Numerical Linear Algebra Assignment 11

Exercise 1. (10 points)

Let $z \in \mathbb{C}, \mathbf{A} \in \mathbb{C}^{m \times m}$, and $\mathbf{B}=\mathbf{A}+z \mathbf{I}$. Prove the translation-invariance of Krylov subspaces, i.e., $\forall j \in \mathbb{N}$,

$$
\mathcal{K}_{j}(\mathbf{A}, \mathbf{r})=\mathcal{K}_{j}(\mathbf{B}, \mathbf{r}) .
$$

Exercise 2. (10 points)

If the minimal polynomial of the nonsingular matrix \mathbf{A} has degree n, then the solution to $\mathbf{A x}=\mathbf{b}$ lies in the space $\mathcal{K}_{n}(\mathbf{A}, \mathbf{b})$. (Hint: Let $q(z)=\alpha_{0}+\alpha_{1} z+\cdots+\alpha_{n-1} z^{n-1}+z^{n}$ denote the minimal polynomial of \mathbf{A}. Then $\alpha_{0} \neq 0$.)

Exercise 3. (10 points)

Suppose the minimal polynomial of the matrix $\mathbf{A} \in \mathbb{C}^{m \times m}$ has degree n and the Arnoldi process for \mathbf{A} and a nonzero \mathbf{r} breaks down at step k, i.e., $h_{k+1, k}=0$ is encountered. Prove the following
(i) $k \leq n$.
(ii) $\mathcal{K}_{k}(\mathbf{A}, \mathbf{r})=\mathcal{K}_{k+1}(\mathbf{A}, \mathbf{r})=\mathcal{K}_{k+2}(\mathbf{A}, \mathbf{r})=\cdots$.
(iii) Each eigenvalue of \mathbf{H}_{k} is an eigenvalue of \mathbf{A}.
(iv) If \mathbf{A} is nonsingular, then the solution \mathbf{x} of $\mathbf{A x}=\mathbf{r}$ lies in $\mathcal{K}_{k}(\mathbf{A}, \mathbf{r})$.

Exercise 4. (10 points)

Assume $c_{0} \neq 0$. Let $\mathbf{r}_{0}=\mathbf{e}_{1}$ and

$$
\mathbf{A}=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{I}_{m-1} \\
-c_{0} & -\mathbf{c}_{m-1}
\end{array}\right] \in \mathbb{C}^{m \times m}, \quad \mathbf{c}_{m-1}=\left[\begin{array}{llll}
c_{1} & c_{2} & \cdots & c_{m-1}
\end{array}\right]
$$

Prove that

$$
\left\|\mathbf{r}_{0}\right\|_{2}=\left\|\mathbf{r}_{1}\right\|_{2}=\cdots=\left\|\mathbf{r}_{m-1}\right\|_{2}, \quad\left\|\mathbf{r}_{m}\right\|_{2}=0
$$

The above example implies that GMRES can completely stagnate, i.e., the residual norm can be nondecreasing at the first $m-1$ steps, and "convergence" occurs in the last step.

Exercise 5. (10 points)
Assume the Arnoldi process for $\left\{\mathbf{A}, \mathbf{r}_{0}\right\}$ breaks down at step $k>1$. For $1 \leq j<k$, we have $\mathbf{A Q}_{j}=\mathbf{Q}_{j+1} \widetilde{\mathbf{H}}_{j}$ and $\mathbf{H}_{j}=\mathbf{Q}_{j}^{*} \mathbf{A} \mathbf{Q}_{j}$. For $1 \leq j<k$, prove the following:
(a) The j th residual vector \mathbf{r}_{j} of GMRES can be uniquely expressed as

$$
\mathbf{r}_{j}=p_{j}(\mathbf{A}) \mathbf{r}_{0}, \quad \operatorname{deg}\left(p_{j}\right) \leq j, \quad p_{j}(0)=1
$$

(b) The unique polynomial p_{j} in (a) is given by

$$
p_{j}(z)=\prod_{i=1}^{j}\left(1-\theta_{i}^{(j)} z\right)
$$

where $\theta_{i}^{(j)}, i=1,2, \ldots, j$, are the eigenvalues of $\left(\widetilde{\mathbf{H}}_{j}^{*} \widetilde{\mathbf{H}}_{j}\right)^{-1} \mathbf{H}_{j}^{*}$.

Exercise 6. (Programming, 10 points)

Write matlab code to plot the four pictures in Lecture 11.

