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1. Tridiagonal biorthogonalization

Assume that A is Hermitian, i.e., A = A∗. The Lanczos process is
a process of tridiagonal orthogonalization. Actually, there exists a
unitary Q and a tridiagonal T such that

A = QTQ∗.

Note that
“unitary” + “tridiagonal”.

For non-Hermitian A, we must give up either the unitary
transformations or the tridiagonal structure.

(1) The Arnoldi process gives up the tridiagonal structure:

A = QHQ∗.

(2) Tridiagonal biorthogonalization methods give up the unitary
transformations: V is nonsingular but generally not unitary,

A = VTV−1.
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The term “biorthogonal” refers to the fact that although the
columns of V are not orthogonal to each other, they are orthogonal
to the columns of V−∗, as follows trivially from the identity

(V−∗)∗V = V−1V = I.

Define W = V−∗. Let vj and wj denote the jth columns of V and
W, respectively. These vectors are biorthogonal in the sense that

w∗
i vj = δij ,

where δij is the Kronecker delta function. Define

Vj =
!
v1 · · · vj

"
, Wj =

!
w1 · · · wj

"
.

In matrix form, the biorthogonality condition can be written

W∗
jVj = V∗

jWj = Ij .
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The Lanczos relation

AQj = Qj+1
#Tj , Tj = Q∗

jAQj .

The Arnoldi relation

AQj = Qj+1
#Hj , Hj = Q∗

jAQj .

Corresponding formulas for biorthogonalization methods:

AVj = Vj+1
#Tj , A∗Wj = Wj+1

#Sj ,

and
Tj = S∗

j = W∗
jAVj .

Tj is tridiagonal and is obtained by deleting the last row of #Tj .
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Note that
AVj = Vj+1

#Tj

takes the form

A
!
v1 · · · vj

"
=

!
v1 · · · vj+1

"

$

%%%%%%%%&

α1 γ1
β1 α2 γ2

β2 α3
. . .

. . .
. . . γj−1

βj−1 αj

βj

'

(((((((()

,

which corresponds to the three-term recurrence relation

Avj = γj−1vj−1 + αjvj + βjvj+1.
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Similarly,
A∗Wj = Wj+1

#Sj

takes the form

A∗ !w1 · · · wj

"
=

!
w1 · · · wj+1

"

$

%%%%%%%%&

α1 β1

γ1 α2 β2

γ2 α3
. . .

. . .
. . . βj−1

γj−1 αj

γj

'

(((((((()

,

which corresponds to the three-term recurrence relation

A∗wj = βj−1wj−1 + αjwj + γjwj+1.
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These recurrence relations suggest an algorithm. Begin with
vectors v1 and w1 that are arbitrary except for satisfying
v∗
1w1 = 1, and set β0 = γ0 = 0 and v0 = w0 = 0. Now, for each

j = 1, 2, . . . , set
αj = w∗

jAvj .

The vectors vj+1 and wj+1 are then determined by the recurrence
relations up to scalar factors. These factors may be chosen
arbitrarily, subject to the normalization

w∗
j+1vj+1 = 1.

The vectors generated by the procedure just described satisfy

vj ∈ Kj(A,v1), wj ∈ Kj(A
∗,w1).

Breakdowns?

Case (1): vj+1 = 0 or wj+1 = 0;

Case (2): w∗
j+1vj+1 = 0 with vj+1 ∕= 0 and wj+1 ∕= 0.
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2. Bi-conjugate gradients (Bi-CG)

The principle of Bi-CG is to pick

xj ∈ x0 +Kj(A, r0)

subject to the orthogonality condition

rj ⊥ Kj(A
∗,w1),

where w1 ∈ Cn is an arbitrary vector satisfying (v1 = r0)

w∗
1r0 = 1.

Proceeding in the same manner as for the derivation of CG, we
can derive the scheme for Bi-CG. See Saad’s book – Iterative
methods for sparse linear systems (Chapters 6 and 7) for details.
Here we provide an alternative based on preconditioned CG.
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Consider the following linear system

*
0 A
A⊤ 0

+ *
#x
x

+
=

*
b
#b

+
.

