Lecture 11: Krylov subspace, Generalized minimal residual method

School of Mathematical Sciences, Xiamen University

1. Krylov subspace

- Given $\mathbf{A} \in \mathbb{C}^{m \times m}$ and nonzero $\mathbf{r} \in \mathbb{C}^{m}$, the j th Krylov subspace generated by \mathbf{A} and \mathbf{r} is defined by

$$
\mathcal{K}_{j}(\mathbf{A}, \mathbf{r}):=\operatorname{span}\left\{\mathbf{r}, \mathbf{A r}, \mathbf{A}^{2} \mathbf{r}, \cdots, \mathbf{A}^{j-1} \mathbf{r}\right\}
$$

Obviously, $\mathcal{K}_{j}(\mathbf{A}, \mathbf{r}) \subseteq \mathcal{K}_{j+1}(\mathbf{A}, \mathbf{r})$ and $\operatorname{dim} \mathcal{K}_{j}(\mathbf{A}, \mathbf{r}) \leq j$.

Proposition 1

Let \mathbb{P}_{j} denote the set of polynomials of degree $\leq j$. Then

$$
\mathcal{K}_{j}(\mathbf{A}, \mathbf{r})=\left\{p(\mathbf{A}) \mathbf{r} \mid p \in \mathbb{P}_{j-1}\right\}
$$

Proposition 2

If the minimal polynomial of the matrix \mathbf{A} has degree n, then for any $j>n$ and any nonzero $\mathbf{r} \in \mathbb{C}^{m}$, we have

$$
\operatorname{dim} \mathcal{K}_{j}(\mathbf{A}, \mathbf{r}) \leq n
$$

1.1. Arnoldi process

```
Algorithm: Arnoldi process generating orthonormal basis
    Given \(\mathbf{A} \in \mathbb{C}^{m \times m}\) and nonzero \(\mathbf{r} \in \mathbb{C}^{m}\)
    \(\mathbf{q}_{1}=\mathbf{r} /\|\mathbf{r}\|_{2}\)
    for \(j=1,2,3, \ldots\),
    \(\mathbf{v}=\mathbf{A} \mathbf{q}_{j}\)
    for \(i=1\) to \(j\)
        \(h_{i j}=\left\langle\mathbf{v}, \mathbf{q}_{i}\right\rangle=\mathbf{q}_{i}^{*} \mathbf{v}\)
        \(\mathbf{v}=\mathbf{v}-h_{i j} \mathbf{q}_{i}\)
    end
    \(h_{j+1, j}=\|\mathbf{v}\|_{2}\)
    \(\mathbf{q}_{j+1}=\mathbf{v} / h_{j+1, j}\)
    end
```

- At the end of step j, we obtain

$$
\mathbf{v}=\left(\mathbf{I}-\mathbf{q}_{j} \mathbf{q}_{j}^{*}\right) \cdots\left(\mathbf{I}-\mathbf{q}_{2} \mathbf{q}_{2}^{*}\right)\left(\mathbf{I}-\mathbf{q}_{1} \mathbf{q}_{1}^{*}\right) \mathbf{A} \mathbf{q}_{j}
$$

- We call the Arnoldi process breaks down at step k if $h_{k+1, k}=0$.

Remark 3

The Arnoldi process is the modified Gram-Schimidt orthogonalization applied to $\left\{\mathbf{r}, \mathbf{A q}_{1}, \mathbf{A q}_{2}, \cdots, \mathbf{A} \mathbf{q}_{k}\right\}$. We have the Arnoldi relation

$$
\mathbf{A}\left[\begin{array}{lll}
\mathbf{q}_{1} & \cdots & \mathbf{q}_{j}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{q}_{1} & \cdots & \mathbf{q}_{j+1}
\end{array}\right]\left[\begin{array}{ccc}
h_{11} & \cdots & h_{1 j} \\
h_{21} & \ddots & \vdots \\
& \ddots & h_{j j} \\
& & h_{j+1, j}
\end{array}\right], \forall 1 \leq j<k,
$$

that is $\mathbf{A Q}_{j}=\mathbf{Q}_{j+1} \widetilde{\mathbf{H}}_{j} .\left(\widetilde{\mathbf{H}}_{j}\right.$ is upper Hessenberg. $)$ Let

$$
\mathbf{H}_{j}:=\left[\begin{array}{ccc}
h_{11} & \cdots & h_{1 j} \\
h_{21} & \ddots & \vdots \\
& \ddots & h_{j j}
\end{array}\right], \quad \forall 1 \leq j \leq k .
$$

We have $\mathbf{A Q}_{k}=\mathbf{Q}_{k} \mathbf{H}_{k}$ and $\mathbf{H}_{j}=\mathbf{Q}_{j}^{*} \mathbf{A} \mathbf{Q}_{j}$ for all $1 \leq j \leq k$.

