Lecture 2: Singular value decomposition (SVD)

School of Mathematical Sciences, Xiamen University

1. Singular value decomposition

- Definition: Let m and n be arbitrary positive integers ($m \geq n$ or $m<n$). Given $\mathbf{A} \in \mathbb{C}^{m \times n}$, not necessarily of full rank, a singular value decomposition (SVD) of \mathbf{A} is a factorization

$$
\mathbf{A}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{*}
$$

where $\mathbf{U} \in \mathbb{C}^{m \times m}$ is unitary, $\mathbf{V} \in \mathbb{C}^{n \times n}$ is unitary, and $\boldsymbol{\Sigma} \in \mathbb{R}^{m \times n}$ is diagonal. In addition, it is assumed that the diagonal entries σ_{i} of $\boldsymbol{\Sigma}$ are nonnegative and in nonincreasing order; that is

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p} \geq 0
$$

where $p=\min \{m, n\}$.

Theorem 1 (Existence of SVD)

Every matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ has a singular value decomposition.

Proof. Assume $\mathbf{A} \neq \mathbf{0}$; otherwise we can take $\boldsymbol{\Sigma}=\mathbf{0}$ and let \mathbf{U} and \mathbf{V} be arbitrary unitary matrices. Next, we use induction on m and n to prove the existence of SVD for the case $m \geq n$ (consider \mathbf{A}^{*} if $m<n$): Assume that an SVD exists for any $(m-1) \times(n-1)$ matrix and prove it for any $m \times n$ matrix.
(i) The basic step: $m \geq n=1$.

Write $\mathbf{A}=\mathbf{u}_{1} \boldsymbol{\Sigma}_{1} \mathbf{V}^{*}$ with $\mathbf{u}_{1}=\mathbf{A} /\|\mathbf{A}\|_{2}, \boldsymbol{\Sigma}_{1}=\|\mathbf{A}\|_{2}$ and $\mathbf{V}=1$.
Choose $\widehat{\mathbf{U}}$ such that $\mathbf{U}=\left[\begin{array}{ll}\mathbf{u}_{1} & \widehat{\mathbf{U}}\end{array}\right] \in \mathbb{C}^{m \times m}$ is unitary. Let
$\boldsymbol{\Sigma}=\left[\begin{array}{ll}\boldsymbol{\Sigma}_{1} & \mathbf{0}\end{array}\right]^{\top} \in \mathbb{R}^{m \times 1}$. Then \mathbf{A} has an SVD $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{*}$.
(ii) The induction step: $m \geq n>1$.

Let $\mathbf{v}_{1} \in \mathbb{C}^{n}$ be a unit (i.e., $\left\|\mathbf{v}_{1}\right\|_{2}=1$) eigenvector corresponding to the eigenvalue $\lambda_{\max }\left(\mathbf{A}^{*} \mathbf{A}\right)$. Then we have $\left\|\mathbf{A v}_{1}\right\|_{2}=\|\mathbf{A}\|_{2}>0$. Let $\mathbf{u}_{1}=\mathbf{A} \mathbf{v}_{1} /\left\|\mathbf{A} \mathbf{v}_{1}\right\|_{2}$, which is a unit vector. Choose $\widehat{\mathbf{U}}$ and $\widehat{\mathbf{V}}$ such that $\widetilde{\mathbf{U}}=\left[\begin{array}{ll}\mathbf{u}_{1} & \widehat{\mathbf{U}}\end{array}\right] \in \mathbb{C}^{m \times m}$ and $\tilde{\mathbf{V}}=\left[\begin{array}{ll}\mathbf{v}_{1} & \widehat{\mathbf{V}}\end{array}\right] \in \mathbb{C}^{n \times n}$ are unitary.

Now we have

$$
\tilde{\mathbf{U}}^{*} \mathbf{A} \tilde{\mathbf{V}}=\left[\begin{array}{c}
\mathbf{u}_{1}^{*} \\
\widehat{\mathbf{U}}^{*}
\end{array}\right] \mathbf{A}\left[\begin{array}{ll}
\mathbf{v}_{1} & \widehat{\mathbf{V}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{u}_{1}^{*} \mathbf{A} \mathbf{v}_{1} & \mathbf{u}_{1}^{*} \mathbf{A} \widehat{\mathbf{V}} \\
\widehat{\mathbf{U}}^{*} \mathbf{A} \mathbf{v}_{1} & \widehat{\mathbf{U}}^{*} \mathbf{A} \widehat{\mathbf{V}}
\end{array}\right]
$$

