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1. Subspace iteration (SI)

Subspace iteration is also called simultaneous iteration (and
sometimes orthogonal iteration or block power iteration).

Algorithm 1: Subspace iteration

Pick Q
(0)
n ∈ Cm×n with orthonormal columns

for k = 1, 2, 3, . . . ,

Q
(k)
n R

(k)
n = AQ

(k−1)
n (QR factorization)

end

Here is an informal analysis of this algorithm. Assume
A = SΛS−1 ∈ Cm×m with

Λ = diag{λ1,λ2, · · · ,λm}

and
|λ1| ≥ · · · ≥ |λn| > |λn+1| ≥ · · · ≥ |λm|.
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If n = 1, then subspace iteration reduces to power iteration; see
Lecture 8 for details.

Now we consider the case n > 1. Let

Xn :=
!
In 0

"
S−1Q(0)

n ,

and
Xc :=

!
0 Im−n

"
S−1Q(0)

n .

Assume that Xn has full rank (a generalization of the assumption
α1 ∕= 0 in power iteration). We have (the proof is left as an
exercise)

Q(k)
n = AkQ(0)

n (R(1)
n )−1(R(2)

n )−1 · · · (R(k)
n )−1.

By A = SΛS−1, we have

Q(k)
n = SΛkS−1Q(0)

n (R(1)
n )−1(R(2)

n )−1 · · · (R(k)
n )−1.
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Write S =
!
Sn Sc

"
and Λ = diag{Λn,Λc}. By S−1Q

(0)
n =

#
Xn

Xc

$
,

we have

Q(k)
n =

!
Sn Sc

" #Λk
n

Λk
c

$ #
Xn

Xc

$
(R(1)

n )−1(R(2)
n )−1 · · · (R(k)

n )−1

=
!
Sn Sc

"
%
Λk

nXn(R
(1)
n )−1(R

(2)
n )−1 · · · (R(k)

n )−1

Λk
cXc(R

(1)
n )−1(R

(2)
n )−1 · · · (R(k)

n )−1

&
.

Exercise: Prove that

ScΛ
k
cXc(R

(1)
n )−1(R(2)

n )−1 · · · (R(k)
n )−1 → 0

like

''''
λn+1

λn

''''
k

. Equivalently, we have the convergence result:

Q(k)
n − SnΛ

k
nXn(R

(1)
n )−1(R(2)

n )−1 · · · (R(k)
n )−1 → 0,

which means that span{Q(k)
n } converges to span{Sn}.
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Note that if we follow only the first 1 ≤ j ≤ n columns of Q
(k)
n

through the iterations of the algorithm, they are identical to the
iterates that we would compute if we had started with only the

first j columns of Q
(0)
n instead of n columns.

In other words, subspace iteration is effectively running the
algorithm for j = 1, 2, · · · , n all at the same time (simultaneous).

So if all the first n+ 1 eigenvalues have distinct absolute values,
i.e.,

|λ1| > |λ2| > · · · > |λn| > |λn+1|,

and if all the leading principal submatrices of

Xn =
!
In 0

"
S−1Q(0)

n

have full rank, the same convergence analysis as before implies

that span{Q(k)
j } with Q

(k)
j := Q

(k)
n

#
Ij
0

$
converges to span{Sj}

with Sj := S

#
Ij
0

$
for each j = 1, 2, · · · , n.
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Theorem 1

Consider running subspace iteration on matrix A ∈ Cm×m with n = m

and Q
(0)
n = I. If A = SΛS−1 with

Λ = diag{λ1,λ2, · · · ,λm}, |λ1| > |λ2| > · · · > |λm|,

and if all the leading principal submatrices of S−1 have full rank, then

A(k) := (Q
(k)
n )∗AQ

(k)
n converges to a Schur form of A. The eigenvalues

will appear in decreasing order of absolute value.

Proof: See Demmel’s book: Theorem 4.8, Page 158, Applied numerical
linear algebra.

