\sigma_{\min }^{2}\left(\mathbf{X}_{r}^{*} \mathbf{Y}_{r}\right)}
$$

where $\sigma_{\min }(\cdot)$ is the smallest singular value.

Proposition 8

Let $\mathcal{X}, \mathcal{Y} \subseteq \mathbb{C}^{m}$ be two subspaces with $\operatorname{dim}(\mathcal{X}) \neq \operatorname{dim}(\mathcal{Y})$. Let $\mathbf{P}_{\mathcal{X}}$ and $\mathbf{P}_{\mathcal{Y}}$ be the orthogonal projectors onto \mathcal{X} and \mathcal{Y}, respectively. We have

$$
\left\|\mathbf{P}_{\mathcal{X}}-\mathbf{P}_{\mathcal{Y}}\right\|_{2}=1
$$

Proof.

$B y\left(\mathbf{P}_{\mathcal{X}}-\mathbf{P}_{\mathcal{Y}}\right)^{2}+\left(\mathbf{I}-\mathbf{P}_{\mathcal{X}}-\mathbf{P}_{\mathcal{Y}}\right)^{2}=\mathbf{I}$, we can show $\left\|\mathbf{P}_{\mathcal{X}}-\mathbf{P}_{\mathcal{Y}}\right\|_{2} \leq 1$. By $\exists \mathbf{x}(\neq \mathbf{0}) \in\left\{\mathcal{X} \cap \mathcal{Y}^{\perp}\right.$ or $\left.\mathcal{X}^{\perp} \cap \mathcal{Y}\right\}$, we can show $\left\|\mathbf{P}_{\mathcal{X}}-\mathbf{P}_{\mathcal{Y}}\right\|_{2} \geq 1$.

1.3. General definitions

- Suppose that $\langle\cdot, \cdot\rangle$ denotes an inner product on a linear space \mathbb{V}. A linear mapping $\mathbf{T}: \mathbb{V} \mapsto \mathbb{V}$ is called
- idempotent if for all $\mathbf{x} \in \mathbb{V}, \mathbf{T}(\mathbf{T} \mathbf{x})=\mathbf{T} \mathbf{x}$;
- an orthogonal projector (with respect to $\langle\cdot, \cdot\rangle$) if for all $\mathbf{x}, \mathbf{y} \in \mathbb{V}$,

$$
\langle\mathbf{x}-\mathbf{T} \mathbf{x}, \mathbf{T} \mathbf{y}\rangle=0
$$

- self-adjoint (with respect to $\langle\cdot, \cdot\rangle$) if for all $\mathbf{x}, \mathbf{y} \in \mathbb{V}$,

$$
\langle\mathbf{T} \mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{x}, \mathbf{T} \mathbf{y}\rangle
$$

- Exercise: Prove that if \mathbf{T} is self-adjoint, so is $\mathbf{I}-\mathbf{T}$ and vice versa.
- Exercise: Prove that for all $\mathbf{x}, \mathbf{y} \in \mathbb{V}$,

$$
\langle\mathbf{x}-\mathbf{T} \mathbf{x}, \mathbf{T} \mathbf{y}\rangle=0 \Leftrightarrow \mathbf{T}(\mathbf{T} \mathbf{x})=\mathbf{T} \mathbf{x} \text { and }\langle\mathbf{T} \mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{x}, \mathbf{T} \mathbf{y}\rangle .
$$

This means that
orthogonal projector \Leftrightarrow idempotent + self-adjoint.

2. Gram-Schmidt orthogonalization (GS)

- For n linearly independent vectors $\left\{\mathbf{a}_{i}\right\}_{i=1}^{n}$: at the j th step, Gram-Schmidt orthogonalization finds a unit vector \mathbf{q}_{j} that is orthogonal to $\mathbf{q}_{1}, \ldots, \mathbf{q}_{j-1}$, lies in span $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{j}\right\}$ as follows:

$$
\widetilde{\mathbf{q}}_{j}=\mathbf{a}_{j}-\sum_{i=1}^{j-1} \mathbf{q}_{i}^{*} \mathbf{a}_{j} \mathbf{q}_{i}, \quad \mathbf{q}_{j}=\frac{\widetilde{\mathbf{q}}_{j}}{\left\|\widetilde{\mathbf{q}}_{j}\right\|_{2}}
$$