Theorem 4

Suppose that the Arnoldi process breaks down at step k. We have

$$
\operatorname{span}\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{j}\right\}=\mathcal{K}_{j}(\mathbf{A}, \mathbf{r}), \quad j=1,2, \ldots, k
$$

and the set $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{k}\right\}$ is orthonormal.

Corollary 5

The matrices $\left\{\mathbf{Q}_{j}\right\}_{j=1}^{k}$ generated by the Arnoldi process are Q -factors of reduced QR factorizations of the Krylov matrices,

$$
\mathbf{K}_{j}:=\left[\begin{array}{llll}
\mathbf{r} & \mathbf{A r} & \cdots & \mathbf{A}^{j-1} \mathbf{r}
\end{array}\right]=\mathbf{Q}_{j} \mathbf{R}_{j}, \quad j=1,2, \ldots, k .
$$

Moreover, $\operatorname{dim} \mathcal{K}_{j}(\mathbf{A}, \mathbf{r})=j$ for $1 \leq j \leq k$, and $\operatorname{dim} \mathcal{K}_{j}(\mathbf{A}, \mathbf{r})=k$ for $j>k$.

Remark 6
Both \mathbf{K}_{j} and \mathbf{R}_{j} are not formed explicitly in the Arnoldi process. We have $r_{11}=\|\mathbf{r}\|_{2}$. How to obtain \mathbf{R}_{j} from \mathbf{H}_{j} ? (Exercise)
2. Generalized minimal residual method (GMRES)

- The principle of GMRES: Consider a nonsingular linear system

$$
\mathbf{A x}=\mathbf{b}, \quad \mathbf{A} \in \mathbb{C}^{m \times m}, \quad \mathbf{b} \in \mathbb{C}^{m}
$$

For any initial guess \mathbf{x}_{0}, at step j, GMRES finds the j th approximate solution

$$
\mathbf{x}_{j}=\underset{\mathbf{x} \in \mathbf{x}_{0}+\mathcal{K}_{j}\left(\mathbf{A}, \mathbf{r}_{0}\right)}{\operatorname{argmin}}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}
$$

where $\mathbf{r}_{0}:=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}$ and

$$
\mathcal{K}_{j}\left(\mathbf{A}, \mathbf{r}_{0}\right)=\operatorname{span}\left\{\mathbf{r}_{0}, \mathbf{A} \mathbf{r}_{0}, \ldots, \mathbf{A}^{j-1} \mathbf{r}_{0}\right\}
$$

For the residual $\mathbf{r}_{j}:=\mathbf{b}-\mathbf{A} \mathbf{x}_{j}$, we have

$$
\left\|\mathbf{r}_{j}\right\|_{2}=\min _{\mathbf{x} \in \mathbf{x}_{0}+\mathcal{K}_{j}\left(\mathbf{A}, \mathbf{r}_{0}\right)}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}
$$

Assume that the Arnoldi process for the orthonormal basis of $\mathcal{K}_{j}\left(\mathbf{A}, \mathbf{r}_{0}\right)$ breaks down at step k. For $1 \leq j<k$, we have

$$
\begin{aligned}
\left\|\mathbf{r}_{j}\right\|_{2} & =\min _{\mathbf{x} \in \mathbf{x}_{0}+\mathcal{K}_{j}\left(\mathbf{A}, \mathbf{r}_{0}\right)}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}=\min _{\mathbf{y} \in \mathbb{C}^{j}}\left\|\mathbf{r}_{0}-\mathbf{A} \mathbf{Q}_{j} \mathbf{y}\right\|_{2} \\
& =\min _{\mathbf{y} \in \mathbb{C}^{j}}\left\|\mathbf{r}_{0}-\mathbf{Q}_{j+1} \widetilde{\mathbf{H}}_{j} \mathbf{y}\right\|_{2} \quad \text { (by Arnoldi relation) } \\
& =\min _{\mathbf{y} \in \mathbb{C}^{j}}\| \| \mathbf{r}_{0}\left\|_{2} \mathbf{e}_{1}-\widetilde{\mathbf{H}}_{j} \mathbf{y}\right\|_{2}>0 .
\end{aligned}
$$

