Lecture 19: Conditioning of a problem

School of Mathematical Sciences, Xiamen University

1. Conditioning of a problem

- Conditioning pertains to the perturbation behavior of a mathematical problem $f: \mathbb{X} \rightarrow \mathbb{Y}$, where f is a function (explicitly or implicitly given, usually nonlinear, most of time at least continuous), and \mathbb{X} and \mathbb{Y} are normed vector spaces.
- A problem $f(x)$ is well-conditioned if all small perturbations of x lead to only small changes in $f(x)$; and is ill-conditioned if some small perturbation of x leads to a large change in $f(x)$.
- The absolute condition number of the problem $f(x)$ is defined as

$$
\widehat{\kappa}(f(x))=\lim _{\varepsilon \rightarrow 0^{+}} \sup _{\|\delta x\| \leq \varepsilon} \frac{\|\delta f\|}{\|\delta x\|}, \quad \delta f=f(x+\delta x)-f(x) .
$$

- The relative condition number is defined by

$$
\kappa(f(x))=\lim _{\varepsilon \rightarrow 0^{+}} \sup _{\|\delta x\| \leq \varepsilon}\left(\frac{\|\delta f\|}{\|f(x)\|} / \frac{\|\delta x\|}{\|x\|}\right) .
$$

2. Compute condition numbers

- If $f: \mathbb{X} \rightarrow \mathbb{Y}$ is differentiable, we can express $\widehat{\kappa}(f(x))$ and $\kappa(f(x))$ in terms of the Jacobian $\mathbf{J}(f(x))$, the matrix whose i, j entry is the partial derivative $\partial f_{i} / \partial x_{j}$ evaluated at x :

$$
\widehat{\kappa}(f(x))=\|\mathbf{J}(f(x))\|, \quad \kappa(f(x))=\frac{\|\mathbf{J}(f(x))\|}{\|f(x)\| /\|x\|}
$$

where $\|\mathbf{J}(f(x))\|$ represents the matrix norm of $\mathbf{J}(f(x))$ induced by the norms on \mathbb{X} and \mathbb{Y}.
Exercise: Prove $\widehat{\kappa}(f(x))=\|\mathbf{J}(f(x))\|$ for all differentiable f.
Example: For $f(x)=x / 2$, we have

$$
\kappa(f(x))=1 .
$$

Example: For $f(x)=\sqrt{x}$ and $x>0$, we have

$$
\kappa(f(x))=1 / 2
$$

Example: Let $f(\mathbf{x})=x_{1}-x_{2}$ for $\mathbf{x} \in \mathbb{C}^{2}$ with the norm $\|\cdot\|_{\infty}$. The Jacobian of $f(\mathbf{x})$ is

$$
\mathbf{J}(f(\mathbf{x}))=\left[\begin{array}{ll}
\partial_{x_{1}} f & \partial_{x_{2}} f
\end{array}\right]=\left[\begin{array}{ll}
1 & -1
\end{array}\right]
$$

By

$$
\|\mathbf{J}(f(\mathbf{x}))\|_{\infty}=2
$$

we obtain

$$
\begin{aligned}
\kappa(f(\mathbf{x}))=\frac{\|\mathbf{J}(f(\mathbf{x}))\|_{\infty}}{|f(\mathbf{x})| /\|\mathbf{x}\|_{\infty}} & =\frac{2}{\left|x_{1}-x_{2}\right| / \max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}} \\
& =\frac{2 \max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}}{\left|x_{1}-x_{2}\right|}
\end{aligned}
$$

This quantity is large if $\left|x_{1}-x_{2}\right| \approx 0$, so the problem is ill-conditioned when $x_{1} \approx x_{2}$.
This is the so called "cancellation error".
3. Polynomial rootfinding is typically ill-conditioned

- A simple case: assume that all roots are distinct and nonzero.