More generally, for a given inner product $\langle\cdot, \cdot\rangle$,

$$
\widetilde{\mathbf{q}}_{j}=\mathbf{a}_{j}-\sum_{i=1}^{j-1}\left\langle\mathbf{a}_{j}, \mathbf{q}_{i}\right\rangle \mathbf{q}_{i}, \quad \mathbf{q}_{j}=\frac{\widetilde{\mathbf{q}}_{j}}{\sqrt{\left\langle\widetilde{\mathbf{q}}_{j}, \widetilde{\mathbf{q}}_{j}\right\rangle}} .
$$

- Gram-Schmidt orthogonalization can also be represented via orthogonal projectors. For the standard inner product, we have

$$
\widetilde{\mathbf{q}}_{j}=\mathbf{P}_{j} \mathbf{a}_{j}, \quad \mathbf{q}_{j}=\widetilde{\mathbf{q}}_{j} /\left\|\widetilde{\mathbf{q}}_{j}\right\|_{2}
$$

where $\mathbf{P}_{j}=\mathbf{I}-\mathbf{Q}_{j-1} \mathbf{Q}_{j-1}^{*}$ and $\mathbf{Q}_{j-1}=\left[\begin{array}{llll}\mathbf{q}_{1} & \mathbf{q}_{2} & \ldots & \mathbf{q}_{j-1}\end{array}\right]$.

2.1. Classical Gram-Schmidt orthogonalization (CGS)

- CGS is based on the use of

$$
\begin{aligned}
\widetilde{\mathbf{q}}_{j} & =\mathbf{P}_{j} \mathbf{a}_{j}=\left(\mathbf{I}-\mathbf{q}_{1} \mathbf{q}_{1}^{*}-\mathbf{q}_{2} \mathbf{q}_{2}^{*}-\cdots-\mathbf{q}_{j-1} \mathbf{q}_{j-1}^{*}\right) \mathbf{a}_{j} \\
& =\mathbf{a}_{j}-\mathbf{q}_{1}^{*} \mathbf{a}_{j} \mathbf{q}_{1}-\mathbf{q}_{2}^{*} \mathbf{a}_{j} \mathbf{q}_{2} \cdots-\mathbf{q}_{j-1}^{*} \mathbf{a}_{j} \mathbf{q}_{j-1}
\end{aligned}
$$

and calculates \mathbf{q}_{j} by evaluating the following formulas in order:

$$
\begin{aligned}
\mathbf{q}_{j}^{(0)} & =\mathbf{a}_{j}, \\
\mathbf{q}_{j}^{(1)} & =\mathbf{q}_{j}^{(0)}-\mathbf{q}_{1}^{*} \mathbf{a}_{j} \mathbf{q}_{1}, \\
\mathbf{q}_{j}^{(2)} & =\mathbf{q}_{j}^{(1)}-\mathbf{q}_{2}^{*} \mathbf{a}_{j} \mathbf{q}_{2}, \\
& \vdots \\
\mathbf{q}_{j}^{(j-1)} & =\mathbf{q}_{j}^{(j-2)}-\mathbf{q}_{j-1}^{*} \mathbf{a}_{j} \mathbf{q}_{j-1}, \\
\mathbf{q}_{j} & =\mathbf{q}_{j}^{(j-1)} /\left\|\mathbf{q}_{j}^{(j-1)}\right\|_{2} .
\end{aligned}
$$

