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1. Projector

A square matrix P ∈ Cm×m is called a projector if P2 = P. Any

projector is diagonalizable. (Eigenvalues?) Example: P =

!
0 0
α 1

"

Theorem 1

Let P be a projector. Then,

(1) for all v ∈ range(P), we have Pv = v;

(2) range(P) and null(P) satisfy

range(P) ∩ null(P) = {0}, range(P) + null(P) = Cm;

(3) I−P is a projector, and

range(I−P) = null(P), null(I−P) = range(P).

(4) if P ∕= 0, I, we have ‖I−P‖2 = ‖P‖2. (See Ref. 1 and Ref. 2)
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Two subspaces S1,S2 ⊆ Cm are called complementary subspaces if
they satisfy

S1 ∩ S2 = {0}, S1 + S2 = Cm.

Theorem 2

Let S1 and S2 be complementary subspaces. Then there exists a unique
projector P with range(P) = S1 and null(P) = S2.

Proof.

The existence is left as an exercise. Now we prove the uniqueness. Let
ej denote the jth column of the identity matrix I. Since S1 and S2 are
complementary, we can assume ej = s1j + s2j , where s1j ∈ S1, and

s2j ∈ S2. Assume both P1 and P2 are desired projectors. Then we have

∀1 ≤ j ≤ m, (P1 −P2)ej = (P1 −P2)s
1
j + (P1 −P2)s

2
j

= P1s
1
j −P2s

1
j = s1j − s1j = 0.

Therefore, P1 = P2, i.e., uniqueness.
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Let S1 and S2 be complementary subspaces. The unique projector
P with range(P) = S1 and null(P) = S2 is called the projector
onto S1 along S2.

1.1. Orthogonal and oblique projectors

For a projector P, if range(P) and null(P) are orthogonal, then it
is called an orthogonal projector. Otherwise, oblique.

Warning: orthogonal projector “ ∕=” orthogonal matrix!!!

Geometric interpretation: consider projector P s.t. range(P) = S1

The orthogonal projection An oblique projection

S1 S1
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Theorem 3

A matrix P is an orthogonal projector if and only if it is idempotent
(P2 = P) and Hermitian (P = P∗).

P =

!
0 0
α 1

"
: oblique (if α ∕= 0) or orthogonal (if α = 0) projector.

Theorem 4

Let the columns of Qr be an orthonormal basis of an r-dimensional
subspace S. Then the orthogonal projector onto S is given by QrQ

∗
r ,

and the orthogonal projector onto S⊥ is given by I−QrQ
∗
r .

a ∕= 0, Pa =
aa∗

a∗a
, Pa⊥ = I− aa∗

a∗a
Let A ∈ Cm×n. The orthogonal projector onto range(A) is given
by UrU

∗
r , where Ur is the matrix in SVD of A.

Others: AA† onto range(A) , A†A onto range(A∗)
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1.2. Distance between subspaces and CS decomposition

Definition 5

Let X ,Y ⊆ Cm be two subspaces with dim(X ) = dim(Y). Let PX and
PY be the orthogonal projectors onto X and Y, respectively. The
distance between X and Y is defined as

dist(X ,Y) = ‖PX −PY‖2.

Example: Let x,y ∈ C2 with ‖x‖2 = ‖y‖2 = 1 and x ∕= y. By

xx∗ − yy∗ = x(x− y∗xy)∗ + (x∗yx− y)y∗

=

!
x

x∗yx− y

‖x∗yx− y‖2

" !
σ1

σ2

" !
x− y∗xy

‖x− y∗xy‖2
y

"∗

with σ1 = ‖x− y∗xy‖2 and σ2 = ‖x∗yx− y‖2, we have

dist(span{x}, span{y}) = ‖xx∗ − yy∗‖2 = σ1 = σ2

=
#

1− |x∗y|2 = sin θ.
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Geometric interpretation for the case x,y ∈ R2, ‖x‖2 = ‖y‖2 = 1

The distance between span{x} and span{y} is

dist(span{x}, span{y}) =
#

1− |x∗y|2 = sin θ.

Can this result be generalized to higher dimensional subspaces?

