Lecture 4: Householder reflector, Givens rotation, Least squares problem

School of Mathematical Sciences, Xiamen University

1. Householder reflector

• Let $\mathbf{v} \in \mathbb{C}^m$ and $\mathbf{v} \neq \mathbf{0}$. Then the matrix

$$\mathbf{H} = \mathbf{I} - 2\frac{\mathbf{v}\mathbf{v}^*}{\mathbf{v}^*\mathbf{v}},$$

is called a Householder reflector.

• Geometric interpretation

Exercise: Householder reflector H satisfies the following properties:
(1) It is *Hermitian*: H = H*
(2) It is *unitary*: H* = H⁻¹
(3) It is *involutary*: H² = I

Exercise: What are the eigenvalues, the determinant, and the singular values of a Householder reflector \mathbf{H} ? Hint: eigenvalues 1 with multiplicity m - 1 and -1 with multiplicity 1.

Exercise: Prove that $\mathbf{I} - \frac{\mathbf{v}\mathbf{v}^*}{\mathbf{v}^*\mathbf{v}}$ is the orthogonal projector which projects \mathbb{C}^m onto the hyperplane span $\{\mathbf{v}\}^{\perp}$ along span $\{\mathbf{v}\}$.

Theorem 1

For all $\mathbf{x}, \mathbf{y} \in \mathbb{C}^m$ with $\mathbf{x} \neq \mathbf{y}$, there exists a Householder reflector \mathbf{H} such that $\mathbf{H}\mathbf{x} = \mathbf{y}$ if and only if $\|\mathbf{x}\|_2 = \|\mathbf{y}\|_2$ and $\mathbf{x}^*\mathbf{y} \in \mathbb{R}$.

Proof.

"
$$\Rightarrow$$
" is easy. " \Leftarrow ": let $\mathbf{v} = \mathbf{y} - \mathbf{x}$, verify $\mathbf{H}\mathbf{x} = \mathbf{y}$.

Corollary 2

For all nonzero $\mathbf{x}, \mathbf{y} \in \mathbb{C}^m$ with $\mathbf{x} \neq \mathbf{y}$, there exists a Householder reflector \mathbf{H} and $z \in \mathbb{C}$ such that $\mathbf{H}\mathbf{x} = z\mathbf{y}$.

Proof.

Let

$$z = \frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2} \cdot c, \qquad c = \begin{cases} \pm \mathbf{y}^* \mathbf{x} / |\mathbf{x}^* \mathbf{y}|, & \text{if } \mathbf{x}^* \mathbf{y} \neq 0\\ e^{\mathrm{i}\theta}, \ \theta \in [0, 2\pi), & \text{if } \mathbf{x}^* \mathbf{y} = 0 \end{cases}$$

and $\mathbf{v} = z\mathbf{y} - \mathbf{x}$. Verify $\mathbf{H}\mathbf{x} = z\mathbf{y}$.

- 2. QR factorization via Householder reflectors
 - Householder method: $\mathbf{Q}_n \cdots \mathbf{Q}_2 \mathbf{Q}_1 \mathbf{A} = \mathbf{R}$ is upper-triangular.

× denotes an entry not necessarily zero; "blank" are zeros
• At the kth step, the unitary matrix Q_k has the form

$$\mathbf{Q}_k = egin{bmatrix} \mathbf{I}_{k-1} & \ & \mathbf{H}_k \end{bmatrix}$$

Here \mathbf{H}_k is an $(m - k + 1) \times (m - k + 1)$ Householder reflector, which maps an m - k + 1-vector to a scalar multiple of \mathbf{e}_1 .

