Numerical Linear Algebra Assignment 1

Exercise 1. (TreBau Exercise 2.5, 10 points)

Let $\mathbf{S} \in \mathbb{C}^{m \times m}$ be skew-hermitian, i.e., $\mathbf{S}^{*}=-\mathbf{S}$.
(a) Show that the eigenvalues of \mathbf{S} are pure imaginary.
(b) Show that $\mathbf{I}-\mathbf{S}$ is nonsingular.
(c) Show that the matrix $\mathbf{Q}=(\mathbf{I}-\mathbf{S})^{-1}(\mathbf{I}+\mathbf{S})$, know as the Cayley transform of \mathbf{S}, is unitary. (This is a matrix analogue of a linear fractional transformation $(1+z) /(1-z)$, which maps the left half of the complex z-plane conformally onto the unit disk.)

Exercise 2. (TreBau Exercise 2.6, 10 points)

If \mathbf{u} and \mathbf{v} are m-vectors, the matrix $\mathbf{A}=\mathbf{I}+\mathbf{u v}^{*}$ is know as a rank-one perturbation of the identity. Show that if \mathbf{A} is nonsingular, then its inverse has the form $\mathbf{A}^{-1}=\mathbf{I}+\alpha \mathbf{u v}^{*}$ for some scalar α, and give an expression for α. For what \mathbf{u} and \mathbf{v} is \mathbf{A} singular? If it is singular, what is null(A)?

Exercise 3. (10 points)

Prove the Cauchy-Schwarz inequality: For any given inner product $\langle\cdot, \cdot \cdot\rangle$,

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq \sqrt{\langle\mathbf{x}, \mathbf{x}\rangle} \sqrt{\langle\mathbf{y}, \mathbf{y}\rangle}
$$

The equality holds if and only if \mathbf{x} and \mathbf{y} are linearly dependent.

Exercise 4. (10 points)

Prove that

$$
\langle\mathbf{A}, \mathbf{B}\rangle=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} \overline{b_{i j}}, \quad \forall \mathbf{A}, \mathbf{B} \in \mathbb{C}^{m \times n}
$$

is an inner product on $\mathbb{C}^{m \times n}$. (The Frobenius norm on $\mathbb{C}^{m \times n}$ is induced by this inner product.)

Exercise 5. (10 points)

Let $\|\cdot\|$ denote any vector norm on \mathbb{C}^{m} and $\mathbf{W} \in \mathbb{C}^{m \times m}$ be nonsingular. Prove that $\|\mathbf{x}\| \mathbf{w}=\|\mathbf{W} \mathbf{x}\|$ is a vector norm on \mathbb{C}^{m}.

Exercise 6. (TreBau Exercise 3.2, 10 points)

Let $\|\cdot\|$ denote any vector norm on \mathbb{C}^{m} and also the induced matrix norm on $\mathbb{C}^{m \times m}$. Show that $\rho(\mathbf{A}) \leq\|\mathbf{A}\|$, where $\rho(\mathbf{A})$ is the spectral radius of \mathbf{A}, i.e., the largest absolute value $|\lambda|$ of an eigenvalue λ of \mathbf{A}.

Exercise 7. (TreBau Exercise 3.6, 10 points)

Let $\|\cdot\|$ denote any vector norm on \mathbb{C}^{m}. The corresponding dual norm $\|\cdot\|^{\prime}$ is defined by the formula $\|\cdot\|^{\prime}=\sup _{\|\mathbf{y}\|=1}\left|\mathbf{y}^{*} \mathbf{x}\right|$.
(a) Prove that $\|\cdot\|^{\prime}$ is a norm.
(b) Let $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{m}$ with $\|\mathbf{x}\|=\|\mathbf{y}\|=1$ be given. Show that there exists a rank-one matrix $\mathbf{B}=\mathbf{y} \mathbf{z}^{*}$ such that $\mathbf{B x}=\mathbf{y}$ and $\|\mathbf{B}\|=1$, where $\|\mathbf{B}\|$ is the matrix norm of \mathbf{B} induced by the vector norm $\|\cdot\|$. You may use the following lemma, without proof: given $\mathbf{x} \in \mathbb{C}^{m}$, there exists a nonzero $\mathbf{z} \in \mathbb{C}^{m}$ such that $\left|\mathbf{z}^{*} \mathbf{x}\right|=\|\mathbf{z}\|^{\prime}\|\mathbf{x}\|$.

Exercise 8. (10 points)

Let $\mathbf{A} \in \mathbb{C}^{m \times n}, \mathbf{B} \in \mathbb{C}^{n \times r}$ and let $\|\cdot\|_{\alpha},\|\cdot\|_{\beta}$, and $\|\cdot\|_{\gamma}$ be norms on $\mathbb{C}^{m}, \mathbb{C}^{n}$, and \mathbb{C}^{r}, respectively. Prove the induced matrix norms $\|\cdot\|_{\alpha, \gamma},\|\cdot\|_{\alpha, \beta}$, and $\|\cdot\|_{\beta, \gamma}$ satisfy $\|\mathbf{A B}\|_{\alpha, \gamma} \leq\|\mathbf{A}\|_{\alpha, \beta}\|\mathbf{B}\|_{\beta, \gamma}$.

Exercise 9. (10 points)

Prove that $\|\mathbf{A}\|_{\infty, 1}=\max _{i, j}\left|a_{i j}\right|$.

Exercise 10. (TreBau Exercise 3.4, 10 points)

Let \mathbf{A} be an $m \times n$ matrix and let \mathbf{B} be a submatrix of \mathbf{A}, that is, an $s \times t$ matrix $(s \leq m, t \leq n)$ obtained by selecting certain rows and columns of \mathbf{A}.
(a) Explain how \mathbf{B} can be obtained by multiplying \mathbf{A} by certain row and column "deletion matices" as in step 7 of Exercise 1.1.
(b) Using this product, show that $\|\mathbf{B}\|_{p} \leq\|\mathbf{A}\|_{p}$ for any p with $1 \leq p \leq \infty$.