Read Pages 33–41 of Numerical Linear Algebra by Zhihao Cao.
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Theorem 6 (CS decomposition of unitary matrix)

Let

Q =

!
Q11 Q12

Q21 Q22

"
∈ Cm×m

be unitary, where Q11 ∈ Cr×r, Q12 ∈ Cr×(m−r), Q21 ∈ C(m−r)×r, and
Q22 ∈ C(m−r)×(m−r). Assume that r ≤ m/2. Then there exist unitary
matrices U1,V1 ∈ Cr×r, and U2,V2 ∈ C(m−r)×(m−r) such that

!
Q11 Q12

Q21 Q22

"
=

!
U1

U2

"$

%
C −S 0
S C 0
0 0 I

&

'
!
V1

V2

"∗
,

where
C = diag{c1, . . . , cr}, S = diag{s1, . . . , sr}

with
ci = cos θi, si = sin θi,

π

2
≥ θ1 ≥ · · · ≥ θr ≥ 0.
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Theorem 7

Let X and Y be two r-dimensional subspaces of Cm. Let the columns of
Xr and Yr be orthonormal bases of X and Y, respectively. Then,

dist(X ,Y) =
(

1− σ2
min(X

∗
rYr),

where σmin(·) is the smallest singular value.

Proposition 8

Let X ,Y ⊆ Cm be two subspaces with dim(X ) ∕= dim(Y). Let PX and
PY be the orthogonal projectors onto X and Y, respectively. We have

‖PX −PY‖2 = 1.

Proof.

By (PX −PY)
2 + (I−PX −PY)

2 = I, we can show ‖PX −PY‖2 ≤ 1.
By ∃ x( ∕= 0) ∈ {X ∩Y⊥ or X⊥∩Y}, we can show ‖PX −PY‖2 ≥ 1.
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1.3. General definitions

Suppose that 〈·, ·〉 denotes an inner product on a linear space V. A
linear mapping T : V -→ V is called

• idempotent if for all x ∈ V, T(Tx) = Tx;

• an orthogonal projector (with respect to 〈·, ·〉) if for all x,y ∈ V,

〈x−Tx,Ty〉 = 0;

• self-adjoint (with respect to 〈·, ·〉) if for all x,y ∈ V,

〈Tx,y〉 = 〈x,Ty〉.

Exercise: Prove that if T is self-adjoint, so is I−T and vice versa.

Exercise: Prove that for all x,y ∈ V,

〈x−Tx,Ty〉 = 0 ⇔ T(Tx) = Tx and 〈Tx,y〉 = 〈x,Ty〉.

This means that

orthogonal projector ⇔ idempotent + self-adjoint.
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2. Gram–Schmidt orthogonalization (GS)

For n linearly independent vectors {ai}ni=1: at the jth step,
Gram–Schmidt orthogonalization finds a unit vector qj that is
orthogonal to q1, . . . ,qj−1, lies in span{a1, . . . ,aj} as follows:

)qj = aj −
j−1*

i=1

q∗
i ajqi, qj =

)qj

‖)qj‖2
.

More generally, for a given inner product 〈·, ·〉,

)qj = aj −
j−1*

i=1

〈aj ,qi〉qi, qj =
)qj#

〈)qj , )qj〉
.

Gram–Schmidt orthogonalization can also be represented via
orthogonal projectors. For the standard inner product, we have

)qj = Pjaj , qj = )qj/‖)qj‖2,

where Pj = I−Qj−1Q
∗
j−1 and Qj−1 =

+
q1 q2 . . . qj−1

,
.
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2.1. Classical Gram–Schmidt orthogonalization (CGS)

CGS is based on the use of

)qj = Pjaj = (I− q1q
∗
1 − q2q

∗
2 − · · ·− qj−1q

∗
j−1)aj

= aj − q∗
1ajq1 − q∗

2ajq2 · · ·− q∗
j−1ajqj−1

and calculates qj by evaluating the following formulas in order:

q
(0)
j = aj ,

q
(1)
j = q

(0)
j − q∗

1ajq1,

q
(2)
j = q

(1)
j − q∗

2ajq2,

...
...

q
(j−1)
j = q

(j−2)
j − q∗

j−1ajqj−1,

qj = q
(j−1)
j /‖q(j−1)

j ‖2.
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2.2. Modified Gram–Schmidt orthogonalization (MGS)

MGS is based on the use of

)qj = Pjaj

= (I− qj−1q
∗
j−1) · · · (I− q2q

∗
2)(I− q1q

∗
1)aj

and calculates qj by evaluating the following formulas in order:

q
(0)
j = aj ,

q
(1)
j = q

(0)
j − q∗

1q
(0)
j q1,

q
(2)
j = q

(1)
j − q∗

2q
(1)
j q2,

...
...

