Numerical Linear Algebra Assignment 4

Exercise 1. (10 points)

Let $\mathbf{x} \in \mathbb{C}^{m}$ and $x_{1}=\mathbf{e}_{1}^{\top} \mathbf{x} \neq 0$. Show that the matrix

$$
\mathbf{H}=\mathbf{I}-2 \frac{\mathbf{v v}^{*}}{\mathbf{v}^{*} \mathbf{v}}, \quad \mathbf{v}= \pm \frac{x_{1}}{\left|x_{1}\right|}\|\mathbf{x}\|_{2} \mathbf{e}_{1}-\mathbf{x}
$$

satisfies that

$$
\mathbf{H} \mathbf{x}= \pm \frac{x_{1}}{\left|x_{1}\right|}\|\mathbf{x}\|_{2} \mathbf{e}_{1}
$$

Exercise 2. (10 points)

Prove that $\mathbf{I}-\frac{\mathbf{v v}^{*}}{\mathbf{v}^{*} \mathbf{v}}$ is the orthogonal projector which projects \mathbb{C}^{m} onto the hyperplane $\operatorname{span}\{\mathbf{v}\}^{\perp}$ along $\operatorname{span}\{\mathbf{v}\}$.

Exercise 3. (10 points)

Let $\mathbf{x}=\left[\begin{array}{lll}3 & 4 & 0\end{array}\right]^{\top}$ and $\mathbf{e}_{3}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{\top}$. Try to find all possible numbers $z \in \mathbb{C}$ and the corresponding Householder reflectors \mathbf{H} such that $\mathbf{H x}=z \mathbf{e}_{3}$.

Exercise 4. (10 points)

Let $m>n, \mathbf{A} \in \mathbb{C}^{m \times n}$ of $\operatorname{rank} n, \mathbf{b} \in \mathbb{C}^{m}, \mathbf{b} \notin \operatorname{range}(\mathbf{A})$ and $\mathbf{Q R}=\left[\begin{array}{ll}\mathbf{A} & \mathbf{b}\end{array}\right]$ (i.e., full QR factorization of $\left[\begin{array}{ll}\mathbf{A} & \mathbf{b}\end{array}\right]$). Show that (we use Matlab's notation for convenience)

$$
\min _{\mathbf{x} \in \mathbb{C}^{n}}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}=|\mathbf{R}(n+1, n+1)|
$$

and the least squares solution is given by

$$
\mathbf{x}=\mathbf{R}(1: n, 1: n) \backslash \mathbf{R}(1: n, n+1)
$$

Exercise 5. (TreBau Exercise 19.1, 10 points)

Given $\mathbf{A} \in \mathbb{C}^{m \times n}$ of rank n and $\mathbf{b} \in \mathbb{C}^{m}$, consider the block 2×2 system of equations

$$
\left[\begin{array}{cc}
\mathbf{I} & \mathbf{A} \\
\mathbf{A}^{*} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{r} \\
\mathbf{x}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{b} \\
\mathbf{0}
\end{array}\right],
$$

where \mathbf{I} is the $m \times m$ identity. Show that this system has a unique solution $\left[\begin{array}{l}\mathbf{r} \\ \mathbf{x}\end{array}\right]$, and that the vectors \mathbf{r} and \mathbf{x} are the residual and the least squares solution of the least squares problem: Given $\mathbf{A} \in \mathbb{C}^{m \times n}$ of full rank, $m \geq n, \mathbf{b} \in \mathbb{C}^{m}$, find $\mathbf{x} \in \mathbb{C}^{n}$ such that $\|\mathbf{b}-\mathbf{A x}\|_{2}$ is minimized.

Exercise 6. (Demmel Question 3.11, 10 points)

Let $\mathbf{A} \in \mathbb{C}^{m \times n}$. Show that $\mathbf{X}=\mathbf{A}^{\dagger}$ (the Moore-Penrose pseudoinverse) minimizes $\|\mathbf{A X}-\mathbf{I}\|_{\mathrm{F}}$ over all $n \times m$ matrices. What is the value (positive square root of some integer) of this minimum?

Exercise 7. (10 points)

Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ and $\mathbf{b} \in \mathbb{C}^{m}$. Solve the penalized problem

$$
\min _{\mathbf{x} \in \mathbb{C}^{n}}\left\{\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}+\lambda^{2}\|\mathbf{x}\|_{2}^{2}\right\}
$$

where $\lambda>0$. Hint: consider the LSP

$$
\min _{\mathbf{x} \in \mathbb{C}^{n}}\left\|\left[\begin{array}{l}
\mathbf{b} \\
\mathbf{0}
\end{array}\right]-\left[\begin{array}{c}
\mathbf{A} \\
\lambda \mathbf{I}
\end{array}\right] \mathbf{x}\right\|_{2}
$$

Exercise 8. (10 points)

Suppose a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ satisfies

$$
\mathbf{A}=\mathbf{U V}, \quad \mathbf{U} \in \mathbb{R}^{m \times l}, \quad \mathbf{V} \in \mathbb{R}^{l \times n}
$$

Prove the following statements:
(i) If $\operatorname{rank}(\mathbf{U})=\operatorname{rank}(\mathbf{V})=l$ (i.e., $\mathbf{A}=\mathbf{U V}$ is a full-rank factorization), then $\mathbf{A}^{\dagger}=\mathbf{V}^{\dagger} \mathbf{U}^{\dagger}$.
(ii) For all $\mathbf{b} \in \operatorname{range}(\mathbf{A})$, if $\operatorname{rank}(\mathbf{U})=l$ and $\operatorname{rank}(\mathbf{V})=n$, then $\mathbf{A}^{\dagger} \mathbf{b}=\mathbf{V}^{\dagger} \mathbf{U}^{\dagger} \mathbf{b}$.

Exercise 9. (10 points)

For a given $\mathbf{b} \in \mathbb{C}^{m}$ and any $\mathbf{A} \in \mathbb{C}^{m \times n}$, let \mathbf{y} be the closest point (we use $\|\cdot\|_{2}$) to \mathbf{b} in range (\mathbf{A}). Prove that \mathbf{y} is located on the sphere of radius $\|\mathbf{b}\|_{2} / 2$ centered at $\mathbf{b} / 2$.

Exercise 10. (10 points)

Let $\mathbf{A} \in \mathbb{C}^{m \times n}, \mathbf{b} \in \mathbb{C}^{n}$, and $\mathbf{y} \in \mathbb{C}^{m}$ be given. Assume that $\operatorname{rank}(\mathbf{A})<\min \{m, n\}$ and $\mathbf{y} \in$ range(A). Solve the following problem

$$
\min _{\mathbf{x} \in \mathbb{C}^{n}, \mathbf{A x}=\mathbf{y}}\|\mathbf{b}-\mathbf{x}\|_{2} .
$$

Exercise 11. (Programming, TreBau Exercises 10.2, 10 points)
Exercise 12. (Programming, TreBau Exercises 10.3, 10 points)