Consider the polynomial

$$
p(x)=\prod_{k=1}^{20}\left(x-x_{k}\right)=a_{0}+a_{1} x+\cdots+a_{19} x^{19}+x^{20} .
$$

If only a_{i} is perturbed to $a_{i}+\delta a_{i}$, let \widehat{x}_{k} denote the perturbed roots corresponding to x_{k}, then

$$
\prod_{k=1}^{20}\left(x-\widehat{x}_{k}\right)-\prod_{k=1}^{20}\left(x-x_{k}\right)=\left(\delta a_{i}\right) x^{i}
$$

Therefore,

$$
-\prod_{k=1}^{20}\left(\widehat{x}_{j}-x_{k}\right)=\left(\delta a_{i}\right) \widehat{x}_{j}^{i}
$$

By employing that x_{j} is a continuous function of a_{i}, we have

$$
\begin{aligned}
\left|\left(\delta x_{j}\right) p^{\prime}\left(x_{j}\right)\right| & =\left|\widehat{x}_{j}-x_{j}\right| \prod_{k=1, k \neq j}^{20}\left|x_{j}-x_{k}\right| \\
& \sim \prod_{k=1}^{20}\left|\widehat{x}_{j}-x_{k}\right|=\left|\left(\delta a_{i}\right) \widehat{x}_{j}^{i}\right| \sim\left|\left(\delta a_{i}\right) x_{j}^{i}\right|
\end{aligned}
$$

Therefore, the condition number of the problem $x_{j}=f\left(a_{i}\right)$ is

$$
\kappa=\lim _{\varepsilon \rightarrow 0^{+}} \sup _{\left|\delta a_{i}\right| \leq \varepsilon} \frac{\left|\delta x_{j}\right|}{\left|x_{j}\right|} / \frac{\left|\delta a_{i}\right|}{\left|a_{i}\right|}=\frac{\left|a_{i} x_{j}^{i-1}\right|}{\left|p^{\prime}\left(x_{j}\right)\right|}
$$

- Wilkinson polynomial:

$$
p(x)=\prod_{k=1}^{20}(x-k)=a_{0}+a_{1} x+\cdots+a_{19} x^{19}+x^{20}
$$

We have $a_{15} \approx 1.67 \times 10^{9}$. For $x_{15}=15$, we have

$$
\kappa \approx \frac{1.67 \times 10^{9} \times 15^{14}}{5!14!} \approx 5.1 \times 10^{13}
$$

4. Conditioning of matrix-vector multiplication

- For the problem $f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x}$ where $\mathbf{A} \in \mathbb{C}^{m \times n}$, we have (by the definition)

$$
\kappa\left(f_{\mathbf{A}}(\mathbf{x})\right)=\|\mathbf{A}\| \frac{\|\mathbf{x}\|}{\|\mathbf{A} \mathbf{x}\|}
$$

Exercise: Show the condition number of the problem $f_{\mathbf{x}}(\mathbf{A})=\mathbf{A x}$ is

$$
\kappa\left(f_{\mathbf{x}}(\mathbf{A})\right)=\|\mathbf{x}\| \frac{\|\mathbf{A}\|}{\|\mathbf{A x}\|}
$$

Discussion: What is the condition number of the problem

$$
f(\mathbf{A}, \mathbf{x})=\mathbf{A} \mathbf{x}
$$

4.1. Interpolation sampling problem: $\mathbf{p}=\mathbf{A f}$

- Let x_{1}, \cdots, x_{n} be n distinct interpolation points and y_{1}, \cdots, y_{m} be m sampling points from -1 to 1 , respectively. The $m \times n$ matrix A that maps an n-vector of data $\left\{f\left(x_{j}\right)\right\}_{j=1}^{n}$ to an m-vector of sampled values $\left\{p\left(y_{i}\right)\right\}_{i=1}^{m}$, where p is the degree $n-1$ polynomial interpolant of $\left\{\left(x_{j}, f\left(x_{j}\right)\right)\right\}_{j=1}^{n}$, is given by

$$
\mathbf{A}=\mathbf{Y} \mathbf{X}^{-1}
$$

where

$$
\mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right], \mathbf{Y}=\left[\begin{array}{ccccc}
1 & y_{1} & y_{1}^{2} & \cdots & y_{1}^{n-1} \\
1 & y_{2} & y_{2}^{2} & \cdots & y_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & y_{m} & y_{m}^{2} & \cdots & y_{m}^{n-1}
\end{array}\right]
$$

(a) Let $m=2 n-1$. For equispaced points $\left\{x_{j}\right\}_{j=1}^{n}$ and $\left\{y_{i}\right\}_{i=1}^{m}$, the number $\|\mathbf{A}\|_{\infty}$ are known as the Lebesgue constant for equispaced interpolation, which is asymptotic to

$$
2^{n} /(\mathrm{e}(n-1) \log n) \quad \text { as } \quad n \rightarrow \infty
$$