For $j=k$, we have

$$
\begin{aligned}
\left\|\mathbf{r}_{k}\right\|_{2} & =\min _{\mathbf{x} \in \mathbf{x}_{0}+\mathcal{K}_{k}\left(\mathbf{A}, \mathbf{r}_{0}\right)}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}=\min _{\mathbf{y} \in \mathbb{C}^{k}}\left\|\mathbf{r}_{0}-\mathbf{A} \mathbf{Q}_{k} \mathbf{y}\right\|_{2} \\
& =\min _{\mathbf{y} \in \mathbb{C}^{k}}\left\|\mathbf{r}_{0}-\mathbf{Q}_{k} \mathbf{H}_{k} \mathbf{y}\right\|_{2} \quad \text { (by Arnoldi relation) } \\
& =\min _{\mathbf{y} \in \mathbb{C}^{k}}\| \| \mathbf{r}_{0}\left\|_{2} \mathbf{e}_{1}-\mathbf{H}_{k} \mathbf{y}\right\|_{2}=0 .
\end{aligned}
$$

Once \mathbf{y}_{j} is found, set $\mathbf{x}_{j}=\mathbf{x}_{0}+\mathbf{Q}_{j} \mathbf{y}_{j}$.

- The least squares problem about y can be solved inexpensively with Givens rotations, exploiting the upper Hessenberg structure of $\widetilde{\mathbf{H}}_{j}$, costing just $\mathcal{O}\left(j^{2}\right)$ or $\mathcal{O}(j)$ instead of $\mathcal{O}\left(j^{3}\right)$.

2.1. Convergence of GMRES

Theorem 7

Assume that the Arnoldi process for the orthonormal basis of $\mathcal{K}_{j}\left(\mathbf{A}, \mathbf{r}_{0}\right)$ breaks down at step k.
(1) For $1 \leq j<k$, the residual \mathbf{r}_{j} satisfies $\left(\mathbf{A Q}_{j}\right)^{*} \mathbf{r}_{j}=\mathbf{0}$, i.e.,

$$
\mathbf{r}_{j} \perp \mathbf{A} \mathcal{K}_{j}
$$

(2) For $0 \leq j \leq k$, the residual \mathbf{r}_{j} satisfies

$$
\left\|\mathbf{r}_{0}\right\|_{2} \geq\left\|\mathbf{r}_{1}\right\|_{2} \geq \cdots \geq\left\|\mathbf{r}_{k-1}\right\|_{2}>\left\|\mathbf{r}_{k}\right\|_{2}=0
$$

That is to say GMRES converges monotonically and finds the exact solution at step k.

Theorem 8

Suppose \mathbf{A} is diagonalizable, i.e., $\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{-1}$ for some nonsingular matrix \mathbf{V} and diagonal matrix $\mathbf{\Lambda}$. At step j of the GMRES iteration, the residual \mathbf{r}_{j} satisfies

$$
\frac{\left\|\mathbf{r}_{j}\right\|_{2}}{\left\|\mathbf{r}_{0}\right\|_{2}} \leq \min _{p \in \mathbb{P}_{j}, p(0)=1}\|p(\mathbf{A})\|_{2} \leq \kappa(\mathbf{V}) \min _{p \in \mathbb{P}_{j}, p(0)=1} \max _{\lambda \in \Lambda(\mathbf{A})}|p(\lambda)|
$$

where $\Lambda(\mathbf{A})$ is the set of eigenvalues of \mathbf{A}, and $\kappa(\mathbf{V})=\|\mathbf{V}\|_{2}\left\|\mathbf{V}^{-1}\right\|_{2}$.

- Y. Saad and M.H. Schultz

GMRES: A generalized minimal residual algorithm for solving non-symmetric linear systems
SIAM J. Sci. Stat. Comput., 7: 856-869, 1986.

- Y. Saad

A flexible inner-outer preconditioned GMRES algorithm SIAM J. Sci. Comput., 14: 461-469, 1993.

- Exercise: Assume the Arnoldi process for $\left\{\mathbf{A}, \mathbf{r}_{0}\right\}$ breaks down at step $k>1$. For $1 \leq j<k$, we have the Arnoldi relation

$$
\mathbf{A Q}_{j}=\mathbf{Q}_{j+1} \widetilde{\mathbf{H}}_{j}
$$

For $1 \leq j<k$, prove the following:
(a) The j th residual \mathbf{r}_{j} of GMRES can be uniquely expressed as

$$
\mathbf{r}_{j}=p_{j}(\mathbf{A}) \mathbf{r}_{0}, \quad \operatorname{deg}\left(p_{j}\right) \leq j, \quad p_{j}(0)=1
$$

