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1. Krylov subspace

Given A ∈ Cm×m and nonzero r ∈ Cm, the jth Krylov subspace
generated by A and r is defined by

Kj(A, r) := span{r,Ar,A2r, · · · ,Aj−1r}.

Obviously, Kj(A, r) ⊆ Kj+1(A, r) and dimKj(A, r) ≤ j.

Proposition 1

Let Pj denote the set of polynomials of degree ≤ j. Then

Kj(A, r) = {p(A)r | p ∈ Pj−1}.

Proposition 2

If the minimal polynomial of the matrix A has degree n, then for any
j > n and any nonzero r ∈ Cm, we have

dimKj(A, r) ≤ n.
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1.1. Arnoldi process

Algorithm: Arnoldi process generating orthonormal basis

Given A ∈ Cm×m and nonzero r ∈ Cm

q1 = r/r2
for j = 1, 2, 3, . . . ,

v = Aqj

for i = 1 to j
hij = 〈v,qi〉 = q∗

iv
v = v − hijqi

end
hj+1,j = v2
qj+1 = v/hj+1,j

end

At the end of step j, we obtain

v = (I− qjq
∗
j ) · · · (I− q2q

∗
2)(I− q1q

∗
1)Aqj .

We call the Arnoldi process breaks down at step k if hk+1,k = 0.
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Remark 3

The Arnoldi process is the modified Gram–Schimidt orthogonalization
applied to {r,Aq1,Aq2, · · · ,Aqk}. We have the Arnoldi relation

A

q1 · · · qj


=


q1 · · · qj+1







h11 · · · h1j

h21
. . .

...
. . . hjj

hj+1,j




, ∀ 1 ≤ j < k,

that is AQj = Qj+1
Hj . ( Hj is upper Hessenberg.) Let

Hj :=





h11 · · · h1j

h21
. . .

...
. . . hjj



 , ∀ 1 ≤ j ≤ k.

We have AQk = QkHk and Hj = Q∗
jAQj for all 1 ≤ j ≤ k.
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Theorem 4

Suppose that the Arnoldi process breaks down at step k. We have

span{q1,q2, · · · ,qj} = Kj(A, r), j = 1, 2, . . . , k,

and the set {q1,q2, · · · ,qk} is orthonormal.

Corollary 5

The matrices {Qj}kj=1 generated by the Arnoldi process are Q-factors
of reduced QR factorizations of the Krylov matrices,

Kj :=

r Ar · · · Aj−1r


= QjRj , j = 1, 2, . . . , k.

Moreover, dimKj(A, r) = j for 1 ≤ j ≤ k, and dimKj(A, r) = k for
j > k.

Remark 6

Both Kj and Rj are not formed explicitly in the Arnoldi process. We
have r11 = r2. How to obtain Rj from Hj? (Exercise)
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2. Generalized minimal residual method (GMRES)

The principle of GMRES: Consider a nonsingular linear system

Ax = b, A ∈ Cm×m, b ∈ Cm.

For any initial guess x0, at step j, GMRES finds the jth
approximate solution

xj = argmin
x∈x0+Kj(A,r0)

b−Ax2,

where r0 := b−Ax0 and

Kj(A, r0) = span{r0,Ar0, . . . ,A
j−1r0}.

For the residual rj := b−Axj , we have

rj2 = min
x∈x0+Kj(A,r0)

b−Ax2.
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Assume that the Arnoldi process for the orthonormal basis of
Kj(A, r0) breaks down at step k. For 1 ≤ j < k, we have

rj2 = min
x∈x0+Kj(A,r0)

b−Ax2 = min
y∈Cj

r0 −AQjy2

= min
y∈Cj

r0 −Qj+1
Hjy


2

(by Arnoldi relation)

= min
y∈Cj

r02e1 − Hjy

2
> 0.

For j = k, we have

rk2 = min
x∈x0+Kk(A,r0)

b−Ax2 = min
y∈Ck

r0 −AQky2

= min
y∈Ck

r0 −QkHky2 (by Arnoldi relation)

= min
y∈Ck

r02e1 −Hky2 = 0.

Once yj is found, set xj = x0 +Qjyj .
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The least squares problem about y can be solved inexpensively
with Givens rotations, exploiting the upper Hessenberg structure
of Hj , costing just O(j2) or O(j) instead of O(j3).

2.1. Convergence of GMRES

Theorem 7

Assume that the Arnoldi process for the orthonormal basis of Kj(A, r0)
breaks down at step k.