q
(j−1)
j = q

(j−2)
j − q∗

j−1q
(j−2)
j qj−1,

qj = q
(j−1)
j /‖q(j−1)

j ‖2.
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2.3. CGS and MGS algorithms

Algorithm: GS for n linearly independent vectors {ai}ni=1.

for j = 1 to n
qj = aj
for i = 1 to j − 1-

rij = q∗
i aj CGS

rij = q∗
iqj MGS

qj = qj − rijqi

end
rjj = ‖qj‖2
qj = qj/rjj

end

The computational cost: ∼ 2mn2 (leading term) for ai ∈ Cm

CGS and MGS are mathematically equivalent. In finite precision
arithmetic, MGS introduces smaller errors than CGS.
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3. QR factorization

Definition: Let m and n be arbitrary positive integers (m ≥ n or
m < n). Given A ∈ Cm×n, not necessarily of full rank, a full QR
factorization of A is a factorization

A = QR

where Q ∈ Cm×m is unitary, and R ∈ Cm×n is upper triangular.
For m ≥ n, a reduced QR factorization of A is a factorization

A = QnRn

where Qn ∈ Cm×n has orthonormal columns, and

Rn =

$

....%

r11 r12 · · · r1n

r22
. . .

...
. . .

...
rnn

&

////'
.
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Theorem 9 (Existence of QR)

Every matrix A ∈ Cm×n(m ≥ n) has a reduced QR factorization and a
full QR factorization.

Proof.

Existence of reduced QR factorization.

For the full column rank case, Gram–Schmidt orthogonalization
produces a sequence of reduced QR factorizations for A ∈ Cm×n:

Aj :=
+
a1 a2 . . . aj

,
= QjRj , j = 1: n.

For the rank-deficient case, )qj = 0 at one or more steps j, GS fails
to produce qj . At this moment, we pick qj arbitrarily to be any
unit vector orthogonal to span{q1,q2, · · · ,qj−1}, set rjj = 0, and
then continue the Gram–Schmidt orthogonalization until we
obtain a reduced QR factorization.
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Existence of full QR factorization.

Let A = QnRn be a reduced QR factorization of A. A full QR
factorization can be constructed via

A = QR :=
+
Qn Qc

, !Rn

0

"
,

where Qc ∈ Cm×(m−n) has orthonormal columns orthogonal to
span{q1,q2, · · · ,qn}.

Theorem 10

Every matrix A ∈ Cm×n (m ≥ n) of full column rank has a unique
reduced QR factorization A = QnRn with rjj > 0.

Proof.

r11q1 = a1 and r11 > 0 ⇒ r11 and q1 unique ⇒ r12 and r22q2 unique,
by r22 > 0 ⇒ r22 and q2 unique, and so on.
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3.1. When vectors become continuous functions

Replace Cm by C[−1, 1], a linear space of real-valued continuous
functions on [−1, 1] with the L2 inner product

∀f(x), g(x) ∈ C[−1, 1], 〈f(x), g(x)〉L2 =

0 1

−1
f(x)g(x)dx,

and the norm
‖f(x)‖L2 =

#
〈f(x), f(x)〉L2 .

Gram–Schmidt orthogonalization (GS) with respect to the L2

inner product 〈f(x), g(x)〉L2 is: At step j,

)qj(x) = aj(x)−
j−1*

i=1

〈aj(x), qi(x)〉L2qi(x),

qj(x) = )qj(x)/‖)qj(x)‖L2 .
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The functions qj(x) satisfy

〈qi(x), qj(x)〉L2 =

0 1

−1
qi(x)qj(x)dx = δij =

-
1 if i = j,
0 if i ∕= j.

Then we have “continuous QR factorization”

where
A =

+
a1(x) a2(x) · · · an(x)

,

and
rjj = ‖)qj(x)‖L2 , rij = 〈aj(x), qi(x)〉L2 .
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Example: aj(x) = xj−1, j = 1, 2, . . . , n

Legendre polynomials Pj(x) = qj(x)/qj(1):

P1(x) = 1, P2(x) = x, P3(x) =
3

2
x2 − 1

2
, P4(x) =

5

2
x3 − 3

2
x.

Experiment: Discrete Legendre polynomials

x = (-128:128)’/128;

A = [x.^0 x.^1 x.^2 x.^3];

[Q,R] = qr(A,0);

scale = Q(257,:);

Q = Q*diag(1./scale);

plot(x,Q)
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