2.2. Modified Gram-Schmidt orthogonalization (MGS)

- MGS is based on the use of

$$
\begin{aligned}
\widetilde{\mathbf{q}}_{j} & =\mathbf{P}_{j} \mathbf{a}_{j} \\
& =\left(\mathbf{I}-\mathbf{q}_{j-1} \mathbf{q}_{j-1}^{*}\right) \cdots\left(\mathbf{I}-\mathbf{q}_{2} \mathbf{q}_{2}^{*}\right)\left(\mathbf{I}-\mathbf{q}_{1} \mathbf{q}_{1}^{*}\right) \mathbf{a}_{j}
\end{aligned}
$$

and calculates \mathbf{q}_{j} by evaluating the following formulas in order:

$$
\begin{aligned}
\mathbf{q}_{j}^{(0)} & =\mathbf{a}_{j}, \\
\mathbf{q}_{j}^{(1)} & =\mathbf{q}_{j}^{(0)}-\mathbf{q}_{1}^{*} \mathbf{q}_{j}^{(0)} \mathbf{q}_{1}, \\
\mathbf{q}_{j}^{(2)} & =\mathbf{q}_{j}^{(1)}-\mathbf{q}_{2}^{*} \mathbf{q}_{j}^{(1)} \mathbf{q}_{2}, \\
& \vdots \\
\mathbf{q}_{j}^{(j-1)} & =\mathbf{q}_{j}^{(j-2)}-\mathbf{q}_{j-1}^{*} \mathbf{q}_{j}^{(j-2)} \mathbf{q}_{j-1}, \\
\mathbf{q}_{j} & =\mathbf{q}_{j}^{(j-1)} /\left\|\mathbf{q}_{j}^{(j-1)}\right\|_{2} .
\end{aligned}
$$

2.3. CGS and MGS algorithms

```
Algorithm: GS for \(n\) linearly independent vectors \(\left\{\mathbf{a}_{i}\right\}_{i=1}^{n}\).
    for \(j=1\) to \(n\)
    \(\mathbf{q}_{j}=\mathbf{a}_{j}\)
    for \(i=1\) to \(j-1\)
        \(\begin{cases}r_{i j}=\mathbf{q}_{i}^{*} \mathbf{a}_{j} & \text { CGS } \\ r_{i j}=\mathbf{q}_{i}^{*} \mathbf{q}_{j} & \text { MGS }\end{cases}\)
        \(\mathbf{q}_{j}=\mathbf{q}_{j}-r_{i j} \mathbf{q}_{i}\)
    end
    \(r_{j j}=\left\|\mathbf{q}_{j}\right\|_{2}\)
    \(\mathbf{q}_{j}=\mathbf{q}_{j} / r_{j j}\)
    end
```

- The computational cost: $\sim 2 m n^{2}$ (leading term) for $\mathbf{a}_{i} \in \mathbb{C}^{m}$
- CGS and MGS are mathematically equivalent. In finite precision arithmetic, MGS introduces smaller errors than CGS.

3. QR factorization

- Definition: Let m and n be arbitrary positive integers ($m \geq n$ or $m<n$). Given $\mathbf{A} \in \mathbb{C}^{m \times n}$, not necessarily of full rank, a full QR factorization of \mathbf{A} is a factorization

$$
\mathbf{A}=\mathbf{Q R}
$$

where $\mathbf{Q} \in \mathbb{C}^{m \times m}$ is unitary, and $\mathbf{R} \in \mathbb{C}^{m \times n}$ is upper triangular. For $m \geq n$, a reduced QR factorization of \mathbf{A} is a factorization

$$
\mathbf{A}=\mathbf{Q}_{n} \mathbf{R}_{n}
$$

where $\mathbf{Q}_{n} \in \mathbb{C}^{m \times n}$ has orthonormal columns, and

Theorem 9 (Existence of QR)

Every matrix $\mathbf{A} \in \mathbb{C}^{m \times n}(m \geq n)$ has a reduced QR factorization and a full QR factorization.

Proof.

- Existence of reduced QR factorization.

For the full column rank case, Gram-Schmidt orthogonalization produces a sequence of reduced QR factorizations for $\mathbf{A} \in \mathbb{C}^{m \times n}$:

$$
\mathbf{A}_{j}:=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{j}
\end{array}\right]=\mathbf{Q}_{j} \mathbf{R}_{j}, \quad j=1: n
$$

For the rank-deficient case, $\widetilde{\mathbf{q}}_{j}=\mathbf{0}$ at one or more steps j, GS fails to produce \mathbf{q}_{j}. At this moment, we pick \mathbf{q}_{j} arbitrarily to be any unit vector orthogonal to $\operatorname{span}\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{j-1}\right\}$, set $r_{j j}=0$, and then continue the Gram-Schmidt orthogonalization until we obtain a reduced QR factorization.

