
Lecture 19: Conditioning of a problem
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1. Conditioning of a problem

Conditioning pertains to the perturbation behavior of a
mathematical problem f : X → Y, where f is a function (explicitly
or implicitly given, usually nonlinear, most of time at least
continuous), and X and Y are normed vector spaces.

A problem f(x) is well-conditioned if all small perturbations of x
lead to only small changes in f(x); and is ill-conditioned if some
small perturbation of x leads to a large change in f(x).

The absolute condition number of the problem f(x) is defined as

!κ(f(x)) = lim
ε→0+

sup
‖δx‖≤ε

‖δf‖
‖δx‖ , δf = f(x+ δx)− f(x).

The relative condition number is defined by

κ(f(x)) = lim
ε→0+

sup
‖δx‖≤ε

"
‖δf‖
‖f(x)‖

#‖δx‖
‖x‖

$
.
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2. Compute condition numbers

If f : X → Y is differentiable, we can express !κ(f(x)) and κ(f(x))
in terms of the Jacobian J(f(x)), the matrix whose i, j entry is the
partial derivative ∂fi/∂xj evaluated at x:

!κ(f(x)) = ‖J(f(x))‖, κ(f(x)) =
‖J(f(x))‖
‖f(x)‖/‖x‖ ,

where ‖J(f(x))‖ represents the matrix norm of J(f(x)) induced by
the norms on X and Y.
Exercise: Prove !κ(f(x)) = ‖J(f(x))‖ for all differentiable f .

Example: For f(x) = x/2, we have

κ(f(x)) = 1.

Example: For f(x) =
√
x and x > 0, we have

κ(f(x)) = 1/2.
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Example: Let f(x) = x1 − x2 for x ∈ C2 with the norm ‖ · ‖∞.
The Jacobian of f(x) is

J(f(x)) =
%
∂x1f ∂x2f

&
=

%
1 −1

&
.

By
‖J(f(x))‖∞ = 2,

we obtain

κ(f(x)) =
‖J(f(x))‖∞
|f(x)|/‖x‖∞

=
2

|x1 − x2|/max{|x1|, |x2|}

=
2max{|x1|, |x2|}

|x1 − x2|
.

This quantity is large if |x1 − x2| ≈ 0, so the problem is
ill-conditioned when x1 ≈ x2.

This is the so called “cancellation error”.
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3. Polynomial rootfinding is typically ill-conditioned

A simple case: assume that all roots are distinct and nonzero.

Consider the polynomial

p(x) =

20'

k=1

(x− xk) = a0 + a1x+ · · ·+ a19x
19 + x20.

If only ai is perturbed to ai + δai, let !xk denote the perturbed
roots corresponding to xk, then

20'

k=1

(x− !xk)−
20'

k=1

(x− xk) = (δai)x
i.

Therefore,

−
20'

k=1

(!xj − xk) = (δai)!xij .
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By employing that xj is a continuous function of ai, we have

|(δxj)p′(xj)| = |!xj − xj |
20'

k=1,k ∕=j

|xj − xk|

∼
20'

k=1

|!xj − xk| = |(δai)!xij | ∼ |(δai)xij |.

Therefore, the condition number of the problem xj = f(ai) is

κ = lim
ε→0+

sup
|δai|≤ε

|δxj |
|xj |

# |δai|
|ai|

=
|aixi−1

j |
|p′(xj)|

.

Wilkinson polynomial:

p(x) =

20'

k=1

(x− k) = a0 + a1x+ · · ·+ a19x
19 + x20.
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We have a15 ≈ 1.67× 109. For x15 = 15, we have

κ ≈ 1.67× 109 × 1514

5!14!
≈ 5.1× 1013.

4. Conditioning of matrix-vector multiplication

For the problem fA(x) = Ax where A ∈ Cm×n, we have (by the
definition)

κ(fA(x)) = ‖A‖ ‖x‖
‖Ax‖ .

Exercise: Show the condition number of the problem fx(A) = Ax
is

κ(fx(A)) = ‖x‖ ‖A‖
‖Ax‖ .

Discussion: What is the condition number of the problem

f(A,x) = Ax
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4.1. Interpolation sampling problem: p = Af

Let x1, · · · , xn be n distinct interpolation points and y1, · · · , ym be
m sampling points from −1 to 1, respectively. The m× n matrix
A that maps an n-vector of data {f(xj)}nj=1 to an m-vector of
sampled values {p(yi)}mi=1, where p is the degree n− 1 polynomial
interpolant of {(xj , f(xj))}nj=1, is given by

A = YX−1,

where

X =

(

)))*

1 x1 x21 · · · xn−1
1

1 x2 x22 · · · xn−1
2

...
...

...
. . .

...
1 xn x2n · · · xn−1

n

+

,,,-
,Y =

(

)))*

1 y1 y21 · · · yn−1
1

1 y2 y22 · · · yn−1
2

...
...

...
. . .

...
1 ym y2m · · · yn−1

m

+

,,,-
.
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(a) Let m = 2n− 1. For equispaced points {xj}nj=1 and {yi}mi=1,
the number ‖A‖∞ are known as the Lebesgue constant for
equispaced interpolation, which is asymptotic to

2n/(e(n− 1) log n) as n → ∞.

(b) By the condition number of matrix-vector multiplication,

κ = ‖A‖∞
‖f‖∞
‖Af‖∞

,

we know some perturbation of f may lead to a large change in p.