The entry A
(k)
jj converges to λj like max

(''''
λj+1

λj

''''
k

,

''''
λj

λj−1

''''
k
)
.

The block A(k)(j + 1 : m, 1 : j) converges to zero like

''''
λj+1

λj

''''
k

.
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2. “Pure” QR algorithm

Algorithm 2: “Pure” QR algorithm

A(0) = A
for k = 1, 2, 3, . . . ,

Q(k)R(k) = A(k−1) (QR factorization)

A(k) = R(k)Q(k)

end

Proposition 2

We have A(k) = (Q(k))∗AQ(k), where Q(k) := Q(1)Q(2) · · ·Q(k).

Proof. By Q(k)R(k) = A(k−1), we have R(k) = (Q(k))∗A(k−1). Then,

A(k) = R(k)Q(k) = (Q(k))∗A(k−1)Q(k)

= (Q(k))∗(Q(k−1))∗A(k−2)Q(k−1)Q(k)

= (Q(k))∗ · · · (Q(1))∗A(0)Q(1) · · ·Q(k) = (Q(k))∗AQ(k).
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Proposition 3

We have (a QR factorization of Ak)

Ak = Q(k)R(k),

where Q(k) := Q(1)Q(2) · · ·Q(k), and R(k) := R(k)R(k−1) · · ·R(1).

Proof.

We use induction. For k = 1, A = A(0) = Q(1)R(1) = Q(1)R(1). Now

we prove the case k > 1 with the assumption Ak−1 = Q(k−1)R(k−1). By

Proposition 2, we have A(k−1) = (Q(k−1))∗AQ(k−1), which implies

AQ(k−1) = Q(k−1)A(k−1). Then we have

Ak = AAk−1 = AQ(k−1)R(k−1) = Q(k−1)A(k−1)R(k−1)

= Q(k−1)Q(k)R(k)R(k−1) = Q(k)R(k).

This completes the proof.
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Connection with power iteration: By Ak = Q(k)R(k), the first

column of Q(k) is the result of applying k steps of power iteration

on A to the starting vector e1. We have A
(k)
11 → λ1.

Connection with inverse iteration: By Q(k) = (A∗)−k(R(k))∗, the

last column of Q(k) is the result of applying k steps of inverse

iteration on A∗ to the starting vector em. We have A
(k)
mm → λm.

Theorem 4

If A = SΛS−1 is diagonalizable with

Λ = diag{λ1,λ2, · · · ,λm}, |λ1| > |λ2| > · · · > |λm|,

and if all the leading principal submatrices of S−1 have full rank, then
A(k) computed by “pure” QR algorithm converges to a Schur form of
A. The eigenvalues will appear in decreasing order of absolute value.

This theorem is a direct result of the following lemma.
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Lemma 5

The A(k) computed by “pure” QR algorithm is identical to the matrix

(Q
(k)
n )∗AQ

(k)
n implicitly computed by running subspace iteration on

matrix A ∈ Cm×m with n = m and Q
(0)
n = I. (We need an assumption

about QR factorizations used in subspace iteration.)

Proof. We use induction. For k = 1, let Q
(1)
n = Q(1) and R

(1)
n = R(1).

We have A(1) = (Q
(1)
n )∗AQ

(1)
n . Assume A(k−1) = (Q

(k−1)
n )∗AQ

(k−1)
n .

Then from the “pure” QR algorithm and the induction hypothesis, we
have

Q(k)R(k) = (Q(k−1)
n )∗AQ(k−1)

n , i.e., AQ(k−1)
n = Q(k−1)

n Q(k)R(k).

Let Q
(k)
n = Q

(k−1)
n Q(k) and R

(k)
n = R(k) be the QR factorization of

AQ
(k−1)
n used in subspace iteration. By R(k) = R

(k)
n = (Q

(k)
n )∗AQ

(k−1)
n

and Q(k) = (Q
(k−1)
n )∗Q

(k)
n , we have

A(k) = R(k)Q(k) = (Q(k)
n )∗AQ(k−1)

n (Q(k−1)
n )∗Q(k)

n = (Q(k)
n )∗AQ(k)

n .