Apply the PCG scheme with the corresponding inner product
replaced by the bilinear form

,*
#x
x

+
,

*
#y
y

+-

Bi-CG
=

*
#x
x

+⊤ *
0 I
I 0

+ *
#y
y

+

and the preconditioner *
0 I
I 0

+
,

then we obtain the Bi-CG scheme for Ax = b:
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r0 = p0 = b−Ax0; #r0 = #p0 = #b−A⊤#x0;
xj = xj−1 + αjpj−1; #xj = #xj−1 + αj#pj−1;
rj = rj−1 − αjApj−1; #rj = #rj−1 − αjA

⊤#pj−1;
pj = rj + βjpj−1; #pj = #rj + βj#pj−1;

where

αj =
#r⊤j−1rj−1 + r⊤j−1#rj−1

p⊤
j−1A

⊤#pj−1 + #p⊤
j−1Apj−1

=
#r⊤j−1rj−1

#p⊤
j−1Apj−1

;

and

βj =
#r⊤j rj + r⊤j #rj

#r⊤j−1rj−1 + r⊤j−1#rj−1
=

#r⊤j rj
#r⊤j−1rj−1

.
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Obviously, by writing sj = #rj , qj = #pj ,
.b = #b, and .xj = #xj , we

have

r0 = p0 = b−Ax0; s0 = q0 = .b−A∗.x0;
xj = xj−1 + αjpj−1; .xj = .xj−1 + αjqj−1;
rj = rj−1 − αjApj−1; sj = sj−1 − αjA

∗qj−1;

pj = rj + βjpj−1; qj = sj + βjqj−1;

where

αj =
s∗j−1rj−1

q∗
j−1Apj−1

; βj =
s∗jrj

s∗j−1rj−1
.

As the case in CG, it is readily shown that s∗jri = 0 and
q∗
jApi = 0 for i < j.

Discussion:

What happens if Bi-CG is applied to a linear system Ax = b with
Hermitian positive definite A?
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Comparsion of GMRES and Bi-CG for a 500× 500 matrix

j

!rj!2
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3. Conjugate orthogonal conjugate gradients (COCG)

If the system matrix A is complex symmetric, i.e.,

A ∈ Cm×m, A = A⊤,

with the choice s0 = r̄0, where s0 is the initial residual of the dual
system

A∗.x = .b

arising in Bi-CG and r̄0 denotes the complex conjugate of r0,
Bi-CG reduces to COCG because

sj = rj , qj = pj .

The details of COCG and its preconditioned version (PCOCG) are
given below.
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Algorithm COCG: Ax = b

Choose arbitrary x0; set r0 = b−Ax0 and p0 = r0;
for k = 1, 2, . . . , do until convergence or breakdown:

xj = xj−1 + αjpj−1;
rj = rj−1 − αjApj−1;
pj = rj + βjpj−1;

where

αj =
r⊤j−1rj−1

p⊤
j−1Apj−1

; βj =
r⊤j rj

r⊤j−1rj−1
.

The only essential change of COCG with respect to CG is the
replacement of the standard inner product y∗x by the bilinear
form y⊤x.

Discussion:

What happens if COCG is applied to a linear system Ax = b with
Hermitian positive definite A?
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Algorithm PCOCG: AM−1z = b, x = M−1z

Choose x = x0;
set r0 = b−Ax0 and p0 = M−1r0;
for k = 1, 2, . . . , do until convergence or breakdown:

xj = xj−1 + αjpj−1;
rj = rj−1 − αjApj−1;
pj = M−1rj + βjpj−1;

where

αj =
r⊤j−1M

−1rj−1

p⊤
j−1Apj−1

; βj =
r⊤j M

−1rj

r⊤j−1M
−1rj−1

.

The preconditioner M in PCOCG has to be complex symmetric.
The only essential change of PCOCG with respect to COCG is the
replacement of the bilinear form y⊤x by the bilinear form
y⊤M−1x.
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4. Advantage and disadvantages of Bi-CG

One great advantage over GMRES:

It involves three-term recurrences, enabling the work per step and
the storage requirements to remain under control even when many
steps are needed.

