Numerical Linear Algebra Assignment 3

Exercise 1. (10 points)

(1) Let \mathbf{P} be a projector. Given an explicit expression for the inverse of $\lambda \mathbf{I}-\mathbf{P}$, where $\lambda \neq 0,1$.
(2) Suppose $\mathbf{A} \in \mathbb{C}^{m \times n}$ has a full $\operatorname{SVD} \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{*}$, where

$$
\mathbf{U}=\left[\begin{array}{ll}
\mathbf{U}_{r} & \mathbf{U}_{\mathrm{c}}
\end{array}\right], \quad \mathbf{V}=\left[\begin{array}{ll}
\mathbf{V}_{r} & \mathbf{V}_{\mathrm{c}}
\end{array}\right], \quad r=\operatorname{rank}(\mathbf{A}) .
$$

What are the orthogonal projections onto $\operatorname{null}(\mathbf{A})^{\perp}, \operatorname{null}(\mathbf{A}), \operatorname{range}(\mathbf{A})$, and range $(\mathbf{A})^{\perp}$?

Exercise 2. (Carl D. Meyer, 10 points)

Let \mathbf{P} and \mathbf{Q} be projectors (oblique or orthogonal).
(i) Prove that $\operatorname{range}(\mathbf{P})=\operatorname{range}(\mathbf{Q})$ if and only if $\mathbf{P Q}=\mathbf{Q}$ and $\mathbf{Q P}=\mathbf{P}$.
(ii) Prove that $\operatorname{null}(\mathbf{P})=\operatorname{null}(\mathbf{Q})$ if and only if $\mathbf{P Q}=\mathbf{P}$ and $\mathbf{Q P}=\mathbf{Q}$.

Exercise 3. (10 points)

Two subspaces $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{C}^{m}$ are called complementary subspaces if they satisfy

$$
\mathcal{S}_{1} \cap \mathcal{S}_{2}=\{\mathbf{0}\}, \quad \mathcal{S}_{1}+\mathcal{S}_{2}=\mathbb{C}^{m} .
$$

Let \mathcal{S}_{1} and \mathcal{S}_{2} be complementary subspaces. Prove that there exists a projector \mathbf{P} with

$$
\operatorname{range}(\mathbf{P})=\mathcal{S}_{1}, \quad \operatorname{null}(\mathbf{P})=\mathcal{S}_{2} .
$$

Exercise 4. (TreBau Exercise 6.1, 10 points)

If \mathbf{P} is an orthogonal projector, then $\mathbf{I}-2 \mathbf{P}$ is unitary. Prove this algebraically, and give a geometric interpretation.

Exercise 5. (TreBau Exercise 6.5, 10 points)

Let $\mathbf{P} \in \mathbb{C}^{m \times m}$ be a nonzero projector. Show that $\|\mathbf{P}\|_{2} \geq 1$, with equality if and only if \mathbf{P} is an orthogonal projector.

Exercise 6. (10 points)

Let $\mathcal{S} \subseteq \mathbb{C}^{m}$ and $\mathcal{T} \subseteq \mathbb{C}^{m}$. Let $\mathbf{P}_{\mathcal{S}}$ and $\mathbf{P}_{\mathcal{T}}$ be orthogonal projectors onto \mathcal{S} and \mathcal{T}, respectively. Assume that $\mathcal{S} \subseteq \mathcal{T}$.
(i) Prove that $\mathbf{P}_{\mathcal{S}} \mathbf{P}_{\mathcal{T}}=\mathbf{P}_{\mathcal{T}} \mathbf{P}_{\mathcal{S}}=\mathbf{P}_{\mathcal{S}}$.
(ii) Prove that $\mathbf{P}_{\mathcal{T}}-\mathbf{P}_{\mathcal{S}}$ is also an orthogonal projection.
(iii) $\operatorname{range}\left(\mathbf{P}_{\mathcal{T}}-\mathbf{P}_{\mathcal{S}}\right)=$? $\operatorname{null}\left(\mathbf{P}_{\mathcal{T}}-\mathbf{P}_{\mathcal{S}}\right)=$?

Exercise 7. (TreBau Exercise 7.3, 10 points)

Let \mathbf{A} be an $m \times m$ matrix, and let \mathbf{a}_{j} be its j th column. Give an algebraic proof of Hadamard's inequality:

$$
|\operatorname{det}(\mathbf{A})| \leq \prod_{j=1}^{m}\left\|\mathbf{a}_{j}\right\|_{2} .
$$

Also give a geometric interpretation of this result, making use of the fact that the determinant equals the volume of a parallelepiped.

Exercise 8. (TreBau Exercise 7.5, 10 points)

Let \mathbf{A} be an $m \times n$ matrix $(m \geq n)$, and let $\mathbf{A}=\mathbf{Q}_{n} \mathbf{R}_{n}$ be a reduced QR factorization.
(a) Show that \mathbf{A} has rank n if and only if all the diagonal entries of \mathbf{R}_{n} are nonzero.
(b) Suppose \mathbf{R}_{n} has k nonzero diagonal entries for some k with $0 \leq k \leq n$. What does this imply about the rank of A? Exactly k ? At least k ? At most k ? Give a precise answer, and prove it.

Exercise 9. (10 points)

Compute a QR factorization of the matrix $\mathbf{A}=\left[\begin{array}{ccc}1 & 2 & 1 \\ \sqrt{2} & 1+\sqrt{2} & 1 \\ 1 & 2 & 1\end{array}\right]$.

Exercise 10. (Programming, TreBau Exercise 8.2, 10 points)

Additional Exercise 1.

Let $C[-1,1]$ denote the linear space of real-valued continuous functions on $[-1,1]$ with the inner product

$$
\forall f, g \in C[-1,1], \quad\langle f, g\rangle_{w}=\int_{-1}^{1} w(x) f(x) g(x) \mathrm{d} x,
$$

where $w(x) \geq 0(\not \equiv 0)$ is a weight function (continuous). For the case $w(x)=1+x^{2}$, complete the following:
(i) Write Matlab code to compute the first six orthogonal (with respect to the inner product $\langle\cdot, \cdot\rangle_{w}$) polynomials $\left(P_{j}(x), j=0,1,2,3,4,5\right.$, which are conventionally normalized so that $\left.P_{j}(1)=1\right)$. Hint: you can use Matlab's symbolic toolbox. For your reference, the polynomials are given by:
$P=$

$$
\begin{array}{r}
1 \\
x \\
\left(5 * x^{\wedge} 2\right) / 3-2 / 3 \\
\left(14 * x^{\wedge} 3\right) / 5-(9 * x) / 5 \\
\left(119 * x^{\wedge} 4\right) / 24-\left(161 * x^{\wedge} 2\right) / 36+37 / 72 \\
\left(1221 * x^{\wedge} 5\right) / 136-\left(705 * x^{\wedge} 3\right) / 68+(325 * x) / 136
\end{array}
$$

(ii) Modify the code we used for discrete Legendre polynomials to plot the discrete polynomials corresponding to those obtained in (i).