We note that

$$
\begin{gathered}
\mathbf{u}_{1}^{*} \mathbf{A} \mathbf{v}_{1}=\frac{\left(\mathbf{A} \mathbf{v}_{1}\right)^{*}\left(\mathbf{A} \mathbf{v}_{1}\right)}{\left\|\mathbf{A} \mathbf{v}_{1}\right\|_{2}}=\left\|\mathbf{A} \mathbf{v}_{1}\right\|_{2}=\|\mathbf{A}\|_{2} \\
\widehat{\mathbf{U}}^{*} \mathbf{A} \mathbf{v}_{1}=\widehat{\mathbf{U}}^{*} \mathbf{u}_{1}\left\|\mathbf{A} \mathbf{v}_{1}\right\|_{2}=\mathbf{0}
\end{gathered}
$$

and

$$
\mathbf{u}_{1}^{*} \mathbf{A} \widehat{\mathbf{V}}=\frac{\left(\mathbf{A} \mathbf{v}_{1}\right)^{*}}{\left\|\mathbf{A} \mathbf{v}_{1}\right\|_{2}} \mathbf{A} \widehat{\mathbf{V}}=\frac{\mathbf{v}_{1}^{*} \mathbf{A}^{*} \mathbf{A} \widehat{\mathbf{V}}}{\left\|\mathbf{A} \mathbf{v}_{1}\right\|_{2}}=\frac{\lambda_{\max }\left(\mathbf{A}^{*} \mathbf{A}\right) \mathbf{v}_{1}^{*} \widehat{\mathbf{V}}}{\left\|\mathbf{A} \mathbf{v}_{1}\right\|_{2}}=\mathbf{0}
$$

Let

$$
\sigma_{1}:=\|\mathbf{A}\|_{2}
$$

Then we have

$$
\widetilde{\mathbf{U}}^{*} \mathbf{A} \tilde{\mathbf{V}}=\left[\begin{array}{cc}
\sigma_{1} & \mathbf{0} \\
\mathbf{0} & \widehat{\mathbf{U}}^{*} \mathbf{A} \widehat{\mathbf{V}}
\end{array}\right]
$$

By the induction hypothesis, we know that the $(m-1) \times(n-1)$ matrix $\widehat{\mathbf{U}}^{*} \mathbf{A} \widehat{\mathbf{V}}$ has an SVD:

$$
\widehat{\mathbf{U}}^{*} \mathbf{A} \widehat{\mathbf{V}}=\mathbf{U}_{0} \boldsymbol{\Sigma}_{0} \mathbf{V}_{0}^{*}
$$

It follows from $\sigma_{1}=\|\mathbf{A}\|_{2}$, unitary invariance of $\|\cdot\|_{2}$, and

$$
\widetilde{\mathbf{U}}^{*} \mathbf{A} \tilde{\mathbf{V}}=\left[\begin{array}{cc}
\sigma_{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{U}_{0} \boldsymbol{\Sigma}_{0} \mathbf{V}_{0}^{*}
\end{array}\right]=\left[\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0} & \mathbf{U}_{0}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{0}
\end{array}\right]\left[\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0} & \mathbf{V}_{0}
\end{array}\right]^{*}
$$

that $\sigma_{1} \geq\left\|\boldsymbol{\Sigma}_{0}\right\|_{2}$. Now it is straightforward to show that

$$
\mathbf{A}=\widetilde{\mathbf{U}}\left[\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0} & \mathbf{U}_{0}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{0}
\end{array}\right]\left[\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0} & \mathbf{V}_{0}
\end{array}\right]^{*} \tilde{\mathbf{V}}^{*}=: \mathbf{U}\left[\begin{array}{cc}
\sigma_{1} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{0}
\end{array}\right] \mathbf{V}^{*}
$$

is an SVD of \mathbf{A}.