Two disadvantages:

(1) Its convergence is slower and often erratic. It may have the
consequence of reducing the ultimately attainable accuracy
because of rounding error. In the extreme, it becomes the
phenomenon of breakdown of the iteration, where an inner
product becomes zero and no further progress is possible.

(2) It requires multiplication by A∗ as well as A. Depending on
how these products are implemented both mathematically and in
terms of computer architecture, this may be anything from a
minor addition burden to effectively impossible.
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5. Other variants

Desired properties

Smoothed convergence curves + breakdown free + transpose free

Look-ahead Lanczos

avoid breakdowns

CGS = conjugate gradients squares

transpose free, but is twice as erratic

QMR = quasi-minimal residuals

Pronounced effect on the smoothness of convergence

Bi-CGSTAB = stabilized Bi-CG (via stabilizing CGS)

Significantly smooths the convergence of Bi-CG, transpose free

TFQMR = tanspose-free QMR

transpose free and smooth convergence
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6. Overview of iterative methods

6.1. Why iterate?

Direct methods for general matrices requires O(m3) work. It is too
much both in the absolute sense that m3 is huge when m is large,
and in the relative sense that since the input to most matrix
problems involves only O(m2) numbers, it seems unreasonable
that O(m3) work must be expended in solving them.

Use iterative methods when direct methods are too slow, or use
too much memory (from fill-in during factorization), or you don’t
need as much accuracy.

A good iterative method exploits knowledge of the underlying
physical or mathematical model that gives rise to matrix.

6.2. Black box for matrix-vector product

Black box:

x −→ −→ Ax
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The iterative algorithm requires nothing more than the ability to
determine Ax for any x, which in a computer program will be
effected by a procedure whose internal workings need be of no
concern to the designer of the iterative algorithm. (Some iterative
algorithms also require the computation of A∗x.)

Sparsity:

A finite difference discretization of a PDE may lead to a matrix of
dimension m = 105 with only ν = 10 nonzero entries per row.

For a sparse matrix A, it is easy to design a procedure to compute
Ax in only O(νm) rather than O(m2) operations.

Other structure: fast matrix-vector product

6.3. Number of steps, Work per step

Gaussian elimination, QR factorization, and most other algorithms
of dense linear algebra fit the following pattern: there are O(m)
steps, each requiring O(m2) work, for a total work of O(m3).
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For iterative methods, the same figures still apply, but now they
represent a typical worst-case behavior. When these methods
succeed, they may do so by reducing one or both of these factors.

We see that the number of steps required for convergence to a
satisfactory precision typically depends on spectral properties of
the matrix A, if the word “spectral” is interpreted broadly. For
example: CG for HPD Ax = b converges quickly if the eigenvalues
of A are clustered well away from the origin.

The work per step in a matrix iteration depends mainly on the
structure of the matrix and on what advantage is taken of this
structure in the x '→ Ax black box.

The ideal iterative method in linear algebra reduces the number of
steps from O(m) to O(1) and the work per step from O(m2) to
O(m), reducing the total work from O(m3) to O(m). Such
extraordinary speedups do occur in practical problems, but a more
typical improvement is perhaps from O(m3) to O(m2).
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6.4. Preconditioning for linear systems

Diagonal scaling or Jacobi.

Incomplete Cholesky or LU factorization.

Coase-grid approximation.

Local approximation.

Block preconditioners and domain decomposition.

Low-order discretization.

Constant-coefficient or symmetric approximation.

Splitting of a multi-term operator.

Dimensional splitting or ADI.

One step of a classical iterative method, a single multigrid cycle.

Periodic or convolution approximation.

Unstable direct method.

Polynomial preconditioners.

· · · · · ·
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6.5 Decision tree for choosing an iterative solver for Ax = b

Is A Hermitian?

Is A∗v available? Is A definite?

Is storage
expensive?

Is A well-
conditioned?

Is A well-
conditioned?

Are largest and smallest
eigenvalues known?

GMRES
CGS

Bi-CGSTAB
GMRES(l)

QMR CGN MINRES
or other

CG CG with
Chebyshev

no yes

no yes no yes

no yes no yes yes no no yes
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