This completes the proof.
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From earlier analysis, we know that the convergence rate of “pure”
QR algorithm depends on the absolute values of the ratios of
eigenvalues. To speed convergence, we can use shift and invert
techniques.

3. QR algorithm with shifts

Algorithm 3: QR algorithm with shifts

A(0) = A
for k = 1, 2, 3, . . . ,

Pick a shift µ(k) near an eigenvalue of A

Q(k)R(k) = A(k−1) − µ(k)I (QR factorization)

A(k) = R(k)Q(k) + µ(k)I
end

Proposition 6

We have A(k) = (Q(k))∗A(k−1)Q(k) = (Q(k))∗AQ(k), where

Q(k) := Q(1)Q(2) · · ·Q(k).
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Proposition 7

We have the factorization (for k ≥ 1)

(A− µ(k)I)(A− µ(k−1)I) · · · (A− µ(1)I) = Q(k)R(k),

where Q(k) := Q(1)Q(2) · · ·Q(k), and R(k) := R(k)R(k−1) · · ·R(1).

Proof. We use induction. For k = 1, A− µ(1)I = Q(1)R(1) = Q(1)R(1).

Assume (A− µ(k−1)I)(A− µ(k−2)I) · · · (A− µ(1)I) = Q(k−1)R(k−1). By

Proposition 6, we have A(k−1) = (Q(k−1))∗AQ(k−1). Then

(A− µ(k)I)(A− µ(k−1)I) · · · (A− µ(1)I) = (A− µ(k)I)Q(k−1)R(k−1)

= (AQ(k−1) − µ(k)Q(k−1))R(k−1)

= (Q(k−1)A(k−1) − µ(k)Q(k−1))R(k−1)

= Q(k−1)(A(k−1) − µ(k)I)R(k−1) = Q(k−1)Q(k)R(k)R(k−1) = Q(k)R(k).

This completes the proof.
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Connection with shifted power iteration: By

(A− µ(k)I)(A− µ(k−1)I) · · · (A− µ(1)I) = Q(k)R(k),

the first column of Q(k) is the result of applying k steps of shifted
power iteration on the matrix A using the starting vector e1 and
the shifts µ(j), j = 1 : k.

Connection with shifted inverse iteration: By

Q(k) = (A∗ − µ(k)I)−1(A∗ − µ(k−1)I)−1 · · · (A∗ − µ(1)I)−1(R(k))∗,

the last column of Q(k) is the result of applying k steps of shifted
inverse iteration on the matrix A∗ using the starting vector em
and the shifts µ(j), j = 1 : k.

If the shifts are good eigenvalue estimates, the last column of Q(k),

i.e., Q(k)em, converges quickly to an eigenvector of A∗.
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Connection with Rayleigh quotient iteration: Choose

µ(1) = r(em) = e∗mAem,

µ(k+1) = r(Q(k)em) = (Q(k)em)∗A(Q(k)em), k ≥ 1,

as the shifts. Then µ(k+1) and Q(k)em are identical to those
computed by the Rayleigh quotient iteration on A∗ starting with
em. Assume the algorithm converges. Then Q(k)em converges
quadratically or cubically to an eigenvector of A∗.

Rayleigh quotient shift µ(k+1) = A
(k)
mm: In the QR algorithm, we

have

A(k)
mm = e∗mA(k)em = e∗m(Q(k))∗AQ(k)em = r(Q(k)em),

which means that the Rayleigh quotient r(Q(k)em) appears as the

(m,m) entry of A(k). So it comes for free!

Other issues: Wilkinson shift ...
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4. Upper Hessenberg structure in QR algorithm

Proposition 8

Upper Hessenberg structure is preserved by QR algorithm.

Proof.

For the upper Hessenberg matrix H(k−1) − µ(k)I, it is easy to show that
there exists a QR factorization Q(k)R(k) = H(k−1) − µ(k)I such that
Q(k) is upper Hessenberg. Then it is easy to confirm that R(k)Q(k)

remains upper Hessenberg and adding µ(k)I does not change this.