- Full SVD:

$$
\mathbf{A}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{*}
$$

- Reduced SVD (the case $m \geq n$):

$$
\mathbf{A}=\mathbf{U}_{n} \boldsymbol{\Sigma}_{n} \mathbf{V}^{*}
$$

where

$$
\mathbf{U}_{n}=\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{n}
\end{array}\right],
$$

and

$$
\boldsymbol{\Sigma}_{n}=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}
$$

- Rank SVD or compact SVD or condensed SVD:

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{U}_{r} & \mathbf{U}_{\mathrm{c}}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{r} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{V}_{r}^{*} \\
\mathbf{V}_{\mathrm{c}}^{*}
\end{array}\right]=\mathbf{U}_{r} \boldsymbol{\Sigma}_{r} \mathbf{V}_{r}^{*}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{*}
$$

where $r=\operatorname{rank}(\mathbf{A})$,

$$
\begin{array}{lll}
\mathbf{U}_{r}=\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{r}
\end{array}\right], & \mathbf{U}_{\mathrm{c}}=\left[\begin{array}{llll}
\mathbf{u}_{r+1} & \mathbf{u}_{r+2} & \cdots & \mathbf{u}_{m}
\end{array}\right], \\
\mathbf{V}_{r}=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{r}
\end{array}\right], & \mathbf{V}_{\mathrm{c}}=\left[\begin{array}{llll}
\mathbf{v}_{r+1} & \mathbf{v}_{r+2} & \cdots & \mathbf{v}_{n}
\end{array}\right],
\end{array}
$$

and

$$
\boldsymbol{\Sigma}_{r}=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}\right\}
$$

- $\left\{\sigma_{i}^{2}, \mathbf{u}_{i}\right\}$ are eigenvalue-eigenvector pairs of $\mathbf{A A}^{*}$, and $\left\{\sigma_{i}^{2}, \mathbf{v}_{i}\right\}$ are eigenvalue-eigenvector pairs of $\mathbf{A}^{*} \mathbf{A}$:

$$
\mathbf{A A}^{*} \mathbf{u}_{i}=\sigma_{i}^{2} \mathbf{u}_{i}, \quad \mathbf{A}^{*} \mathbf{A} \mathbf{v}_{i}=\sigma_{i}^{2} \mathbf{v}_{i}, \quad i=1,2, \ldots, p
$$

- $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p}$ are called the singular values of \mathbf{A}.
- \mathbf{u}_{i} is called left singular vector, and \mathbf{v}_{i} is called right singular vector: $\quad \mathbf{u}_{i}^{*} \mathbf{A}=\sigma_{i} \mathbf{v}_{i}^{*}, \quad \mathbf{A} \mathbf{v}_{i}=\sigma_{i} \mathbf{u}_{i}, \quad i=1,2, \ldots, p$

Theorem 2

The set of singular values $\left\{\sigma_{i}\right\}$ is uniquely determined and invariant under unitary multiplication.

Theorem 3

If \mathbf{A} is square and all the σ_{i} are distinct, the left and right singular vectors are uniquely determined up to complex signs (i.e., complex scalar factors of absolute value 1).

Hint: There exists only one linearly independent eigenvector for each eigenvalue of $\mathbf{A}^{*} \mathbf{A}$ or $\mathbf{A} \mathbf{A}^{*}$ if the eigenvalues are distinct.

Theorem 4 (Real SVD)

Every matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ has a real singular value decomposition.

1.1. Geometric observation

- The image of the unit sphere (in the 2-norm) of \mathbb{C}^{n} under any $m \times n$ matrix is a hyperellipse of \mathbb{C}^{m}.
For example, 2×2 real matrix \mathbf{A}

SVD of a matrix can not be emphasized too much!
2. Matrix properties via $S V D: A=U \Sigma \mathbf{V}^{*}$

- 2-norm

$$
\|\mathbf{A}\|_{2}=\sigma_{1}=\left\|\mathbf{A}^{*}\right\|_{2}=\left\|\mathbf{A}^{\top}\right\|_{2}=\|\overline{\mathbf{A}}\|_{2}
$$

- F-norm

$$
\|\mathbf{A}\|_{\mathrm{F}}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{r}^{2}}=\left\|\mathbf{A}^{*}\right\|_{\mathrm{F}}=\left\|\mathbf{A}^{\top}\right\|_{\mathrm{F}}=\|\overline{\mathbf{A}}\|_{\mathrm{F}}
$$

- If \mathbf{A} is Hermitian, i.e., $\mathbf{A}=\mathbf{A}^{*}$, then

> singular values are absolute values of eigenvalues.

