Lecture 3: Projector, Classical /Modified

Gram—Schmidt orthogonalization, QR factorization
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1. Projector

e A square matrix P € C"™*™ is called a projector if P> = P. Any

projector is diagonalizable. (Eigenvalues?) Example: P = [g (1]]

Theorem 1

Let P be a projector. Then,

(1) for all v € range(P), we have Pv = v;
(2) range(P) and null(P) satisfy

range(P) Nnull(P) = {0}, range(P) + null(P) =C™;
(3) I —P s a projector, and

range(I — P) = null(P), null(I —P) = range(P).

(4) if P # 0,1, we have |I — P|la = ||P||2. (See Ref. 1 and Ref. 2)
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o Two subspaces S1,So C C™ are called complementary subspaces if
they satisfy
St ﬂSQZ{O}, S +8=C"

Theorem 2

Let 81 and Sa be complementary subspaces. Then there exists a unique
projector P with range(P) = 81 and null(P) = S,.

Proof.

The existence is left as an exercise. Now we prove the uniqueness. Let
e; denote the jth column of the identity matriz I. Since S1 and S are
complementary, we can assume e; = S} + S?, where S} € Sy, and

S? € Sy. Assume both P1 and Py are desired projectors. Then we have

Vi< g <m, (Pl = Pg)ej = (P1 = PQ)SJI- -+ (P1 = Pg)Sg
= Pls; - stjl- = s} — s} =0.
Therefore, P, = Po, i.e., uniqueness. [
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o Let &1 and Sy be complementary subspaces. The unique projector
P with range(P) = S; and null(P) = Ss is called the projector
onto 81 along So.

1.1. Orthogonal and oblique projectors

e For a projector P, if range(P) and null(P) are orthogonal, then it
is called an orthogonal projector. Otherwise, oblique.

Warning: orthogonal projector “#£” orthogonal matrix!!!

e Geometric interpretation: consider projector P s.t. range(P) = S;

~o_ v - v
81 Sl
The orthogonal projection An oblique projection
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Theorem 3

A matrixz P is an orthogonal projector if and only if it is idempotent
(P? = P) and Hermitian (P = P*).

o P= [g (1]] : oblique (if a # 0) or orthogonal (if a = 0) projector.

Theorem 4

Let the columns of Q, be an orthonormal basis of an r-dimensional
subspace S. Then the orthogonal projector onto S is given by Q,Qy,
and the orthogonal projector onto S* is given by I — Q, Q.

aa* aa*

ea#0 P,= P, =1-

a*a’ a*a
e Let A € C™*". The orthogonal projector onto range(A) is given

by U, U}, where U, is the matrix in SVD of A.
o Others: AAT onto range(A) , ATA onto range(A*)
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1.2. Distance between subspaces and CS decomposition

Definition 5

Let X,Y C C™ be two subspaces with dim(X) = dim())). Let P» and
Py be the orthogonal projectors onto X and Y, respectively. The
distance between X and ) is defined as

diSt(X, y) = HPX — PyHQ.

o Example: Let x,y € C? with |x||2 = |ly|]2 = 1 and x # y. By

*

xx" —yy" =x(x—-y'xy) + xX'yx—-y)y
x*yx —y ] [01 } [ X — y'xy
[x*yx —yl|2 o2] ||Ix —y*xy|2

*

with o1 = |[|x — y*xy||2 and o3 = ||[x*yx — y||2, we have

dist(span{x},span{y}) = ||xx* —yy*|, = 01 = 02

= /1 — |x*y|]?2 = sinf.
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o Geometric interpretation for the case x,y € R?, ||x[[2 = |ly|2 =1

I
.

,

\ 4

The distance between span{x} and span{y} is

dist(span{x},span{y}) = /1 — |x*y|? = sin 6.

o Can this result be generalized to higher dimensional subspaces?
Read Pages 33-41 of Numerical Linear Algebra by Zhihao Cao.
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Theorem 6 (CS decomposition of unitary matrix)
Let

Q. Q2
Q= [Qm Q22

be unitary, where Q1 € CT™*", Qg € C"X(M=7) Qg € Cm=X" gnd

Qoo € Cm=)x(m=7) " Assume that r < m/2. Then there exist unitary
matrices Uy, Vi € C™*", and Uy, Vo € C=1X(m=1) qych that

[Qn Q12]:|:U1 } (Sj _CS g [Vl ]*
Q21 Q22 Uy 0 0 I Vs

:| c mem

where
C = diag{ci,...,c}, S =diag{s1,...,s}
with

T
c; = cosf;, s; =sinb;, 52912'--297«20.
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Theorem 7

Let X and Y be two r-dimensional subspaces of C'™. Let the columns of
X, and Y, be orthonormal bases of X and ), respectively. Then,

dist(X,¥) = /1 - 02, (X5Y,),

where omin(+) is the smallest singular value.

Proposition 8

Let X, C C™ be two subspaces with dim(X) # dim()). Let Py and
Py be the orthogonal projectors onto X and Y, respectively. We have

|[Px — Pylla =1.

Proof.