Proposition 9

Hermitian tridiagonal structure is preserved by QR algorithm.

Hint: Hermitian + tridiagonal = Hermitian + upper Hessenberg.

For simplicity, in subsections 4.1 – 4.3, we only consider the real case.
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4.1. Implicit Q theorem

Definition 10

An upper Hessenberg matrix H is unreduced if all (j + 1, j) entries of
H are nonzero.

Theorem 11 (Implicit Q theorem)

Let A ∈ Rm×m. Suppose that Q⊤AQ = H is unreduced upper
Hessenberg and Q is orthogonal. Then columns 2 to m of Q are
determined uniquely (up to signs) by the first column of Q.

Remark 12

Implicit Q theorem implies that QR algorithm can be implemented
cheaply on unreduced upper Hessenberg matrices. The implementation
will be implicit in the sense that we do not explicitly compute the QR
factorization of an unreduced upper Hessenberg matrix each iteration
but rather construct Q implicitly as a product of Givens rotations and
other simple orthogonal matrices. See subsections 4.2 – 4.3 for details.
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Proof of implicit Q theorem.

Suppose that Q⊤AQ = H and V⊤AV = G are both unreduced upper
Hessenberg, Q and V are orthogonal, and the first columns of Q and V
are equal. Let (X)i denote the ith column of X. Let W := V⊤Q. By

GW = GV⊤Q = V⊤AQ = V⊤QH = WH,

we have

G(W)i = W(H)i =
*i+1

j=1
hji(W)j .

Thus,

hi+1,i(W)i+1 = G(W)i −
*i

j=1
hji(W)j .

Since (W)1 = e1 and G is upper Hessenberg, we can use induction on i
to show that (W)i is nonzero in entries 1 to i only; i.e., W is upper
triangular. Since W is also orthogonal, then W is diagonal and

W = diag{1,±1, · · · ,±1},

which implies
Vdiag{1,±1, · · · ,±1} = Q.
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4.2. Implicit single shift QR algorithm (µ(k) ∈ R)
To compute H(k) = (Q(k))⊤H(k−1)Q(k) from H(k−1) in the QR
algorithm (assume that H(k) is unreduced), we will need only to

(1) compute the first column of Q(k) (which is parallel to the first
column of H(k−1) − µ(k)I and so can be gotten just by normalizing
this column vector).

(2) choose other columns of Q(k) such that Q(k) is orthogonal and
(Q(k))⊤H(k−1)Q(k) is unreduced upper Hessenberg.

By the implicit Q theorem, we know that we will have computed
H(k) correctly because Q(k) is unique up to signs, which do not
matter. Signs do not matter because changing the signs of the
columns of Q(k) is the same as changing Q(k)R(k) = H(k−1) − µ(k)I
to

(Q(k)S(k))(S(k)R(k)) = H(k−1) − µ(k)I,

where S(k) = diag{1,±1, · · · ,±1}.
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To see how to use the implicit Q theorem, we use a 5× 5 example.

1. Q⊤
1 =

!

""""#

c1 s1
−s1 c1

1
1

1

$

%%%%&
, H1 := Q⊤

1 HQ1 =

!

""""#

× × × × ×
× × × × ×
+ × × × ×
0 0 × × ×
0 0 0 × ×

$

%%%%&

Here c1 and s1 are unknown, and H = H(k−1).

2. Q⊤
2 =

!

""""#

1
c2 s2
−s2 c2

1
1

$

%%%%&
, Q⊤

2 H1 =

!

""""#

× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×

$

%%%%&
,

H2 := Q⊤
2 H1Q2 =

!

""""#

× × × × ×
× × × × ×
0 × × × ×
0 + × × ×
0 0 0 × ×

$

%%%%&
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3. Q⊤
3 =

+

,,,,-

1
1

c3 s3
−s3 c3

1

.