• The full QR factorization: $\mathbf{A} = \mathbf{Q}_1^* \mathbf{Q}_2^* \cdots \mathbf{Q}_n^* \mathbf{R} = \mathbf{Q} \mathbf{R}$

- QR factorization with column pivoting: $\mathbf{AP} = \mathbf{QR}$. Consider "qr"
- 2.1. Two possible Householder reflections in real case

• Choose the one that moves \mathbf{x} the larger distance, i.e., $\mathbf{v} = -\operatorname{sign}(x_1) \|\mathbf{x}\|_2 \mathbf{e}_1 - \mathbf{x}$, or $\mathbf{v} = \operatorname{sign}(x_1) \|\mathbf{x}\|_2 \mathbf{e}_1 + \mathbf{x}$

• Convention: $sign(x_1) = 1$ if $x_1 = 0$

2.2. Algorithms

Algorithm: Householder QR factorization for k = 1 to n $\mathbf{x} = \mathbf{A}_{k:m,k}$ $\mathbf{v}_k = \operatorname{sign}(x_1) \|\mathbf{x}\|_2 \mathbf{e}_1 + \mathbf{x}$ $\mathbf{v}_k = \mathbf{v}_k / \|\mathbf{v}_k\|_2$ $\mathbf{A}_{k:m,k:n} = \mathbf{A}_{k:m,k:n} - 2\mathbf{v}_k(\mathbf{v}_k^*\mathbf{A}_{k:m,k:n})$ end

Algorithm: Implicit calculations of $\mathbf{Q}^* \mathbf{b}$ or $\mathbf{Q} \mathbf{x}$

for
$$k = 1$$
 to n
 $\mathbf{b}_{k:m} = \mathbf{b}_{k:m} - 2\mathbf{v}_k(\mathbf{v}_k^*\mathbf{b}_{k:m})$
end
for $k = n$ downto 1
 $\mathbf{x}_{k:m} = \mathbf{x}_{k:m} - 2\mathbf{v}_k(\mathbf{v}_k^*\mathbf{x}_{k:m})$
end

- **3.** Givens rotation (We mainly consider the real case.)
 - The 2×2 Givens rotation

$$\mathbf{G} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}, \quad \cos\theta = \frac{x}{\sqrt{x^2 + y^2}}, \quad \sin\theta = \frac{y}{\sqrt{x^2 + y^2}}$$
rotates vector $\begin{bmatrix} x \\ y \end{bmatrix}$ in \mathbb{R}^2 onto the *x*-axis, i.e., the second entry becomes zero.

(x, y) θ $(\sqrt{x^2 + y^2}, 0)$

• Givens rotation:
$$\begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \tau \\ 0 \end{bmatrix}$$
 with $|\tau| = \sqrt{x^2 + y^2}$

Algorithm: Givens rotation zeroing the 2nd entry function $[c, s, \tau] = \text{givens}(x, y)$ if y = 0 $c = 1, \quad s = 0, \quad \tau = x$ else $\tau = \sqrt{x^2 + y^2}, \quad c = \frac{x}{\tau}, \quad s = \frac{y}{\tau}$ end

• Givens rotation:
$$\begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ \tau \end{bmatrix}$$
 with $|\tau| = \sqrt{x^2 + y^2}$

Exercise: Design a similar algorithm as above.

• Zeroing a particular entry in a vector using a Givens rotation.

Define the $m \times m$ Givens rotation $\mathbf{G}(i, j; \theta), i < j$,

$$\mathbf{G}(i, j; \theta) = \mathbf{I} + \begin{bmatrix} \mathbf{e}_i & \mathbf{e}_j \end{bmatrix} \begin{bmatrix} \cos \theta - 1 & \sin \theta \\ -\sin \theta & \cos \theta - 1 \end{bmatrix} \begin{bmatrix} \mathbf{e}_i^\top \\ \mathbf{e}_j^\top \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{I} & & \\ \cos \theta & \sin \theta \\ & \mathbf{I} \\ -\sin \theta & \cos \theta \\ & & \mathbf{I} \end{bmatrix} \operatorname{row} i \\ \operatorname{row} j \\ \mathbf{I} \end{bmatrix}$$

Exercise: Prove that the matrix $\mathbf{G}(i, j; \theta)$ is orthogonal.

