Numerical Linear Algebra Assignment 9

Exercise 1. (10 points)

Consider the simultaneous iteration:

```
Algorithm 1: Simultaneous iteration
    Pick \(\mathbf{Q}_{n}^{(0)} \in \mathbb{C}^{m \times n}\) with orthonormal columns
    for \(k=1,2,3, \ldots\),
        \(\mathbf{Q}_{n}^{(k)} \mathbf{R}_{n}^{(k)}=\mathbf{A Q}_{n}^{(k-1)} \quad(\mathrm{QR}\) factorization)
    end
```

Assume $\mathbf{A}=\mathbf{S} \boldsymbol{\Lambda} \mathbf{S}^{-1}$ is diagonalizable with $\boldsymbol{\Lambda}=\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\right\}$ and

$$
\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right|>\left|\lambda_{n+1}\right| \geq \cdots \geq\left|\lambda_{m}\right| .
$$

Assume $\mathbf{X}_{n}:=\left[\begin{array}{ll}\mathbf{I}_{n} & \mathbf{0}\end{array}\right] \mathbf{S}^{-1} \mathbf{Q}_{n}^{(0)}$ has full rank. Prove that

$$
\mathbf{Q}_{n}^{(k)}=\mathbf{A}^{k} \mathbf{Q}_{n}^{(0)}\left(\mathbf{R}_{n}^{(1)}\right)^{-1}\left(\mathbf{R}_{n}^{(2)}\right)^{-1} \cdots\left(\mathbf{R}_{n}^{(k)}\right)^{-1} .
$$

Exercise 2. (Zhihao Cao, 10 points)

Let $\mathbf{A}_{1}=\left[\begin{array}{ll}a & b \\ \varepsilon & c\end{array}\right] \in \mathbb{R}^{2 \times 2}$. Let $\mathbf{A}_{2}=\mathbf{R}_{1} \mathbf{Q}_{1}+c \mathbf{I}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$, where $\mathbf{Q}_{1} \mathbf{R}_{1}=\mathbf{A}_{1}-c \mathbf{I}$ is a QR factorization of $\mathbf{A}_{1}-c \mathbf{I}$. Prove:
(a) if a and c are not close (i.e., $\exists \delta>0,|a-c|>\delta$), then $a_{21}=\mathcal{O}\left(\varepsilon^{2}\right)$;
(b) if further $b=\varepsilon$ (i.e., \mathbf{A}_{1} is symmetric), then $a_{21}=\mathcal{O}\left(\varepsilon^{3}\right)$.

Exercise 3. (Programming, 10 points)

Write a function $[\mathrm{Q}, \mathrm{H}]=$ myhess (A) that reduces a complex square matrix to upper Hessenberg form by unitary similarity transformations, i.e., $\mathbf{H}=\mathbf{Q}^{*} \mathbf{A Q}$. Your program should use only elementary Matlab operations - not the function hess, for example. Apply your program to A = randn(5) + 1i*randn(5).

Exercise 4. (Programming, TreBau Exercise 29.1, 10 points)

