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1. Singular value decomposition

Definition: Let m and n be arbitrary positive integers (m ≥ n or
m < n). Given A ∈ Cm×n, not necessarily of full rank, a singular
value decomposition (SVD) of A is a factorization

A = UΣV∗,

where U ∈ Cm×m is unitary, V ∈ Cn×n is unitary, and Σ ∈ Rm×n

is diagonal. In addition, it is assumed that the diagonal entries σi
of Σ are nonnegative and in nonincreasing order; that is

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0,

where p = min{m,n}.

Theorem 1 (Existence of SVD)

Every matrix A ∈ Cm×n has a singular value decomposition.
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Proof. Assume A ∕= 0; otherwise we can take Σ = 0 and let U and V
be arbitrary unitary matrices. Next, we use induction on m and n to
prove the existence of SVD for the case m ≥ n (consider A∗ if m < n):
Assume that an SVD exists for any (m− 1)× (n− 1) matrix and prove
it for any m× n matrix.

(i) The basic step: m ≥ n = 1.

Write A = u1Σ1V
∗ with u1 = A/‖A‖2,Σ1 = ‖A‖2 and V = 1.

Choose !U such that U =
"
u1

!U
#
∈ Cm×m is unitary. Let

Σ =
$
Σ1 0

%⊤ ∈ Rm×1. Then A has an SVD A = UΣV∗.

(ii) The induction step: m ≥ n > 1.

Let v1 ∈ Cn be a unit (i.e., ‖v1‖2 = 1) eigenvector corresponding
to the eigenvalue λmax(A

∗A). Then we have ‖Av1‖2 = ‖A‖2 > 0.

Let u1 = Av1/‖Av1‖2, which is a unit vector. Choose !U and !V
such that &U =

"
u1

!U
#
∈ Cm×m and &V =

"
v1

!V
#
∈ Cn×n are

unitary.
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Now we have

&U∗A&V =

'
u∗
1

!U∗

(
A

"
v1

!V
#
=

)
u∗
1Av1 u∗

1A
!V

!U∗Av1
!U∗A!V

*
.

We note that

u∗
1Av1 =

(Av1)
∗(Av1)

‖Av1‖2
= ‖Av1‖2 = ‖A‖2,

!U∗Av1 = !U∗u1‖Av1‖2 = 0,

and

u∗
1A

!V =
(Av1)

∗

‖Av1‖2
A!V =

v∗
1A

∗A!V
‖Av1‖2

=
λmax(A

∗A)v∗
1
!V

‖Av1‖2
= 0.

Let
σ1 := ‖A‖2.
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Then we have

&U∗A&V =

'
σ1 0

0 !U∗A!V

(
.

By the induction hypothesis, we know that the (m− 1)× (n− 1)
matrix !U∗A!V has an SVD:

!U∗A!V = U0Σ0V
∗
0.

It follows from σ1 = ‖A‖2, unitary invariance of ‖ · ‖2, and

&U∗A&V =

'
σ1 0
0 U0Σ0V

∗
0

(
=

'
1 0
0 U0

( '
σ1 0
0 Σ0

( '
1 0
0 V0

(∗

that σ1 ≥ ‖Σ0‖2. Now it is straightforward to show that

A = &U
'
1 0
0 U0

( '
σ1 0
0 Σ0

( '
1 0
0 V0

(∗
&V∗ =: U

'
σ1 0
0 Σ0

(
V∗

is an SVD of A.
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Full SVD:
A = UΣV∗

Reduced SVD (the case m ≥ n):

A = UnΣnV
∗

where
Un =

$
u1 u2 · · · un

%
,

and
Σn = diag{σ1,σ2, . . . ,σn}.
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Rank SVD or compact SVD or condensed SVD:

A =
$
Ur Uc

% 'Σr 0
0 0

( '
V∗

r

V∗
c

(
= UrΣrV

∗
r =

+r

i=1
σiuiv

∗
i

where r = rank(A),

Ur =
$
u1 u2 · · · ur

%
, Uc =

$
ur+1 ur+2 · · · um

%
,

Vr =
$
v1 v2 · · · vr

%
, Vc =

$
vr+1 vr+2 · · · vn

%
,

and
Σr = diag{σ1,σ2, . . . ,σr}.

{σ2
i ,ui} are eigenvalue-eigenvector pairs of AA∗, and {σ2

i ,vi} are
eigenvalue-eigenvector pairs of A∗A:

AA∗ui = σ2
i ui, A∗Avi = σ2

i vi, i = 1, 2, . . . , p

σ1 ≥ σ2 ≥ · · · ≥ σp are called the singular values of A.
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ui is called left singular vector, and vi is called right singular
vector: u∗

iA = σiv
∗
i , Avi = σiui, i = 1, 2, . . . , p

Theorem 2

The set of singular values {σi} is uniquely determined and invariant
under unitary multiplication.

Theorem 3

If A is square and all the σi are distinct, the left and right singular
vectors are uniquely determined up to complex signs (i.e., complex
scalar factors of absolute value 1).

Hint: There exists only one linearly independent eigenvector for each
eigenvalue of A∗A or AA∗ if the eigenvalues are distinct.

Theorem 4 (Real SVD)

Every matrix A ∈ Rm×n has a real singular value decomposition.
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1.1. Geometric observation

The image of the unit sphere (in the 2-norm) of Cn under any
m× n matrix is a hyperellipse of Cm.

