Numerical Linear Algebra Assignment 14

Exercise 1. (10 points)
Prove Proposition 2 of Lecture 14.

Exercise 2. (10 points)

Show that an orthonormal basis for the Krylov subspace

$$
\mathcal{K}_{2 k}\left(\left[\begin{array}{cc}
\mathbf{I} & \mathbf{A} \\
\mathbf{A}^{*} & \mathbf{0}
\end{array}\right],\left[\begin{array}{l}
\mathbf{b} \\
\mathbf{0}
\end{array}\right]\right)
$$

is given by

$$
\left\{\left[\begin{array}{c}
\mathbf{u}_{1} \\
\mathbf{0}
\end{array}\right],\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{q}_{1}
\end{array}\right],\left[\begin{array}{c}
\mathbf{u}_{2} \\
\mathbf{0}
\end{array}\right],\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{q}_{2}
\end{array}\right], \cdots,\left[\begin{array}{c}
\mathbf{u}_{k} \\
\mathbf{0}
\end{array}\right],\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{q}_{k}
\end{array}\right]\right\},
$$

where $\left\{\mathbf{u}_{i}\right\}_{i=1}^{k}$ and $\left\{\mathbf{q}_{i}\right\}_{i=1}^{k}$ are the vectors generated by Golub-Kahan bidiagonalization for $\left[\begin{array}{ll}\mathbf{b} & \mathbf{A}\end{array}\right]$. (Here we assume all the vectors are well-defined.)

Exercise 3. (Programming, 10 points)

Write two matlab functions, $[\mathrm{U}, \mathrm{B}, \mathrm{V}]=\mathrm{hb}(\mathrm{A})$ and $[\mathrm{U}, \mathrm{B}, \mathrm{V}]=\mathrm{gkb}(\mathrm{A})$, to implement Householder bidiagonalization and Golub-Kahan bidiagonalization for the bidiagonal decomposition in Proposition 1 of Lecture 14. For simplicity, we only consider the case $m=n$. Test the 4×4 complex matrix $(\mathrm{i}=\sqrt{-1})$

$$
\mathbf{A}=\left[\begin{array}{cccc}
1+1 \mathrm{i} & -1 \mathrm{i} & 0 & 1 \mathrm{i} \\
1 & 1+1 \mathrm{i} & 1-1 \mathrm{i} & 1+3 \mathrm{i} \\
0 & 1 \mathrm{i} & -1 \mathrm{i} & -1 \mathrm{i} \\
2 \mathrm{i} & 1 & 0 & 0
\end{array}\right]
$$

Exercise 4. (Programming, 10 points)

Write matlab codes to implement the approach (i.e., via a sequence of Givens rotations) introduced in Lecture 14 for the least squares problem with bidiagonal structure. Design a numerical experiment to verify your codes.