• Creating a sequence of zeros in a vector using Givens rotations

$$\mathbf{G}_n\mathbf{G}_{n-1}\cdots\mathbf{G}_1\mathbf{x}$$

• QR factorization via Givens rotations?

Exercise: Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be given as

$$\mathbf{A} = \begin{bmatrix} \alpha_{1} & \beta_{2} & \beta_{3} & \cdots & \beta_{n} \\ \gamma_{2} & \alpha_{2} & 0 & \cdots & 0 \\ \gamma_{3} & 0 & \alpha_{3} & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \gamma_{n} & 0 & \cdots & 0 & \alpha_{n} \end{bmatrix}, \qquad \begin{aligned} \alpha_{i} \neq 0, \quad i = 1: n, \\ \beta_{i} \neq 0, \quad i = 2: n, \\ \gamma_{i} \neq 0, \quad i = 2: n. \end{aligned}$$

Describe an algorithm for QR factorization of **A** based on as few Givens rotations as possible.

• Complex case:

$$\mathbf{G} = \begin{bmatrix} c & \bar{s} \\ -s & c \end{bmatrix}, \quad c \in \mathbb{R}, \quad c^2 + |s|^2 = 1.$$

11 / 20

- 4. The least squares problem (LSP)
 - LSP: Given $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{b} \in \mathbb{C}^m$; find $\mathbf{x}_{ls} \in \mathbb{C}^n$ such that

$$\|\mathbf{b} - \mathbf{A}\mathbf{x}_{\mathrm{ls}}\|_2 = \min_{\mathbf{x}\in\mathbb{C}^n} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2.$$

The *least squares solution*, \mathbf{x}_{ls} , maybe *not* unique. Why?

- Note that the 2-norm corresponds to Euclidean distance.
 LSP means we seek a vector x_{ls} ∈ Cⁿ such that the vector Ax_{ls} is the closest point in range(A) to b.
 The *residual*, r_{ls} = b − Ax_{ls}, is unique. Why?
- Assume that **A** and **b** are real. Define

$$f(\mathbf{x}) := \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2 = \mathbf{b}^\top \mathbf{b} - \mathbf{x}^\top \mathbf{A}^\top \mathbf{b} - \mathbf{b}^\top \mathbf{A}\mathbf{x} + \mathbf{x}^\top \mathbf{A}^\top \mathbf{A}\mathbf{x}.$$

Then the gradient of $f(\mathbf{x})$ is

$$\nabla f(\mathbf{x}) = 2\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{\top}\mathbf{b}.$$

4.1. Theory of the least squares problem

Theorem 3

Let **P** be the orthogonal projector onto range(**A**). A vector **x** is a least squares solution if and only if **x** satisfies $\mathbf{A}\mathbf{x} = \mathbf{P}\mathbf{b}$.

Hint:

$$\|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2 = \|\mathbf{P}\mathbf{b} - \mathbf{A}\mathbf{x} + \mathbf{b} - \mathbf{P}\mathbf{b}\|_2^2 = \|\mathbf{P}\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2 + \|\mathbf{b} - \mathbf{P}\mathbf{b}\|_2^2.$$

Corollary 4

A vector \mathbf{x} is a least squares solution if and only if \mathbf{x} satisfies $\mathbf{A}^*\mathbf{A}\mathbf{x} = \mathbf{A}^*\mathbf{b}$, *i.e.*, $\mathbf{A}^*\mathbf{r} = \mathbf{0}$, or $\mathbf{r} \perp \text{range}(\mathbf{A})$, where $\mathbf{r} := \mathbf{b} - \mathbf{A}\mathbf{x}$.

Proof.

$$\because \mathbf{A}^* = \mathbf{A}^* \mathbf{P}, \ \therefore \ \mathbf{A}^* \mathbf{r} = \mathbf{0} \Leftrightarrow \mathbf{A}^* (\mathbf{P} \mathbf{b} - \mathbf{A} \mathbf{x}) = \mathbf{0} \Leftrightarrow \mathbf{A} \mathbf{x} = \mathbf{P} \mathbf{b}.$$

• The system $\mathbf{A}^* \mathbf{A} \mathbf{x} = \mathbf{A}^* \mathbf{b}$ is called the *normal equations*.

