Numerical Linear Algebra Assignment 13

Exercise 1. (TreBau Exercise 39.1, 10 points)

Consider a problem $\mathbf{A x}=\mathbf{b}$ for the matrix $\mathbf{A}=\left[\begin{array}{cc}\mathbf{0} & \mathbf{I}_{m-1} \\ 1 & \mathbf{0}\end{array}\right]$.
(a) Show that the singular values are all 1 and that this implies that CGN converges in one step.
(b) Show that the eigenvalues are the m th roots of unity and that this implies that GMRES requires m steps to converge for general \mathbf{b}.
(c) This matrix A has so much structure that one does not need to consider eigenvalues or singular values to understand its convergence behavior. In particular, explain by elementary argument why GMRES takes m steps to converge for the right-hand side $\mathbf{b}=\left[\begin{array}{cccc}1 & 0 & \cdots & 0\end{array}\right]^{\top}$.

Exercise 2. (TreBau Exercise 39.2, 10 points)

As a converse to Exercise 1, devise an example of a matrix of arbitrary dimension m with almost the opposite property: GMRES converges in two steps, but CGN requires m steps.

Exercise 3. (Programming, 10 points)

(1) Write matlab code to generate matrices for the cases (a)-(g) in TreBau Exercise 39.5.
(2) Compare CG, GMRES, CGN, and Bi-CG for linear systems with these matrices and right-hand-side $\mathbf{b}=\left[\begin{array}{lll}1 & \cdots & 1\end{array}\right]^{\top}$.
(3) Explain your numerical results.