- range or column space of $\mathbf{A} \in \mathbb{C}^{m \times n}$, spanned by the columns of \mathbf{A}

$$
\begin{aligned}
\operatorname{range}(\mathbf{A}): & =\left\{\mathbf{y} \in \mathbb{C}^{m} \mid \exists \mathbf{x} \in \mathbb{C}^{n} \quad \text { s.t. } \quad \mathbf{y}=\mathbf{A} \mathbf{x}\right\} \\
& =\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right\}
\end{aligned}
$$

- kernel or nullspace of $\mathbf{A} \in \mathbb{C}^{m \times n}$

$$
\begin{aligned}
\operatorname{null}(\mathbf{A}): & =\left\{\mathbf{x} \in \mathbb{C}^{n} \mid \mathbf{A x}=\mathbf{0}\right\} \\
& =\operatorname{span}\left\{\mathbf{v}_{r+1}, \mathbf{v}_{r+2}, \ldots, \mathbf{v}_{n}\right\}
\end{aligned}
$$

- Range and nullspace of \mathbf{A}^{*} :

$$
\begin{gathered}
\operatorname{range}\left(\mathbf{A}^{*}\right)=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}=\operatorname{null}(\mathbf{A})^{\perp} \\
\operatorname{null}\left(\mathbf{A}^{*}\right)=\operatorname{span}\left\{\mathbf{u}_{r+1}, \mathbf{u}_{r+2}, \ldots, \mathbf{u}_{m}\right\}=\operatorname{range}(\mathbf{A})^{\perp}
\end{gathered}
$$

- Relations between the four subspaces

$$
\begin{array}{ll}
\operatorname{range}\left(\mathbf{A}^{*}\right) \perp \operatorname{null}(\mathbf{A}), & \operatorname{range}\left(\mathbf{A}^{*}\right)+\operatorname{null}(\mathbf{A})=\mathbb{C}^{n} \\
\operatorname{range}(\mathbf{A}) \perp \operatorname{null}\left(\mathbf{A}^{*}\right), & \operatorname{range}(\mathbf{A})+\operatorname{null}\left(\mathbf{A}^{*}\right)=\mathbb{C}^{m}
\end{array}
$$

- An eigendecomposition via SVD:

$$
\left[\begin{array}{cc}
\mathbf{0} & \mathbf{A} \\
\mathbf{A}^{*} & \mathbf{0}
\end{array}\right]=\mathbf{Q}\left[\begin{array}{cccc}
\boldsymbol{\Sigma}_{r} & & & \\
& -\boldsymbol{\Sigma}_{r} & & \\
& & \mathbf{0} & \\
& & & \mathbf{0}
\end{array}\right] \mathbf{Q}^{*}, \mathbf{Q}=\left[\begin{array}{cccc}
\frac{\mathbf{U}_{r}}{\sqrt{2}} & \frac{\mathbf{U}_{r}}{\sqrt{2}} & \mathbf{U}_{\mathrm{c}} & \mathbf{0} \\
\frac{\mathbf{V}_{r}}{\sqrt{2}} & \frac{-\mathbf{V}_{r}}{\sqrt{2}} & \mathbf{0} & \mathbf{V}_{\mathrm{c}}
\end{array}\right]
$$

- Absolute value of determinant of $\mathbf{A} \in \mathbb{C}^{m \times m}:|\operatorname{det}(\mathbf{A})|=\prod_{i=1}^{m} \sigma_{i}$
- A random square matrix is "always" nonsingular. Or more general, a random rectangular matrix is "always" of full rank. Why?

2.1. Low-rank approximation (LRA)

Theorem 5 (Eckart-Young-Mirski)

For any integer k with $1 \leq k<r=\operatorname{rank}(\mathbf{A})$, define

$$
\mathbf{A}_{k}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{*}
$$

Then

$$
\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{2}=\sigma_{k+1}=\min _{\substack{\mathbf{B} \in \mathbb{C}^{m \times n}, \operatorname{rank}(\mathbf{B}) \leq k}}\|\mathbf{A}-\mathbf{B}\|_{2},
$$

and

$$
\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{\mathrm{F}}=\sqrt{\sigma_{k+1}^{2}+\cdots+\sigma_{r}^{2}}=\min _{\substack{\mathbf{B} \in \mathbb{C} \times \times n \\ \operatorname{rank}(\mathbf{B}) \leq k}}\|\mathbf{A}-\mathbf{B}\|_{\mathrm{F}} .
$$

- Discussion: Is the minimizer in Theorem 5 unique?

Proof of Theorem 5.