////0
, Q⊤

3 H2 =

+

,,,,-

× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×

.

////0
,

H3 := Q⊤
3 H2Q3 =

+

,,,,-

× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 + × ×

.

////0

4. Q⊤
4 =

+

,,,,-

1
1

1
c4 s4
−s4 c4

.

////0
, Q⊤

4 H3 =

+

,,,,-

× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×

.

////0
,
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H4 := Q⊤
4 H3Q4 =

+

,,,,-

× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×

.

////0

Altogether Q⊤H(k−1)Q = H4 is upper Hessenberg, where

Q = Q1Q2Q3Q4 =

+

,,,,-

c1 × × × ×
s1 × × × ×

s2 × × ×
s3 × ×

s4 c4

.

////0
.

The first column of Q is
!
c1 s1 0 · · · 0

"⊤
, which by the

implicit Q theorem has uniquely determined the other columns of
Q (up to signs). We now choose the first column of Q to be
proportional to the first column of H(k−1) − µ(k)I. Then we have
Q = Q(k)diag{1,±1, · · · ,±1}, which means Q is the Q-factor of a
QR factorization of H(k−1) − µ(k)I.
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4.3. Implicit double shift QR algorithm (µ(k) ∈ C)

We describe how to maintain real arithmetic by shifting µ(k) and
µ(k) in succession:

Q(k−1/2)R(k−1/2) = H(k−1) − µ(k)I

H(k−1/2) = R(k−1/2)Q(k−1/2) + µ(k)I

= (Q(k−1/2))∗H(k−1)Q(k−1/2)

Q(k)R(k) = H(k−1/2) − µ(k)I

H(k) = R(k)Q(k) + µ(k)I

= (Q(k))∗H(k−1/2)Q(k)

= (Q(k−1/2)Q(k))∗H(k−1)Q(k−1/2)Q(k)
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Lemma 13

Assume H(0) = H is real. We can choose Q(k−1/2) and Q(k) such that

(1) Q(k−1/2)Q(k) is real,

(2) H(k) is therefore real,

(3) the first column of Q(k−1/2)Q(k) is easy to compute.

Proof. Since

Q(k)R(k) = H(k−1/2) − µ(k)I = R(k−1/2)Q(k−1/2) + (µ(k) − µ(k))I,

we get

Q(k−1/2)Q(k)R(k)R(k−1/2)

= Q(k−1/2)(R(k−1/2)Q(k−1/2) + (µ(k) − µ(k))I)R(k−1/2)

= Q(k−1/2)R(k−1/2)Q(k−1/2)R(k−1/2) + (µ(k) − µ(k))Q(k−1/2)R(k−1/2)

= (H(k−1) − µ(k)I)2 + (µ(k) − µ(k))(H(k−1) − µ(k)I)

= (H(k−1))2 − 2Re(µ(k))H(k−1) + |µ(k)|2I =: M.
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Note that
Q(k−1/2)Q(k)R(k)R(k−1/2) = M

is a QR factorization of the real matrix M. Therefore, Q(k−1/2)Q(k)

and R(k)R(k−1/2) can be chosen real. This means that

H(k) = (Q(k−1/2)Q(k))∗H(k−1)Q(k−1/2)Q(k)

also is real if H(k−1) is real. The first column of Q(k−1/2)Q(k) is
proportional to the first column of

(H(k−1))2 − 2Re(µ(k))H(k−1) + |µ(k)|2I,

whose sparsity pattern is
!
× × × 0 · · · 0

"⊤
. Obviously, the first

column of Q(k−1/2)Q(k) is easy to compute since H(k−1) is upper
Hessenberg.

The implicit Q theorem and the last lemma can be used to compute
H(k) from H(k−1).
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We provide a 6× 6 example. Let H = H(k−1).

1. Choose an orthogonal matrix

Q⊤
1 =

#1Q⊤ 0
0 I

$
, 1Q⊤ 1Q = I3,

where the first column of Q1 is proportional to the first column of

H2 − 2Re(µ(k))H+ |µ(k)|2I,

so

Q⊤
1 H =

!