(b) By the condition number of matrix-vector multiplication,

$$
\kappa=\|\mathbf{A}\|_{\infty} \frac{\|\mathbf{f}\|_{\infty}}{\|\mathbf{A f}\|_{\infty}}
$$

we know some perturbation of \mathbf{f} may lead to a large change in \mathbf{p}. (c) For Chebyshev points $(j=0: n-1, i=0: m-1)$,

$$
x_{j}=\cos (j \pi /(n-1)), \quad y_{i}=\cos (i \pi /(m-1))
$$

Exercise: Compute $\|\mathbf{A}\|_{\infty}$ by Matlab and give your comments.
5. Condition number of a matrix

$$
\kappa(\mathbf{A})=\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\|, \quad \text { or } \quad \kappa(\mathbf{A})=\|\mathbf{A}\|\left\|\mathbf{A}^{\dagger}\right\|
$$

6. Conditioning of a nonsingular system of equations $\mathbf{A x}=\mathbf{b}$

- For the problem $g_{\mathbf{A}}(\mathbf{b})=\mathbf{A}^{-1} \mathbf{b} \neq \mathbf{0}$ where $\mathbf{A} \in \mathbb{C}^{m \times m}$, we have

$$
\kappa\left(g_{\mathbf{A}}(\mathbf{b})\right)=\left\|\mathbf{A}^{-1}\right\| \frac{\|\mathbf{b}\|}{\left\|\mathbf{A}^{-1} \mathbf{b}\right\|} \leq\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\|=\kappa(\mathbf{A})
$$

- For the problem $g_{\mathbf{b}}(\mathbf{A})=\mathbf{A}^{-1} \mathbf{b} \neq \mathbf{0}$, we have

$$
\kappa\left(g_{\mathbf{b}}(\mathbf{A})\right)=\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\|=\kappa(\mathbf{A}) .
$$

Proof. By dropping the doubly infinitesimal $(\delta \mathbf{A})(\delta \mathbf{x})$ from

$$
(\mathbf{A}+\delta \mathbf{A})(\mathbf{x}+\delta \mathbf{x})=\mathbf{b}
$$

and using $\mathbf{A x}=\mathbf{b}$, we have $(\delta \mathbf{A}) \mathbf{x}+\mathbf{A}(\delta \mathbf{x})=\mathbf{0}$, i.e.,

$$
\delta \mathbf{x}=-\mathbf{A}^{-1}(\delta \mathbf{A}) \mathbf{x}+o(\delta \mathbf{A})
$$

Therefore,

$$
\|\delta \mathbf{x}\|=\left\|\mathbf{A}^{-1}(\delta \mathbf{A}) \mathbf{x}\right\|+o(\|\delta \mathbf{A}\|) \leq\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{A}\|\|\mathbf{x}\|+o(\|\delta \mathbf{A}\|)
$$

and

$$
\kappa\left(g_{\mathbf{b}}(\mathbf{A})\right)=\lim _{\varepsilon \rightarrow 0^{+}} \sup _{\|\delta \mathbf{A}\| \leq \varepsilon}\left(\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} / \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}\right) \leq\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\| .
$$

Now we begin to look for a special perturbation matrix $\delta \mathbf{A}$ which makes the upper bound attained. Let \mathbf{z} be a vector to \mathbf{x} such that (see the lemma in TreBau Exercise 3.6)

$$
\left|\mathbf{x}^{*} \mathbf{z}\right|=\|\mathbf{z}\|^{\prime}\|\mathbf{x}\|
$$

where $\|\cdot\|^{\prime}$ denotes the dual norm defined by

$$
\|\mathbf{z}\|^{\prime}=\max _{\|\mathbf{y}\|=1}\left|\mathbf{y}^{*} \mathbf{z}\right|
$$