(c) For Chebyshev points (j = 0 : n− 1, i = 0 : m− 1),

xj = cos(jπ/(n− 1)), yi = cos(iπ/(m− 1)).

Exercise: Compute ‖A‖∞ by Matlab and give your comments.
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5. Condition number of a matrix

κ(A) = ‖A‖‖A−1‖, or κ(A) = ‖A‖‖A†‖

6. Conditioning of a nonsingular system of equations Ax = b

For the problem gA(b) = A−1b ∕= 0 where A ∈ Cm×m, we have

κ(gA(b)) = ‖A−1‖ ‖b‖
‖A−1b‖ ≤ ‖A‖‖A−1‖ = κ(A).

For the problem gb(A) = A−1b ∕= 0, we have

κ(gb(A)) = ‖A‖‖A−1‖ = κ(A).

Proof. By dropping the doubly infinitesimal (δA)(δx) from

(A+ δA)(x+ δx) = b,

and using Ax = b, we have (δA)x+A(δx) = 0, i.e.,
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δx = −A−1(δA)x+ o(δA),

Therefore,

‖δx‖ = ‖A−1(δA)x‖+ o(‖δA‖) ≤ ‖A−1‖‖δA‖‖x‖+ o(‖δA‖),

and

κ(gb(A)) = lim
ε→0+

sup
‖δA‖≤ε

"
‖δx‖
‖x‖

#‖δA‖
‖A‖

$
≤ ‖A‖‖A−1‖.

Now we begin to look for a special perturbation matrix δA which
makes the upper bound attained. Let z be a vector to x such that
(see the lemma in TreBau Exercise 3.6)

|x∗z| = ‖z‖′‖x‖,

where ‖ · ‖′ denotes the dual norm defined by

‖z‖′ = max
‖y‖=1

|y∗z|.
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Let δA =
uz∗ε

‖z‖′ , where u is a unit vector (‖u‖ = 1) such that

‖A−1u‖ = ‖A−1‖.

Obviously, ‖δA‖ = ε (verified by definition), and

‖A−1(δA)x‖ =
ε|z∗x|
‖z‖′ ‖A−1u‖

= ε‖x‖‖A−1‖
= ‖A−1‖‖δA‖‖x‖.

Therefore, by

‖δx‖ = ‖A−1(δA)x‖+ o(‖δA‖) = ‖A−1‖‖δA‖‖x‖+ o(‖δA‖),

we have

κ(gb(A)) = lim
ε→0+

sup
‖δA‖≤ε

"
‖δx‖
‖x‖

#‖δA‖
‖A‖

$
= ‖A‖‖A−1‖.
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7. Conditioning of least squares problems

LSP: Given A ∈ Cm×n,m ≥ n,b ∈ Cm; find xls ∈ Cn such that

‖b−Axls‖2 = min
x∈Cn

‖b−Ax‖2.

Assume that A is of full column rank. The unique least squares
solution xls and the corresponding point y = Axls that is closest
to b in range(A) are given by

xls = A†b = (A∗A)−1A∗b, y = Pb =Axls,

where P = AA† is the orthogonal projector onto range(A).

Conditioning pertains to the sensitivity of solutions to
perturbations in data.

Data: A,b Solutions: xls,y.
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Theorem 1

Let b ∈ Cm and A ∈ Cm×n of full column rank be fixed. The least
squares problem has the following 2-norm relative condition numbers
describing the sensitivities of y or xls to perturbations in b or A:

y xls

b
1

cos θ

κ(A)

η cos θ

A
κ(A)

cos θ
κ(A) +

κ(A)2 tan θ

η

where

θ = arccos
‖y‖2
‖b‖2

, κ(A) = ‖A‖2‖A†‖2, η =
‖A‖2‖xls‖2

‖y‖2
=

‖A‖2‖xls‖2
‖Axls‖2

.

The results in the second row are exact, being attained for certain
perturbations δb, and the results in the third row are upper bounds.
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Sensitivity of y = Pb = AA†b to perturbations in b

κb +→y = ‖P‖2
‖b‖2
‖y‖2

=
1

cos θ

Sensitivity of xls = A†b to perturbations in b

κb +→xls
= ‖A†‖2

‖b‖2
‖xls‖2

= ‖A†‖2
‖b‖2
‖y‖2

‖y‖2
‖xls‖2

=
κ(A)

η cos θ

Sensitivity of xls = (A∗A)−1A∗b to perturbations in A

δxls = ((A+ δA)∗(A+ δA))−1(A+ δA)∗b− xls

= (A∗A)−1(δA)∗(I−AA†)b−A†δAA†b+ o(δA)

κA +→xls
≤ ‖(I−AA†)b‖2

σ2
n

‖A‖2
‖xls‖2

+ κ(A) =
κ(A)2 tan θ

η
+ κ(A)

Sensitivity of y=A(A∗A)−1A∗b to perturbations in A (Exercise).
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8. Computing the eigenvalues of a matrix

If the matrix is normal, the problem is well-conditioned. We have
(see Exercise 26.3)

A → A+ δA, λ → λ+ δλ : |δλ| ≤ ‖δA‖2.

Therefore, the absolute condition number is !κ = 1, and the
relative condition number is

κ =
‖A‖2
|λ| .

If the matrix is nonnormal, the problem is often ill-conditioned.
For example, .

1 1016

0 1

/
,

.
1 1016

10−16 1

/

whose eigenvalues are {1, 1} and {0, 2}, respectively.
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