Lecture 2: Singular value decomposition (SVD)
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1. Singular value decomposition

@ Definition: Let m and n be arbitrary positive integers (m > n or
m < n). Given A € C"™*™ not necessarily of full rank, a singular
value decomposition (SVD) of A is a factorization

A =UZV*,

where U € C™*™ is unitary, V € C"*" is unitary, and X € R™*"
is diagonal. In addition, it is assumed that the diagonal entries o;
of 3 are nonnegative and in nonincreasing order; that is

01209220y =0,
where p = min{m,n}.

Theorem 1 (Existence of SVD)

Can

FEvery matriz A € has a singular value decomposition.
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Proof. Assume A # 0; otherwise we can take X = 0 and let U and V
be arbitrary unitary matrices. Next, we use induction on m and n to
prove the existence of SVD for the case m > n (consider A* if m < n):
Assume that an SVD exists for any (m — 1) x (n — 1) matrix and prove
it for any m x n matrix.

(i) The basic step: m > n = 1.
Write A = u; 3, V* with u; = A/[|A]|,, 21 = [|A], and V = 1.
Choose U such that U = {ul I/ﬂ € C™*™ ig unitary. Let

Y= [21 0]T € R™*!. Then A has an SVD A = UXV*,
(ii) The induction step: m >n > 1.

Let vi € C™ be a unit (i.e., |[v1]l2 = 1) eigenvector corresponding
to the eigenvalue Ayax(A*A). Then we have |Avi|2 = ||A|2 > 0.

Let u; = Avy/||Avq]l2, which is a unit vector. Choose Uand V
such that U = [ul IAJ} € Cm¥m and V = |:V1 {\/} e C"X" gre

unitary.
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Now we have
~ o~ uj ~ wAv, wAV
U*AV = AlA[ }:Al 1WAV
[U*] Vi VT grAy, UFAV
We note that

(Avl)*(Avl)

urAvy =
e |Av+ ]2

= [[Avil2 = [|All2,

U*Av; = IAJ*u1HAV1||2 =0,

CVIATAV A (ATAWIV
|Av1]2 |Av1]2 |Av1]2

o1 = ||All2.
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Then we have
AT o1 0
a3 o]

By the induction hypothesis, we know that the (m —1) x (n — 1)
matrix U*AV has an SVD:

U*AV = Uy, Vs,

It follows from o7 = ||Al|2, unitary invariance of || - ||2, and
s o 0 [t 0]for 07t 0]
CAY= [T gmi ~lo [0 w) o v

that o1 > ||Xo||2. Now it is straightforward to show that

=1 0fer 071 01 g o1 0]
=0l a5 mfl vl Ve ls )y

is an SVD of A. O
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e Full SVD:
A =TUXV*

e Reduced SVD (the case m > n):
A=0U,%,V*
where
U, = [ul uz - un]y

and
¥, =diag{o1,092,...,0,}.
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@ Rank SVD or compact SVD or condensed SVD:

A= [U’r Uc] |:20r g:| [XE] = UT‘E’FV: = Zle O'iuiv;k
where 7 = rank(A),

U, = [ul uz - ur] ) U, = [ur—i-l Ur42 - um] )

V, = [Vl Vo oo Vr] , Vo= [VrJrl Vpg2 Vn] )

and
Y, =diag{o1,092,...,0.}.

o {02, u;} are eigenvalue-eigenvector pairs of AA*, and {o?,v;} are
eigenvalue-eigenvector pairs of A*A:

* 2 * 2 ;
AA*u; =0ju;, A"Av,=o0;v;y, 1=1,2,...,p

@ 01 > 09 > -+ > 0, are called the singular values of A.
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o u; is called left singular vector, and v; is called right singular
vector:  uw;A =o;v;, Av,=o0w, i=1,2,...,p

Theorem 2

The set of singular values {o;} is uniquely determined and invariant
under unitary multiplication.

Theorem 3

If A is square and all the o; are distinct, the left and right singular
vectors are uniquely determined up to complex signs (i.e., complex
scalar factors of absolute value 1).

Hint: There exists only one linearly independent eigenvector for each

eigenvalue of A*A or AA™ if the eigenvalues are distinct.

Theorem 4 (Real SVD)

Every matriz A € R™*™ has a real singular value decomposition.
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1.1. Geometric observation

e The image of the unit sphere (in the 2-norm) of C™ under any
m X n matrix is a hyperellipse of C™.

