Numerical Linear Algebra Assignment 20

Exercise 1. (10 points)

For a lower-triangular system $\mathbf{L x}=\mathbf{b}$, we have the following forward elimination algorithm:

$$
\left\{\begin{array}{l}
x_{1}=b_{1} / l_{11} \\
x_{2}=\left(b_{2}-x_{1} l_{21}\right) / l_{22} \\
\quad \vdots \\
x_{m}=\left(b_{m}-\sum_{i=1}^{m-1} x_{i} l_{m i}\right) / l_{m m}
\end{array}\right.
$$

This algorithm is backward stable in the sense that the computed solution $\widetilde{\mathbf{x}} \in \mathbb{C}^{m}$ satisfies

$$
(\mathbf{L}+\delta \mathbf{L}) \widetilde{\mathbf{x}}=\mathbf{b}
$$

for some lower-triangular matrix $\delta \mathbf{L} \in \mathbb{C}^{m \times m}$ with

$$
\|\delta \mathbf{L}\| /\|\mathbf{L}\|=\mathcal{O}\left(\epsilon_{\text {machine }}\right)
$$

Specifically, for each i, j,

$$
\frac{\left|\delta l_{i j}\right|}{\left|l_{i j}\right|} \leq m \epsilon_{\text {machine }}+\mathcal{O}\left(\epsilon_{\text {machine }}^{2}\right)
$$

Prove the case $m=3$.

Exercise 2. (10 points)

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{m}$. Prove that the algorithm computing the inner product problem

$$
f(\mathbf{x}, \mathbf{y})=\mathbf{x}^{\top} \mathbf{y}=\sum_{i=1}^{m} x_{i} y_{i}
$$

by \otimes and \oplus is backward stable.

Exercise 3. (TreBau Exercise 16.1, 10 points)

(a) Let orthogonal matrices $\mathbf{Q}_{1}, \cdots, \mathbf{Q}_{k} \in \mathbb{R}^{m \times m}$ be fixed and consider the problem of computing, for $\mathbf{A} \in \mathbb{R}^{m \times n}$, the product $\mathbf{B}=\mathbf{Q}_{k} \cdots \mathbf{Q}_{1} \mathbf{A}$. Let the computation be carried out from right to left by straightforward floating point operations on a computer satisfying the desired properties. Show that this algorithm is backward stable. (Here A is thought of as data that can be perturbed; the matrices \mathbf{Q}_{j} are fixed and not to be perturbed.)
(b) Give an example to show that this result no longer holds if the orthogonal matrices \mathbf{Q}_{j} are replaced by arbitrary matrices $\mathbf{X}_{j} \in \mathbb{R}^{m \times m}$.