Corollary 5

The least squares solution \mathbf{x} is unique if and only if $\mathbf{A}^*\mathbf{A}$ has full rank, or equivalently, \mathbf{A} has full column rank, i.e., rank $(\mathbf{A}) = n$.

4.2. Geometric interpretation

• Let \mathbf{x} be a least squares solution. Obviously, $\mathbf{r} = \mathbf{b} - \mathbf{P}\mathbf{b}$ is unique.

4.3. Moore–Penrose pseudoinverse solution $A^{\dagger}b$

• Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ have an SVD $\mathbf{A} = \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}_r^*$. The matrix

$$\mathbf{A}^{\dagger} = \mathbf{V}_{r} \boldsymbol{\Sigma}_{r}^{-1} \mathbf{U}_{r}^{*} = \sum_{j=1}^{r} \frac{1}{\sigma_{j}} \mathbf{v}_{j} \mathbf{u}_{j}^{*} \in \mathbb{C}^{n \times m},$$

is called the *Moore–Penrose pseudoinverse* of **A**. If **A** has full column rank, then $\mathbf{A}^{\dagger} = (\mathbf{A}^* \mathbf{A})^{-1} \mathbf{A}^*$. (Full row rank case?)

Theorem 6

Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ have rank r < n and $\mathbf{b} \in \mathbb{C}^m$. Then the vector $\mathbf{A}^{\dagger}\mathbf{b}$ is the unique least squares solution with minimum 2-norm.

Proof.

By SVD of \mathbf{A} , the least squares solutions can be expressed as

$$\mathbf{x}_{\mathrm{ls}} = \mathbf{A}^{\dagger} \mathbf{b} + \mathbf{V}_{\mathrm{c}} \mathbf{z}, \quad \mathbf{z} \in \mathbb{C}^{n-r}.$$

Then the statement follows from $\mathbf{A}^{\dagger}\mathbf{b} \perp \mathbf{V}_{c}\mathbf{z}$.

- 4.4. Full column rank LSP solvers: $rank(\mathbf{A}) = n$
 - Normal equations: classical way to solve LSP, best for speed
 - QR factorization: "modern classical" method to solve LSP, numerically stable. By

$$\mathbf{A} = \mathbf{Q}\mathbf{R} = egin{bmatrix} \mathbf{Q}_n & \mathbf{Q}_c\end{bmatrix} egin{bmatrix} \mathbf{R}_n \ \mathbf{0} \end{bmatrix},$$

we have

$$\begin{split} \min_{\mathbf{x}\in\mathbb{C}^n} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 &= \min_{\mathbf{x}\in\mathbb{C}^n} \|\mathbf{b} - \mathbf{Q}\mathbf{R}\mathbf{x}\|_2 = \min_{\mathbf{x}\in\mathbb{C}^n} \|\mathbf{Q}^*\mathbf{b} - \mathbf{R}\mathbf{x}\|_2 \\ &= \min_{\mathbf{x}\in\mathbb{C}^n} \left\| \begin{bmatrix} \mathbf{Q}_n^*\mathbf{b} - \mathbf{R}_n\mathbf{x} \\ \mathbf{Q}_c^*\mathbf{b} \end{bmatrix} \right\|_2 \end{split}$$