- Suppose there is some $\mathbf{B} \in \mathbb{C}^{m \times n}$ with $\operatorname{rank}(\mathbf{B}) \leq k<r$ such that

$$
\|\mathbf{A}-\mathbf{B}\|_{2}<\sigma_{k+1} .
$$

It follows that $\operatorname{dim}(\operatorname{null}(\mathbf{B}))=n-\operatorname{rank}(\mathbf{B}) \geq n-k$. Thus there exists an $(n-k)$-dimensional subspace $\mathcal{W} \subseteq \operatorname{null}(\mathbf{B})$. For any nonzero $\mathrm{x} \in \mathcal{W}$, we have

$$
\|\mathbf{A} \mathbf{x}\|_{2}=\|(\mathbf{A}-\mathbf{B}) \mathbf{x}\|_{2} \leq\|\mathbf{A}-\mathbf{B}\|_{2}\|\mathbf{x}\|_{2}<\sigma_{k+1}\|\mathbf{x}\|_{2}
$$

Let $\mathcal{V}=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k+1}\right\}$. For any $\mathbf{x} \in \mathcal{V}$, we have

$$
\|\mathbf{A} \mathbf{x}\|_{2}=\left\|\mathbf{A} \mathbf{V}_{k+1} \mathbf{y}\right\|_{2}=\left\|\mathbf{U}_{k+1} \boldsymbol{\Sigma}_{k+1} \mathbf{y}\right\|_{2}=\left\|\boldsymbol{\Sigma}_{k+1} \mathbf{y}\right\|_{2} \geq \sigma_{k+1}\|\mathbf{x}\|_{2}
$$

Since $\operatorname{dim} \mathcal{W}+\operatorname{dim} \mathcal{V}=(n-k)+(k+1)>n$, there must be a nonzero vector lying in both, and this is a contradiction.

- Case $\|\cdot\|_{F}$: Generalized Inverses: Theory and Applications, 2nd edition, Adi Ben-Israel and Thomas N.E. Greville, Page 213.

Application of low-rank approximation: image compression

- An image can be represented as a matrix. For example, typical grayscale images consist of a rectangular array of pixels, m in the vertical direction, n in the horizontal direction. The color of each of those pixels is denoted by a single number, an integer between 0 (black) and 255 (white). (This gives $2^{8}=256$ different shades of gray for each pixel. Color images are represented by three such matrices: one for red, one for green, and one for blue. Thus each pixel in a typical color image takes $\left(2^{8}\right)^{3}=2^{24}$ shades.)
- The objective of image compression is to reduce irrelevance and redundancy of the image data in order to be able to store or transmit data in an efficient form.
- Low-rank SVD approximation is a good candidate. (Note: jpeg compression algorithm uses similar idea, on subimages)
Image Compression with Singular Value Decomposition Demo

3. Moore-Penrose pseudoinverse

- Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ have an SVD (rank form) $\mathbf{A}=\mathbf{U}_{r} \boldsymbol{\Sigma}_{r} \mathbf{V}_{r}^{*}$. The Moore-Penrose pseudoinverse of \mathbf{A}, denoted by \mathbf{A}^{\dagger} :

$$
\mathbf{A}^{\dagger}:=\mathbf{V}_{r} \boldsymbol{\Sigma}_{r}^{-1} \mathbf{U}_{r}^{*}=\sum_{i=1}^{r} \frac{1}{\sigma_{i}} \mathbf{v}_{i} \mathbf{u}_{i}^{*}
$$

- The matrix \mathbf{A}^{\dagger} is the unique matrix satisfying the four equations

$$
\mathbf{A X A}=\mathbf{A}, \quad \mathbf{X A X}=\mathbf{X}, \quad(\mathbf{A X})^{*}=\mathbf{A X}, \quad(\mathbf{X A})^{*}=\mathbf{X A}
$$

For a proof, see Page 122 of Numerical Linear Algebra (in Chinese) by Zhihao Cao.

- If \mathbf{A} has full column rank, then

$$
\mathbf{A}^{\dagger}=\left(\mathbf{A}^{*} \mathbf{A}\right)^{-1} \mathbf{A}^{*}
$$

If \mathbf{A} has full row rank, then

$$
\mathbf{A}^{\dagger}=\mathbf{A}^{*}\left(\mathbf{A} \mathbf{A}^{*}\right)^{-1}
$$

4. A wonderful reference

- Zhihua Zhang (arXiv:1510.08532)

The singular value decomposition, applications and beyond
5. Another proof of Theorem 5

- Holger Wendland

Numerical Linear Algebra An Introduction
Cambridge University Press, 2018.
See Page 295, Theorem 7.41.
6. Computationally more feasible methods for LRA

- Adaptive cross approximation (ACA)

See Page 297 of Numerical Linear Algebra An Introduction.

- Joel A. Tropp and Robert J. Webber (arXiv:2306.12418)

Randomized algorithms for low-rank matrix approximation:
Design, analysis, and applications