(1) For 1 ≤ j < k, the residual rj satisfies (AQj)
∗rj = 0, i.e.,

rj ⊥ AKj .

(2) For 0 ≤ j ≤ k, the residual rj satisfies

r02 ≥ r12 ≥ · · · ≥ rk−12 > rk2 = 0.

That is to say GMRES converges monotonically and finds the
exact solution at step k.
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Theorem 8

Suppose A is diagonalizable, i.e., A = VΛV−1 for some nonsingular
matrix V and diagonal matrix Λ. At step j of the GMRES iteration,
the residual rj satisfies

rj2
r02

≤ min
p∈Pj ,p(0)=1

p(A)2 ≤ κ(V) min
p∈Pj ,p(0)=1

max
λ∈Λ(A)

|p(λ)|,

where Λ(A) is the set of eigenvalues of A, and κ(V) = V2V−12.

Y. Saad and M.H. Schultz

GMRES: A generalized minimal residual algorithm for solving
non-symmetric linear systems

SIAM J. Sci. Stat. Comput., 7: 856–869, 1986.

Y. Saad

A flexible inner-outer preconditioned GMRES algorithm

SIAM J. Sci. Comput., 14: 461–469, 1993.

Numerical Linear Algebra Lecture 11 Xiamen University 9 / 16

https://epubs.siam.org/doi/10.1137/0907058
https://epubs.siam.org/doi/10.1137/0914028


Exercise: Assume the Arnoldi process for {A, r0} breaks down at
step k > 1. For 1 ≤ j < k, we have the Arnoldi relation

AQj = Qj+1
Hj .

For 1 ≤ j < k, prove the following:

(a) The jth residual rj of GMRES can be uniquely expressed as

rj = pj(A)r0, deg(pj) ≤ j, pj(0) = 1.

(b) Let Hj = Q∗
jAQj . The unique polynomial pj in (a) is given by

pj(z) =

j

i=1


1− θ

(j)
i z


,

where θ
(j)
i , i = 1, 2, . . . , j, are the eigenvalues of ( H∗

j
Hj)

−1H∗
j .

Hint: prove (1). H∗
j


Ij+1 0


pj(H)e1 = H∗

jpj(H
−∗
j

H∗
j
Hj)e1;

(2). If H∗
j+1 singular, then nonzero θ

(j)
i and θ

(j+1)
i are the same.
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2.2. Numerical examples

Example 1: A, 200× 200 entries from real normal distribution of
mean 2 and standard deviation 0.5/

√
200

m = 200; A = 2*eye(m)+0.5*randn(m)/sqrt(m);

Ax = b, x0 = 0, b =

1 1 · · · 1

⊤
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Convergence history of Example 1
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Example 2:

m = 200; B = 2*eye(m)+0.5*randn(m)/sqrt(m);

A = B+D, D is the diagonal matrix with complex entries

di = (−2 + 2 sin θi) + i cos θi, θi =
(i− 1)π

m− 1
, 1 ≤ i ≤ m.
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Convergence history of Example 2
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2.3. Preconditioning (see Lecture 40 of NLA)

To improve the convergence of Krylov subspace methods, it is
important to have a preconditioner, denoted by M.

Left preconditioning, i.e.,

M−1Ax = M−1b.

Right preconditioning is often used, i.e.,

AM−1z = b, x = M−1z,

because it produces the same residual as that of the original
system in exact precision arithmetic.

The preconditioned matrix M−1A or AM−1 should have
eigenvalues clustering behavior.

Only the action of applying M−1 to a given vector is computed in
GMRES. So we never explicitly form M−1. We only require that
the action M−1z must be cheap.
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How to find a good preconditioner? It’s problem dependent.

Example. Let A =


A B∗

C 0


and M =


A 0
0 CA−1B∗


, where

A ∈ Cm×m is invertible, and B,C ∈ Cn×m with m ≥ n. Assume
that −CA−1B∗ is invertible.

The preconditioned matrix M−1A is diagonalizable and has at
most three distinct eigenvalues 1, (1 +

√
5)/2, and (1−

√
5)/2.

2.4. Restarted GMRES

For larger values of j, the cost of GMRES in operations and
storage may be prohibitive. In such circumstances a method called
l-step restarted GMRES or GMRES(l) is often employed.

GMRES(l): After l steps, the GMRES iteration is started anew
with the current vector xl as an initial guess.

Note that GMRES(l) can be expected fail to converge, whereas
GMRES always succeeds for exact arithmetic. (Embree’s paper)

GMRES-IR, GMRES-DR, FGMRES-DR, etc.
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