• SVD, numerically stable, for problems close to rank-deficient. By

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^* = \mathbf{U}_n \mathbf{\Sigma}_n \mathbf{V}^* = egin{bmatrix} \mathbf{U}_n & \mathbf{U}_\mathrm{c} \end{bmatrix} egin{bmatrix} \mathbf{\Sigma}_n \ \mathbf{0} \end{bmatrix} \mathbf{V}^*,$$

we have

$$\begin{split} \min_{\mathbf{x}\in\mathbb{C}^n} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 &= \min_{\mathbf{x}\in\mathbb{C}^n} \|\mathbf{b} - \mathbf{U}\mathbf{\Sigma}\mathbf{V}^*\mathbf{x}\|_2 \\ &= \min_{\mathbf{x}\in\mathbb{C}^n} \|\mathbf{U}^*\mathbf{b} - \mathbf{\Sigma}\mathbf{V}^*\mathbf{x}\|_2 \\ &= \min_{\mathbf{x}\in\mathbb{C}^n} \left\| \begin{bmatrix} \mathbf{U}_n^*\mathbf{b} - \mathbf{\Sigma}_n\mathbf{V}^*\mathbf{x} \\ \mathbf{U}_c^*\mathbf{b} \end{bmatrix} \right\|_2 \end{split}$$

Exercise: Given $\mathbf{A} \in \mathbb{C}^{m \times n}$ of full column rank, m > n, $\mathbf{b} \in \mathbb{C}^m$, $\mathbf{b} \notin \operatorname{range}(\mathbf{A})$ and $\mathbf{QR} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$ (i.e., full QR factorization of $\begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$). Show that

$$\min_{\mathbf{x}\in\mathbb{C}^n} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 = |\mathbf{R}(n+1, n+1)|,$$

and the least squares solution is given by

$$\mathbf{x} = \mathbf{R}(1:n,1:n) \backslash \mathbf{R}(1:n,n+1).$$

17 / 20

- 4.5. Rank-deficient LSP solvers: $rank(\mathbf{A}) = r < n$
 - QR factorization with column pivoting:

$$\mathbf{AP} = \mathbf{QR} = \mathbf{Q} \begin{bmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} \\ \mathbf{0} & \mathbf{0} \end{bmatrix},$$

where **P** is a permutation matrix, $\mathbf{Q} \in \mathbb{C}^{m \times m}$ is unitary, and $\mathbf{R}_{11} \in \mathbb{R}^{r \times r}$ is nonsingular upper triangular. Introduce the auxiliary vectors

$$\mathbf{Q}^*\mathbf{b} = \begin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \end{bmatrix}$$
 and $\mathbf{P}^*\mathbf{x} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix}$.

The general least squares solution is

$$\mathbf{x}_{\mathrm{ls}} = \mathbf{P} \begin{bmatrix} \mathbf{R}_{11}^{-1} (\mathbf{d}_1 - \mathbf{R}_{12} \mathbf{y}_2) \\ \mathbf{y}_2 \end{bmatrix}, \quad \mathbf{y}_2 = \mathrm{arbitrary}.$$

The case $\mathbf{y}_2 = \mathbf{0}$ yields the least squares solution with at least n - r zero components. Consider "\" in MATLAB.

18 / 20

• Complete orthogonal factorization (also called UTV factorization)

$$\mathbf{A} = \mathbf{U} \begin{bmatrix} \mathbf{R}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{V}^*,$$

where $\mathbf{U} \in \mathbb{C}^{m \times m}$ is unitary, $\mathbf{V} \in \mathbb{C}^{n \times n}$ is unitary, and $\mathbf{R}_{11} \in \mathbb{R}^{r \times r}$ is nonsingular upper triangular. Introduce the auxiliary vectors

$$\mathbf{U}^*\mathbf{b} = \begin{bmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \end{bmatrix}$$
 and $\mathbf{V}^*\mathbf{x} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix}$

The general least squares solution is

$$\mathbf{x}_{ls} = \mathbf{V} \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} = \mathbf{V} \begin{bmatrix} \mathbf{R}_{11}^{-1} \mathbf{g}_1 \\ \mathbf{y}_2 \end{bmatrix}, \quad \mathbf{y}_2 = arbitrary.$$

The case $y_2 = 0$ yields the minimum 2-norm least squares solution. Consider lsqminnorm in MATLAB. http://www.netlib.org/numeralgo/

5. Solutions of Ax = b with $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^m$

Numerical Linear Algebra

Lecture 4