For example, 2 x 2 real matrix A

e I e
Vo o b1 8
2 W,
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2. Matrix properties via SVD: A = UXV*

@ 2-norm

|All2 =01 = [[A*2 = AT ]2 = A2
e F-norm
|AllF = \/0% +toi+-+o2=|A%p=[|AT|r=|Allr

o If A is Hermitian, i.e., A = A*, then

singular values are absolute values of eigenvalues.
e range or column space of A € C™*" spanned by the columns of A
range(A):={yeC" |IxeC" st y=Ax}
= span{uj,uy,...,u,}

o kernel or nullspace of A € C"™*"

null(A) : ={x e C" | Ax =0}

= Span{VTJrl) Vr42; ... avn}
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o Range and nullspace of A*:
range(A*) = span{vy, vy, ...,v,} = null(A)*+

null(A*) = span{u,41, W42, ..., Uy} = range(A)*

o Relations between the four subspaces
range(A*)Lnull(A), range(A*)+ null(A)=C"

range(A) Lnull(A¥), range(A)+ null(A*) =C™

e An eigendecomposition via SVD:

E’l‘ UT E UC 0

0 Al_q -3, Q.Q= V2 V2
A* 0| 0 U [ VRN V8 0 Vv
0 V2 V2 ‘

o Absolute value of determinant of A € C™*™ : |det(A)| =[], o3

Numerical Linear Algebra
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o A random square matrix is “always” nonsingular. Or more general,
a random rectangular matrix is “always” of full rank. Why?

2.1. Low-rank approximation (LRA)

Theorem 5 (Eckart-Young-Mirski)
For any integer k with 1 < k < r = rank(A), define

k
Ak = Z aiuivf.
=1

Then
|A — Agllz2 =0k+1 = min |A - B,
BeCcmXxn
rank(B)<k
and

A— A = \/ 2 R 2 — 1 A — Bllx.
| Wlle = y/op + oo +or = min i3
rank(B)<k

@ Discussion: Is the minimizer in Theorem 5 unique?
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Proof of Theorem 5.
e Suppose there is some B € C™*" with rank(B) < k < r such that

||A — B”2 < Ok41-

It follows that dim(null(B)) = n — rank(B) > n — k. Thus there
exists an (n — k)-dimensional subspace VW C null(B). For any
nonzero x € W, we have

[Ax[]2 = [[(A = B)x|[2 < |A = Bll2||x[l2 < ogt1lx]]2.
Let V = span{vi,va,...,Vi1}. For any x € V, we have

[AXl2 = [[AVEaylls = Uk 1By ll2 = [Ze1yll2 > orpalx]l2-

Since dimW + dimV = (n — k) + (k + 1) > n, there must be a
nonzero vector lying in both, and this is a contradiction.

e Case || - ||p: Generalized Inverses: Theory and Applications, 2nd
edition, Adi Ben-Israel and Thomas N.E. Greville, Page 213. [
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Application of low-rank approximation: image compression

o An image can be represented as a matrix. For example, typical
grayscale images consist of a rectangular array of pixels, m in the
vertical direction, n in the horizontal direction. The color of each
of those pixels is denoted by a single number, an integer between 0
(black) and 255 (white). (This gives 2% = 256 different shades of
gray for each pixel. Color images are represented by three such
matrices: one for red, one for green, and one for blue. Thus each
pixel in a typical color image takes (28)3 = 224 shades.)

o The objective of image compression is to reduce irrelevance and
redundancy of the image data in order to be able to store or
transmit data in an efficient form.

e Low-rank SVD approximation is a good candidate. (Note: jpeg
compression algorithm uses similar idea, on subimages)

Image Compression with Singular Value Decomposition Demo
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http://timbaumann.info/svd-image-compression-demo/

3. Moore—Penrose pseudoinverse

e Let A € C™*™ have an SVD (rank form) A = U, X, V*. The
Moore—Penrose pseudoinverse of A, denoted by A':

1
Af=v,s Ui =" vl

i=1 UZ v
o The matrix AT is the unique matrix satisfying the four equations
AXA =A, XAX =X, (AX)"=AX, (XA)"=XA.

For a proof, see Page 122 of Numerical Linear Algebra (in
Chinese) by Zhihao Cao.

o If A has full column rank, then
Af = (A*A)TA"
If A has full row rank, then
Al = A*(AA*)L.
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4. A wonderful reference
e Zhihua Zhang (arXiv:1510.08532)
The singular value decomposition, applications and beyond
5. Another proof of Theorem 5
e Holger Wendland
Numerical Linear Algebra An Introduction
Cambridge University Press, 2018.
See Page 295, Theorem 7.41.

6. Computationally more feasible methods for LRA
e Adaptive cross approximation (ACA)
See Page 297 of Numerical Linear Algebra An Introduction.
e Joel A. Tropp and Robert J. Webber (arXiv:2306.12418)
Randomized algorithms for low-rank matrix approximation:
Design, analysis, and applications
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