For example, 2× 2 real matrix A

SVD of a matrix can not be emphasized too much!
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2. Matrix properties via SVD: A = UΣV∗

2-norm
‖A‖2 = σ1 = ‖A∗‖2 = ‖A⊤‖2 = ‖A‖2

F-norm

‖A‖F =
,

σ2
1 + σ2

2 + · · ·+ σ2
r = ‖A∗‖F = ‖A⊤‖F = ‖A‖F

If A is Hermitian, i.e., A = A∗, then

singular values are absolute values of eigenvalues.

range or column space of A ∈ Cm×n, spanned by the columns of A

range(A) : = {y ∈ Cm | ∃ x ∈ Cn s.t. y = Ax}
= span{u1,u2, . . . ,ur}

kernel or nullspace of A ∈ Cm×n

null(A) : = {x ∈ Cn | Ax = 0}
= span{vr+1,vr+2, . . . ,vn}
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Range and nullspace of A∗:

range(A∗) = span{v1,v2, . . . ,vr} = null(A)⊥

null(A∗) = span{ur+1,ur+2, . . . ,um} = range(A)⊥

Relations between the four subspaces

range(A∗)⊥null(A), range(A∗) + null(A) = Cn

range(A)⊥null(A∗), range(A) + null(A∗) = Cm

An eigendecomposition via SVD:

'
0 A
A∗ 0

(
= Q

-

./

Σr

−Σr

0
0

0

12Q∗,Q =

-

../

Ur√
2

Ur√
2

Uc 0

Vr√
2

−Vr√
2

0 Vc

0

112 .

Absolute value of determinant of A ∈ Cm×m : |det(A)| =
3m

i=1 σi
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A random square matrix is “always” nonsingular. Or more general,
a random rectangular matrix is “always” of full rank. Why?

2.1. Low-rank approximation (LRA)

Theorem 5 (Eckart-Young-Mirski)

For any integer k with 1 ≤ k < r = rank(A), define

Ak =
+k

i=1
σiuiv

∗
i .

Then
‖A−Ak‖2 = σk+1 = min

B∈Cm×n,
rank(B)≤k

‖A−B‖2,

and
‖A−Ak‖F =

,
σ2
k+1 + · · ·+ σ2

r = min
B∈Cm×n,
rank(B)≤k

‖A−B‖F.

Discussion: Is the minimizer in Theorem 5 unique?
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Proof of Theorem 5.

Suppose there is some B ∈ Cm×n with rank(B) ≤ k < r such that

‖A−B‖2 < σk+1.

It follows that dim(null(B)) = n− rank(B) ≥ n− k. Thus there
exists an (n− k)-dimensional subspace W ⊆ null(B). For any
nonzero x ∈ W, we have

‖Ax‖2 = ‖(A−B)x‖2 ≤ ‖A−B‖2‖x‖2 < σk+1‖x‖2.

Let V = span{v1,v2, . . . ,vk+1}. For any x ∈ V, we have

‖Ax‖2 = ‖AVk+1y‖2 = ‖Uk+1Σk+1y‖2 = ‖Σk+1y‖2 ≥ σk+1‖x‖2.

Since dimW + dimV = (n− k) + (k + 1) > n, there must be a
nonzero vector lying in both, and this is a contradiction.

Case ‖ · ‖F: Generalized Inverses: Theory and Applications, 2nd
edition, Adi Ben-Israel and Thomas N.E. Greville, Page 213.
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Application of low-rank approximation: image compression

An image can be represented as a matrix. For example, typical
grayscale images consist of a rectangular array of pixels, m in the
vertical direction, n in the horizontal direction. The color of each
of those pixels is denoted by a single number, an integer between 0
(black) and 255 (white). (This gives 28 = 256 different shades of
gray for each pixel. Color images are represented by three such
matrices: one for red, one for green, and one for blue. Thus each
pixel in a typical color image takes (28)3 = 224 shades.)

The objective of image compression is to reduce irrelevance and
redundancy of the image data in order to be able to store or
transmit data in an efficient form.

Low-rank SVD approximation is a good candidate. (Note: jpeg
compression algorithm uses similar idea, on subimages)

Image Compression with Singular Value Decomposition Demo
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3. Moore–Penrose pseudoinverse

Let A ∈ Cm×n have an SVD (rank form) A = UrΣrV
∗
r . The

Moore–Penrose pseudoinverse of A, denoted by A†:

A† := VrΣ
−1
r U∗

r =
+r

i=1

1

σi
viu

∗
i .

The matrix A† is the unique matrix satisfying the four equations

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

For a proof, see Page 122 of Numerical Linear Algebra (in
Chinese) by Zhihao Cao.

If A has full column rank, then

A† = (A∗A)−1A∗.

If A has full row rank, then

A† = A∗(AA∗)−1.
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4. A wonderful reference

Zhihua Zhang (arXiv:1510.08532)

The singular value decomposition, applications and beyond

5. Another proof of Theorem 5

Holger Wendland

Numerical Linear Algebra An Introduction

Cambridge University Press, 2018.

See Page 295, Theorem 7.41.

6. Computationally more feasible methods for LRA

Adaptive cross approximation (ACA)

See Page 297 of Numerical Linear Algebra An Introduction.

Joel A. Tropp and Robert J. Webber (arXiv:2306.12418)

Randomized algorithms for low-rank matrix approximation:
Design, analysis, and applications
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