Let $\delta \mathbf{A}=\frac{\mathbf{u z}^{*} \varepsilon}{\|\mathbf{z}\|^{\prime}}$, where \mathbf{u} is a unit vector $(\|\mathbf{u}\|=1)$ such that

$$
\left\|\mathbf{A}^{-1} \mathbf{u}\right\|=\left\|\mathbf{A}^{-1}\right\|
$$

Obviously, $\|\delta \mathbf{A}\|=\varepsilon$ (verified by definition), and

$$
\begin{aligned}
\left\|\mathbf{A}^{-1}(\delta \mathbf{A}) \mathbf{x}\right\| & =\frac{\varepsilon\left|\mathbf{z}^{*} \mathbf{x}\right|}{\|\mathbf{z}\|^{\prime}}\left\|\mathbf{A}^{-1} \mathbf{u}\right\| \\
& =\varepsilon\|\mathbf{x}\|\left\|\mathbf{A}^{-1}\right\| \\
& =\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{A}\|\|\mathbf{x}\|
\end{aligned}
$$

Therefore, by

$$
\|\delta \mathbf{x}\|=\left\|\mathbf{A}^{-1}(\delta \mathbf{A}) \mathbf{x}\right\|+o(\|\delta \mathbf{A}\|)=\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{A}\|\|\mathbf{x}\|+o(\|\delta \mathbf{A}\|)
$$

we have

$$
\kappa\left(g_{\mathbf{b}}(\mathbf{A})\right)=\lim _{\varepsilon \rightarrow 0^{+}} \sup _{\|\delta \mathbf{A}\| \leq \varepsilon}\left(\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} / \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}\right)=\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\|
$$

7. Conditioning of least squares problems

- LSP: Given $\mathbf{A} \in \mathbb{C}^{m \times n}, m \geq n, \mathbf{b} \in \mathbb{C}^{m}$; find $\mathbf{x}_{\mathrm{ls}} \in \mathbb{C}^{n}$ such that

$$
\left\|\mathbf{b}-\mathbf{A} \mathbf{x}_{1 \mathrm{~s}}\right\|_{2}=\min _{\mathbf{x} \in \mathbb{C}^{n}}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}
$$

- Assume that \mathbf{A} is of full column rank. The unique least squares solution $\mathbf{x}_{1 \mathrm{~s}}$ and the corresponding point $\mathbf{y}=\mathbf{A} \mathbf{x}_{\mathrm{ls}}$ that is closest to \mathbf{b} in range (\mathbf{A}) are given by

$$
\mathbf{x}_{\mathrm{ls}}=\mathbf{A}^{\dagger} \mathbf{b}=\left(\mathbf{A}^{*} \mathbf{A}\right)^{-1} \mathbf{A}^{*} \mathbf{b}, \quad \mathbf{y}=\mathbf{P b}=\mathbf{A} \mathbf{x}_{1 \mathrm{~s}}
$$

where $\mathbf{P}=\mathbf{A} \mathbf{A}^{\dagger}$ is the orthogonal projector onto range (\mathbf{A}).

- Conditioning pertains to the sensitivity of solutions to perturbations in data.

Data: A,b Solutions: $\mathbf{x}_{1 \mathrm{~s}}, \mathbf{y}$.

Theorem 1

Let $\mathbf{b} \in \mathbb{C}^{m}$ and $\mathbf{A} \in \mathbb{C}^{m \times n}$ of full column rank be fixed. The least squares problem has the following 2 -norm relative condition numbers describing the sensitivities of \mathbf{y} or \mathbf{x}_{ls} to perturbations in \mathbf{b} or \mathbf{A} :

		\mathbf{x}_{ls}
\mathbf{b}	$\frac{1}{\cos \theta}$	$\frac{\kappa(\mathbf{A})}{\eta \cos \theta}$
\mathbf{A}	$\frac{\kappa(\mathbf{A})}{\cos \theta}$	$\kappa(\mathbf{A})+\frac{\kappa(\mathbf{A})^{2} \tan \theta}{\eta}$

where
$\theta=\arccos \frac{\|\mathbf{y}\|_{2}}{\|\mathbf{b}\|_{2}}, \quad \kappa(\mathbf{A})=\|\mathbf{A}\|_{2}\left\|\mathbf{A}^{\dagger}\right\|_{2}, \quad \eta=\frac{\|\mathbf{A}\|_{2}\left\|\mathbf{x}_{\mathrm{ls}}\right\|_{2}}{\|\mathbf{y}\|_{2}}=\frac{\|\mathbf{A}\|_{2}\left\|\mathbf{x}_{\mathrm{ls}}\right\|_{2}}{\left\|\mathbf{A} \mathbf{x}_{\mathrm{ls}}\right\|_{2}}$.
The results in the second row are exact, being attained for certain perturbations $\delta \mathbf{b}$, and the results in the third row are upper bounds.