(b) Let $\mathbf{H}_{j}=\mathbf{Q}_{j}^{*} \mathbf{A} \mathbf{Q}_{j}$. The unique polynomial p_{j} in (a) is given by

$$
p_{j}(z)=\prod_{i=1}^{j}\left(1-\theta_{i}^{(j)} z\right)
$$

where $\theta_{i}^{(j)}, i=1,2, \ldots, j$, are the eigenvalues of $\left(\widetilde{\mathbf{H}}_{j}^{*} \widetilde{\mathbf{H}}_{j}\right)^{-1} \mathbf{H}_{j}^{*}$. Hint: prove (1). $\widetilde{\mathbf{H}}_{j}^{*}\left[\begin{array}{ll}\mathbf{I}_{j+1} & \mathbf{0}\end{array}\right] p_{j}(\mathbf{H}) \mathbf{e}_{1}=\mathbf{H}_{j}^{*} p_{j}\left(\mathbf{H}_{j}^{-*} \widetilde{\mathbf{H}}_{j}^{*} \widetilde{\mathbf{H}}_{j}\right) \mathbf{e}_{1}$;
(2). If \mathbf{H}_{j+1}^{*} singular, then nonzero $\theta_{i}^{(j)}$ and $\theta_{i}^{(j+1)}$ are the same.

2.2. Numerical examples

- Example 1: A, 200×200 entries from real normal distribution of mean 2 and standard deviation $0.5 / \sqrt{200}$

$$
\begin{aligned}
& \mathrm{m}=200 ; \quad \mathrm{A}=2 * \operatorname{eye}(\mathrm{~m})+0.5 * \operatorname{randn}(\mathrm{~m}) / \operatorname{sqrt}(\mathrm{m}) ; \\
& \mathbf{A x}=\mathbf{b}, \quad \mathbf{x}_{0}=\mathbf{0}, \quad \mathbf{b}=\left[\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right]^{\top}
\end{aligned}
$$

Convergence history of Example 1

- Example 2:
$\mathrm{m}=200 ; B=2 * \operatorname{eye}(\mathrm{~m})+0.5 *$ randn (m)/sqrt(m);
$\mathbf{A}=\mathbf{B}+\mathbf{D}, \quad \mathbf{D}$ is the diagonal matrix with complex entries $d_{i}=\left(-2+2 \sin \theta_{i}\right)+\mathrm{i} \cos \theta_{i}, \quad \theta_{i}=\frac{(i-1) \pi}{m-1}, \quad 1 \leq i \leq m$.

Convergence history of Example 2

2.3. Preconditioning (see Lecture 40 of NLA)

- To improve the convergence of Krylov subspace methods, it is important to have a preconditioner, denoted by \mathbf{M}.
- Left preconditioning, i.e.,

$$
\mathbf{M}^{-1} \mathbf{A x}=\mathbf{M}^{-1} \mathbf{b}
$$

- Right preconditioning is often used, i.e.,

$$
\mathbf{A} \mathbf{M}^{-1} \mathbf{z}=\mathbf{b}, \quad \mathbf{x}=\mathbf{M}^{-1} \mathbf{z}
$$

because it produces the same residual as that of the original system in exact precision arithmetic.

- The preconditioned matrix $\mathbf{M}^{-1} \mathbf{A}$ or $\mathbf{A M}^{-1}$ should have eigenvalues clustering behavior.
- Only the action of applying \mathbf{M}^{-1} to a given vector is computed in GMRES. So we never explicitly form \mathbf{M}^{-1}. We only require that the action $\mathbf{M}^{-1} \mathbf{z}$ must be cheap.
- How to find a good preconditioner? It's problem dependent. Example. Let $\mathcal{A}=\left[\begin{array}{cc}\mathbf{A} & \mathbf{B}^{*} \\ \mathbf{C} & \mathbf{0}\end{array}\right]$ and $\mathcal{M}=\left[\begin{array}{cc}\mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{C A}^{-1} \mathbf{B}^{*}\end{array}\right]$, where $\mathbf{A} \in \mathbb{C}^{m \times m}$ is invertible, and $\mathbf{B}, \mathbf{C} \in \mathbb{C}^{n \times m}$ with $m \geq n$. Assume that $-\mathbf{C A}^{-1} \mathbf{B}^{*}$ is invertible.
The preconditioned matrix $\mathcal{M}^{-1} \mathcal{A}$ is diagonalizable and has at most three distinct eigenvalues $1,(1+\sqrt{5}) / 2$, and $(1-\sqrt{5}) / 2$.

2.4. Restarted GMRES

- For larger values of j, the cost of GMRES in operations and storage may be prohibitive. In such circumstances a method called l-step restarted GMRES or GMRES (l) is often employed.
- GMRES (l) : After l steps, the GMRES iteration is started anew with the current vector \mathbf{x}_{l} as an initial guess.
- Note that GMRES (l) can be expected fail to converge, whereas GMRES always succeeds for exact arithmetic. (Embree's paper)
- GMRES-IR, GMRES-DR, FGMRES-DR, etc.