By (Pxy —Py)?2+ (I —-Px — Py)? =1, we can show |[Py — Py|s < 1.
By 3x(#£0) € {XNY+ or XNV}, we can show |IPx—Pyl2>1. O
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1.3. General definitions

e Suppose that (-, ) denotes an inner product on a linear space V. A
linear mapping T : V — V is called

e idempotent if for all x € V, T(Tx) = Tx;
e an orthogonal projector (with respect to (-,-)) if for all x,y € V,

o self-adjoint (with respect to (-,-)) if for all x,y € V,
(Tx,y) = (x, Ty).

o Exercise: Prove that if T is self-adjoint, so is I — T and vice versa.
o Exercise: Prove that for all x,y € V,

(x —Tx,Ty) =0« T(Tx) = Tx and (Tx,y) = (x, Ty).
This means that

orthogonal projector < idempotent + self-adjoint.
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2. Gram—Schmidt orthogonalization (GS)

e For n linearly independent vectors {a;}}* ;: at the jth step,
Gram-—Schmidt orthogonalization finds a unit vector q; that is

orthogonal to qu,...,q;_1, lies in span{ay,...,a;} as follows:
j_l a
~ j
qj =a; — ZQ;aniy q; = RS
i=1 djll2

More generally, for a given inner product (,-),
j-1 &
q;

q=a;— Y (a,q)q, Q=
i=1 VACTACTY

o Gram—Schmidt orthogonalization can also be represented via
orthogonal projectors. For the standard inner product, we have

q; = Pja;, q; =q;/|lqjl

where Pj =I- Qj—lQ;f_l and Qj—l = [ql q2 ... q]'_l].
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2.1. Classical Gram—Schmidt orthogonalization (CGS)
@ CGS is based on the use of

qj =Pja; = (I-qiq] — q2q3 — -+ — q;j-19}_1)a;
= aj — q1a;q1 — q5a;d2 - — q;_13;q -1
and calculates q; by evaluating the following formulas in order:

()—ﬁ)—ﬁ%m,

(2) = q§ )~ abajq.

j—1 j—2 *
a’ M =d""? —qi_ a0,

j—1 i—1
a=a’ " /1d? .
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2.2. Modified Gram—Schmidt orthogonalization (MGS)
o MGS is based on the use of

q; = Pja;
= (I—qj—19j_1) - (I —a2q3)(I — aiqy)a;

and calculates q; by evaluating the following formulas in order:

qSO) = aj,
i = i

q§2) = qg-l) - q§q§-l)q2,

j—1 j—2 * j—2
af Y =a/"? - q_1a/ Va1,

—1 —1
a=a/"/1a V.
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2.3. CGS and MGS algorithms

Algorithm: GS for n linearly independent vectors {a;}7 ;.
for j=1ton
qj = a;
fori=1toj—1
{ Tij = qz‘aj CGS
rij = 4;q; MGS
q; = q; — 759

end
ri; = llajll2
q; = q;/rjj

end

e The computational cost: ~ 2mn? (leading term) for a; € C™

o CGS and MGS are mathematically equivalent. In finite precision
arithmetic, MGS introduces smaller errors than CGS.
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3. QR factorization

e Definition: Let m and n be arbitrary positive integers (m > n or
m < n). Given A € C"™*™ not necessarily of full rank, a full QR
factorization of A is a factorization

A=QR

where Q € C"™*™ ig unitary, and R € C™*" is upper triangular.
For m > n, a reduced QR factorization of A is a factorization

where Q,, € C™*" has orthonormal columns, and

1 T2 - Tin
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Theorem 9 (Existence of QR)

Every matriz A € C™*™(m > n) has a reduced QR factorization and a
full QR factorization.

Proof.
e Existence of reduced QR factorization.

For the full column rank case, Gram—Schmidt orthogonalization
produces a sequence of reduced QR factorizations for A € C™*":

Aj:: [al az ... aj]:QjRj, jthn.

For the rank-deficient case, q; = 0 at one or more steps j, GS fails
to produce q;. At this moment, we pick q; arbitrarily to be any
unit vector orthogonal to span{qi,qz, - ,qj—1}, set rj; =0, and
then continue the Gram—Schmidt orthogonalization until we
obtain a reduced QR factorization.
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o Existence of full QR factorization.

Let A = Q,R, be a reduced QR factorization of A. A full QR
factorization can be constructed via

a—ar=[a. o 7.

where Q. € C™*(m=1) hag orthonormal columns orthogonal to
Span{QhQ%"' 7qn} U

Theorem 10

Every matriz A € C™*™ (m > n) of full column rank has a unique
reduced QR factorization A = Q,R,, with r;; > 0.

Proof.
ri1q1 = aj and r11 > 0 = 711 and q; unique = 712 and r9sqs unique,
by 799 > 0 = 792 and g2 unique, and so on. O
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3.1. When vectors become continuous functions

e Replace C™ by C[—1,1], a linear space of real-valued continuous
functions on [—1,1] with the L? inner product

Vi(2),9(x) € Cl-1,1],  (f(x), g(x)) 2 = / f@)gla)ds

and the norm

1f(@)l[L2 = v/ (f(2), f(2)) 2,
Gram-Schmidt orthogonalization (GS) with respect to the L?
inner product (f(x), g(x))r2 is: At step 7,

7j—1

q(x) = aj(x Z z))r24i(z),

=1

q5(x) = q;(x)/[lg;(2)| L>-
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The functions g;(x) satisfy

X o
(qi(x), qj ()12 = /1 ¢i(r)gj(z)da = ;j = { (1) g z ;?

Then we have “continuous QR factorization”

1 Ti2 °°° Tin

22
A=QR= | qi(2) | go(2) a0, ()
Tnn
where
A=lai(z) ax(z) - an(z)]
and
rig =g (@)llrz, iy = (aj(@), qi(x)) 2.
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Legendre polynomials Pj(x) = g; (:L')/Qj(l):

Pi(z) = 1, Py(z) = 7, Py(x )—gaz L by =282

Experiment: Discrete Legendre polynomlals
x = (-128:128)7/128;
A=[x."0x."1x."2x."3]
[Q,R] = qr(A,0);

scale = Q(257,:);

Q = Qxdiag(l./scale);
plot(x,Q) s @ o4 %z o ez s o5 1

3
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