Numerical Linear Algebra Assignment 3

Exercise 1. (10 points)

- (1) Let **P** be a projector. Given an explicit expression for the inverse of $\lambda \mathbf{I} \mathbf{P}$, where $\lambda \neq 0, 1$.
- (2) Suppose $\mathbf{A} \in \mathbb{C}^{m \times n}$ has a full SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$, where

$$\mathbf{U} = [\mathbf{U}_r \quad \mathbf{U}_c], \quad \mathbf{V} = [\mathbf{V}_r \quad \mathbf{V}_c], \quad r = \operatorname{rank}(\mathbf{A}).$$

What are the orthogonal projections onto null(\mathbf{A})^{\perp}, null(\mathbf{A}), range(\mathbf{A}), and range(\mathbf{A})^{\perp}?

Exercise 2. (Carl D. Meyer, 10 points)

Let \mathbf{P} and \mathbf{Q} be projectors (oblique or orthogonal).

- (i) Prove that $range(\mathbf{P}) = range(\mathbf{Q})$ if and only if $\mathbf{P}\mathbf{Q} = \mathbf{Q}$ and $\mathbf{Q}\mathbf{P} = \mathbf{P}$.
- (ii) Prove that $null(\mathbf{P}) = null(\mathbf{Q})$ if and only if $\mathbf{P}\mathbf{Q} = \mathbf{P}$ and $\mathbf{Q}\mathbf{P} = \mathbf{Q}$.

Exercise 3. (10 points)

Two subspaces $S_1, S_2 \subseteq \mathbb{C}^m$ are called *complementary subspaces* if they satisfy

$$\mathcal{S}_1 \cap \mathcal{S}_2 = \{\mathbf{0}\}, \qquad \mathcal{S}_1 + \mathcal{S}_2 = \mathbb{C}^m.$$

Let S_1 and S_2 be complementary subspaces. Prove that there exists a projector **P** with

$$\operatorname{range}(\mathbf{P}) = \mathcal{S}_1, \quad \operatorname{null}(\mathbf{P}) = \mathcal{S}_2.$$

Exercise 4. (TreBau Exercise 6.1, 10 points)

If **P** is an orthogonal projector, then I-2P is unitary. Prove this algebraically, and give a geometric interpretation.

Exercise 5. (TreBau Exercise 6.5, 10 points)

Let $\mathbf{P} \in \mathbb{C}^{m \times m}$ be a nonzero projector. Show that $\|\mathbf{P}\|_2 \ge 1$, with equality if and only if \mathbf{P} is an orthogonal projector.

Exercise 6. (10 points)

Let $S \subseteq \mathbb{C}^m$ and $\mathcal{T} \subseteq \mathbb{C}^m$. Let \mathbf{P}_S and \mathbf{P}_T be orthogonal projectors onto S and \mathcal{T} , respectively. Assume that $S \subseteq \mathcal{T}$.

- (i) Prove that $\mathbf{P}_{\mathcal{S}}\mathbf{P}_{\mathcal{T}} = \mathbf{P}_{\mathcal{T}}\mathbf{P}_{\mathcal{S}} = \mathbf{P}_{\mathcal{S}}$.
- (ii) Prove that $\mathbf{P}_{\mathcal{T}} \mathbf{P}_{\mathcal{S}}$ is also an orthogonal projection.
- (iii) range $(\mathbf{P}_{\mathcal{T}} \mathbf{P}_{\mathcal{S}}) =$? null $(\mathbf{P}_{\mathcal{T}} \mathbf{P}_{\mathcal{S}}) =$?

Exercise 7. (TreBau Exercise 7.3, 10 points)

Let **A** be an $m \times m$ matrix, and let \mathbf{a}_j be its *j*th column. Give an algebraic proof of *Hadamard's* inequality:

$$|\det(\mathbf{A})| \leq \prod_{j=1}^m \|\mathbf{a}_j\|_2.$$

Also give a geometric interpretation of this result, making use of the fact that the determinant equals the volume of a parallelepiped.

Exercise 8. (TreBau Exercise 7.5, 10 points)

Let **A** be an $m \times n$ matrix $(m \ge n)$, and let $\mathbf{A} = \mathbf{Q}_n \mathbf{R}_n$ be a reduced QR factorization.

- (a) Show that A has rank n if and only if all the diagonal entries of \mathbf{R}_n are nonzero.
- (b) Suppose \mathbf{R}_n has k nonzero diagonal entries for some k with $0 \le k \le n$. What does this imply about the rank of **A**? Exactly k? At least k? At most k? Give a precise answer, and prove it.

Exercise 9. (10 points)

Compute a QR factorization of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ \sqrt{2} & 1 + \sqrt{2} & 1 \\ 1 & 2 & 1 \end{bmatrix}$.

Exercise 10. (Programming, TreBau Exercise 8.2, 10 points)

Additional Exercise 1.

Let C[-1,1] denote the linear space of real-valued continuous functions on [-1,1] with the inner product

$$\forall f,g \in C[-1,1], \qquad \langle f,g \rangle_w = \int_{-1}^1 w(x) f(x) g(x) \mathrm{d}x,$$

where $w(x) \ge 0 (\neq 0)$ is a weight function (continuous). For the case $w(x) = 1 + x^2$, complete the following:

(i) Write Matlab code to compute the first six orthogonal (with respect to the inner product $\langle \cdot, \cdot \rangle_w$) polynomials $(P_j(x), j = 0, 1, 2, 3, 4, 5)$, which are conventionally normalized so that $P_j(1) = 1$). Hint: you can use Matlab's symbolic toolbox. For your reference, the polynomials are given by:

P =

(ii) Modify the code we used for discrete Legendre polynomials to plot the discrete polynomials corresponding to those obtained in (i).