""""""#

× × × × × ×
× × × × × ×
+ × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×

$

%%%%%%&
, Q⊤

1 HQ1 =

!

""""""#

× × × × × ×
× × × × × ×
+ × × × × ×
+ + × × × ×
0 0 0 × × ×
0 0 0 0 × ×

$

%%%%%%&
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2. Choose a Householder reflector Q⊤
2 , which affects only rows 2,3,

and 4 of H1 := Q⊤
1 HQ1, zeroing out entries (3,1) and (4,1) of H1

(this means that Q⊤
2 is the identity matrix outside rows and

columns 2 through 4):

Q⊤
2 =

+

,,,,,,-

1
× × ×
× × ×
× × ×

1
1

.

//////0
, Q⊤

2 H1 =

+

,,,,,,-

× × × × × ×
× × × × × ×
0 × × × × ×
0 + × × × ×
0 0 0 × × ×
0 0 0 0 × ×

.

//////0
,

H2 := Q⊤
2 H1Q2 =

+

,,,,,,-

× × × × × ×
× × × × × ×
0 × × × × ×
0 + × × × ×
0 + + × × ×
0 0 0 0 × ×

.

//////0
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3. Choose a Householder reflector Q⊤
3 , which affects only rows 3,4,

and 5 of H2, zeroing out entries (4,2) and (5,2) of H2 (this means
that Q⊤

3 is the identity matrix outside rows and columns 3
through 5):

Q⊤
3 =

+

,,,,,,-

1
1

× × ×
× × ×
× × ×

1

.

//////0
, Q⊤

3 H2 =

+

,,,,,,-

× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 + × × ×
0 0 0 0 × ×

.

//////0
,

H3 := Q⊤
3 H2Q3 =

+

,,,,,,-

× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 + × × ×
0 0 + + × ×

.

//////0
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4. Choose a Householder reflector Q⊤
4 , which affects only rows 4,5,

and 6 of H3, zeroing out entries (5,3) and (6,3) of H3 (this means
that Q⊤

4 is the identity matrix outside rows and columns 4
through 6):

Q⊤
4 =

+

,,,,,,-

1
1

1
× × ×
× × ×
× × ×

.

//////0
, Q⊤

4 H3 =

+

,,,,,,-

× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 + × ×

.

//////0
,

H4 := Q⊤
4 H3Q4 =

+

,,,,,,-

× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 × × ×

.

//////0
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5. Choose a Givens rotation Q⊤
5

Q⊤
5 =

+

,,,,,,-

1
1

1
1

c s
−s c

.

//////0
, Q⊤

5 H4 =

+

,,,,,,-

× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×

.

//////0
,

H5 = Q⊤
5 H4Q5 =

+

,,,,,,-

× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×

.

//////0
.

Altogether Q⊤H(k−1)Q = H5 is upper Hessenberg, where

Q = Q1Q2Q3Q4Q5 with Qe1 = Q1e1.

Numerical Linear Algebra Lecture 9 Xiamen University 29 / 32



4.4. Two phases of QR algorithm

First phase: reduce to an upper Hessenberg matrix

Numerical Linear Algebra Lecture 9 Xiamen University 30 / 32



Second phase: generate a sequence of upper Hessenberg (or
tridiagonal) matrices that converge to an upper triangular (or
diagonal) matrix.
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5. Further reading

J. L. Aurentz, T. Mach, L. Robol, R. Vandebril, and D. S. Watkins

Core-Chasing Algorithms for the Eigenvalue Problem

Society for Industrial and Applied Mathematics (SIAM), 2018

A. Casulli and L. Robol

Rank-structured QR for Chebyshev rootfinding

SIAM J. Matrix Anal. Appl., 42, 1148–1171, 2021.

D. S. Watkins

Understanding the QR algorithm

SIAM Review, 24, 427–440, 1982.

The QR algorithm revisited

SIAM Review, 50, 133–145, 2008.
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