- Existence of full QR factorization.

Let $\mathbf{A}=\mathbf{Q}_{n} \mathbf{R}_{n}$ be a reduced QR factorization of \mathbf{A}. A full QR factorization can be constructed via

$$
\mathbf{A}=\mathbf{Q R}:=\left[\begin{array}{ll}
\mathbf{Q}_{n} & \mathbf{Q}_{\mathrm{c}}
\end{array}\right]\left[\begin{array}{c}
\mathbf{R}_{n} \\
\mathbf{0}
\end{array}\right],
$$

where $\mathbf{Q}_{\mathrm{c}} \in \mathbb{C}^{m \times(m-n)}$ has orthonormal columns orthogonal to $\operatorname{span}\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{n}\right\}$.

Theorem 10

Every matrix $\mathbf{A} \in \mathbb{C}^{m \times n}(m \geq n)$ of full column rank has a unique reduced QR factorization $\mathbf{A}=\mathbf{Q}_{n} \mathbf{R}_{n}$ with $r_{j j}>0$.

Proof.

$r_{11} \mathbf{q}_{1}=\mathbf{a}_{1}$ and $r_{11}>0 \Rightarrow r_{11}$ and \mathbf{q}_{1} unique $\Rightarrow r_{12}$ and $r_{22} \mathbf{q}_{2}$ unique, by $r_{22}>0 \Rightarrow r_{22}$ and \mathbf{q}_{2} unique, and so on.

3.1. When vectors become continuous functions

- Replace \mathbb{C}^{m} by $C[-1,1]$, a linear space of real-valued continuous functions on $[-1,1]$ with the L^{2} inner product

$$
\forall f(x), g(x) \in C[-1,1], \quad\langle f(x), g(x)\rangle_{L^{2}}=\int_{-1}^{1} f(x) g(x) \mathrm{d} x
$$

and the norm

$$
\|f(x)\|_{L^{2}}=\sqrt{\langle f(x), f(x)\rangle_{L^{2}}}
$$

Gram-Schmidt orthogonalization (GS) with respect to the L^{2} inner product $\langle f(x), g(x)\rangle_{L^{2}}$ is: At step j,

$$
\begin{aligned}
& \widetilde{q}_{j}(x)=a_{j}(x)-\sum_{i=1}^{j-1}\left\langle a_{j}(x), q_{i}(x)\right\rangle_{L^{2}} q_{i}(x), \\
& q_{j}(x)=\widetilde{q}_{j}(x) /\left\|\widetilde{q}_{j}(x)\right\|_{L^{2}}
\end{aligned}
$$

The functions $q_{j}(x)$ satisfy

$$
\left\langle q_{i}(x), q_{j}(x)\right\rangle_{L^{2}}=\int_{-1}^{1} q_{i}(x) q_{j}(x) \mathrm{d} x=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Then we have "continuous QR factorization"
where

$$
\mathrm{A}=\left[\begin{array}{llll}
a_{1}(x) & a_{2}(x) & \cdots & a_{n}(x)
\end{array}\right]
$$

and

$$
r_{j j}=\left\|\widetilde{q}_{j}(x)\right\|_{L^{2}}, \quad r_{i j}=\left\langle a_{j}(x), q_{i}(x)\right\rangle_{L^{2}}
$$

- Example: $a_{j}(x)=x^{j-1}, j=1,2, \ldots, n$

Legendre polynomials $P_{j}(x)=q_{j}(x) / q_{j}(1)$:

$$
P_{1}(x)=1, P_{2}(x)=x, P_{3}(x)=\frac{3}{2} x^{2}-\frac{1}{2}, P_{4}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x .
$$

Experiment: Discrete Legendre polynomials

```
x = (-128:128)'/128;
A = [x.^0 x.^1 x.^2 x.^3]
[Q,R] = qr(A,0);
scale = Q(257,:);
Q = Q*diag(1./scale);
plot(x,Q)
```