- Sensitivity of $\mathbf{y}=\mathbf{P b}=\mathbf{A} \mathbf{A}^{\dagger} \mathbf{b}$ to perturbations in \mathbf{b}

$$
\kappa_{\mathbf{b} \mapsto \mathbf{y}}=\|\mathbf{P}\|_{2} \frac{\|\mathbf{b}\|_{2}}{\|\mathbf{y}\|_{2}}=\frac{1}{\cos \theta}
$$

- Sensitivity of $\mathbf{x}_{1 \mathrm{~s}}=\mathbf{A}^{\dagger} \mathbf{b}$ to perturbations in \mathbf{b}

$$
\kappa_{\mathbf{b} \mapsto \mathbf{x}_{1 \mathrm{~s}}}=\left\|\mathbf{A}^{\dagger}\right\|_{2} \frac{\|\mathbf{b}\|_{2}}{\left\|\mathbf{x}_{1 \mathrm{~s}}\right\|_{2}}=\left\|\mathbf{A}^{\dagger}\right\|_{2} \frac{\|\mathbf{b}\|_{2}}{\|\mathbf{y}\|_{2}} \frac{\|\mathbf{y}\|_{2}}{\left\|\mathbf{x}_{\mathrm{ls}}\right\|_{2}}=\frac{\kappa(\mathbf{A})}{\eta \cos \theta}
$$

- Sensitivity of $\mathbf{x}_{\mathrm{ls}}=\left(\mathbf{A}^{*} \mathbf{A}\right)^{-1} \mathbf{A}^{*} \mathbf{b}$ to perturbations in \mathbf{A}

$$
\begin{aligned}
\delta \mathbf{x}_{\mathrm{ls}} & =\left((\mathbf{A}+\delta \mathbf{A})^{*}(\mathbf{A}+\delta \mathbf{A})\right)^{-1}(\mathbf{A}+\delta \mathbf{A})^{*} \mathbf{b}-\mathbf{x}_{\mathrm{ls}} \\
& =\left(\mathbf{A}^{*} \mathbf{A}\right)^{-1}(\delta \mathbf{A})^{*}\left(\mathbf{I}-\mathbf{A} \mathbf{A}^{\dagger}\right) \mathbf{b}-\mathbf{A}^{\dagger} \delta \mathbf{A} \mathbf{A}^{\dagger} \mathbf{b}+o(\delta \mathbf{A}) \\
\kappa_{\mathbf{A} \mapsto \mathbf{x}_{1 \mathrm{~s}}} & \leq \frac{\left\|\left(\mathbf{I}-\mathbf{A} \mathbf{A}^{\dagger}\right) \mathbf{b}\right\|_{2}}{\sigma_{n}^{2}} \frac{\|\mathbf{A}\|_{2}}{\left\|\mathbf{x}_{1 \mathrm{~s}}\right\|_{2}}+\kappa(\mathbf{A})=\frac{\kappa(\mathbf{A})^{2} \tan \theta}{\eta}+\kappa(\mathbf{A})
\end{aligned}
$$

- Sensitivity of $\mathbf{y}=\mathbf{A}\left(\mathbf{A}^{*} \mathbf{A}\right)^{-1} \mathbf{A}^{*} \mathbf{b}$ to perturbations in \mathbf{A} (Exercise).

8. Computing the eigenvalues of a matrix

- If the matrix is normal, the problem is well-conditioned. We have (see Exercise 26.3)

$$
\mathbf{A} \rightarrow \mathbf{A}+\delta \mathbf{A}, \quad \lambda \rightarrow \lambda+\delta \lambda: \quad|\delta \lambda| \leq\|\delta \mathbf{A}\|_{2}
$$

Therefore, the absolute condition number is $\widehat{\kappa}=1$, and the relative condition number is

$$
\kappa=\frac{\|\mathbf{A}\|_{2}}{|\lambda|} .
$$

- If the matrix is nonnormal, the problem is often ill-conditioned. For example,

$$
\left[\begin{array}{cc}
1 & 10^{16} \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{cc}
1 & 10^{16} \\
10^{-16} & 1
\end{array}\right]
$$

whose eigenvalues are $\{1,1\}$ and $\{0,2\}$, respectively.

