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1. Splitting and stationary iterative method

Definition 1

A splitting of A ∈ Cn×n is a decomposition A = M−K, with M
nonsingular.

Remark 2

A splitting yields a stationary iterative method as follows. The equation

Ax = (M−K)x = b

implies
x = M−1Kx+M−1b := Rx+ c.

Given a starting vector x(0), we obtain a stationary iterative method

x(m) = Rx(m−1) + c, m = 1, 2, . . .

We note that R = M−1K = M−1(M−A) = I−M−1A.
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2. Convergence criterion

Definition 3

The spectral radius of a matrix A ∈ Cn×n is ρ(A) = max
λ∈Λ(A)

|λ|.

Exercise. If A is singular and A = M−K with M nonsingular, then
ρ(M−1K) ≥ 1.

Proposition 4

Let ‖ · ‖ denote a matrix norm on Cn×n induced by a vector norm on
Cn. For any A ∈ Cn×n, we have ρ(A) ≤ ‖A‖.

Lemma 5

For any given A ∈ Cn×n and ε > 0 there exists an induced matrix
norm ‖ · ‖" such that

ρ(A) ≤ ‖A‖" ≤ ρ(A) + ε.

The norm ‖ · ‖" depends on both A and ε.
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Proof.

Let A = SJS−1 be a Jordan form of A. Let

Dε = diag{1, ε, ε2, · · · , εn−1}.

Now for all x ∈ Cn and for all B ∈ Cn×n, define the vector norm

‖x‖" := ‖(SDε)
−1x‖∞

and the corresponding induced matrix norm

‖B‖" : = sup
x∈Cn,x ∕=0

‖Bx‖"
‖x‖"

= sup
x∈Cn,x ∕=0

‖(SDε)
−1Bx‖∞

‖(SDε)−1x‖∞

= sup
y∈Cn,y ∕=0

‖(SDε)
−1B(SDε)y‖∞
‖y‖∞

= ‖D−1
ε S−1BSDε‖∞.

The statement follows from ‖A‖" = ‖D−1
ε JDε‖∞ ≤ ρ(A) + ε.
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Theorem 6

The iteration x(m) = Rx(m−1) + c converges to the solution of Ax = b
for all starting vectors x(0) if and only if ρ(R) < 1.

Proof.

For all x(0), we have x(m) − x = R(x(m−1) − x) = · · · = Rm(x(0) − x).

If ρ(R) ≥ 1, choose x(0) − x to be an eigenvector of R with eigenvalue
λ where |λ| = ρ(R). Then x(m) − x = λm(x(0) − x) will not approach 0.

If ρ(R) < 1, by Lemma 5 there exists an induced matrix norm ‖ · ‖"
such that ‖R‖" < 1, then we have ‖x(m) − x‖" ≤ ‖R‖m" ‖x(0) − x‖" → 0
for all x(0).

Remark 7

The goal is to choose a splitting A = M−K so that both

(1) Rv = M−1Kv and c = M−1b are easy to evaluate, and

(2) ρ(R) is small (< 1).
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(1) and (2) are conflicting goals, and need to be balanced.

If Λ(R) ⊂ (−ρ(R), ρ(R)), then Chebyshev acceleration technique
can be used. See Demmel’s book ANLA, section 6.5.6.

3. Classical stationary iterative methods

Let A = D− L−U, where

D is the diagonal matrix with diagonal entries dii = aii,

−L is the strictly lower triangular part of A,

−U is the strictly upper triangular part of A.

Assume that A has no zero diagonal entries. We will introduce

(1) Jacobi’s method,

(2) Gauss–Seidel method,

(3) Successive overrelaxation: SOR(ω),

(4) Symmetric successive overrelaxation: SSOR(ω).

Numerical Linear Algebra Lecture 6 Xiamen University 6 / 12



3.1. Jacobi’s method

The splitting is
A = D− (L+U),

and the corresponding

R = D−1(L+U) = I−D−1A and c = D−1b.

Algorithm 1: Jacobi’s method

for j = 1 to n

x
(m+1)
j =

1

ajj

!

"bj −
#

k ∕=j

ajkx
(m)
k

$

%

end

Theorem 8

If A is Hermitian and aii > 0 for all i, then Jacobi’s method converges
for all starting vectors if and only if A and 2D−A are both HPD.
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3.2. Gauss–Seidel method

The splitting is
A = (D− L)−U,

and the corresponding

R = (D− L)−1U,

and
c = (D− L)−1b.

Algorithm 2: Gauss–Seidel method

for j = 1 to n

x
(m+1)
j =

1

ajj

!

"bj −
j−1#

k=1

ajkx
(m+1)
k −

n#

k=j+1

ajkx
(m)
k

$

%

end
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3.3. Successive overrelaxation: SOR(ω), ω ∈ R
The splitting is ωA = (D− ωL)− ((1− ω)D+ ωU), and the
corresponding

R = (D− ωL)−1((1− ω)D+ ωU),

and
c = ω(D− ωL)−1b.

ω = 1: Gauss–Seidel method

0 < ω < 2: Necessary in some sense (see Theorem 13)

Optimal ω:

Algorithm 3: SOR(ω), here ω is the relaxation parameter

for j = 1 to n

x
(m+1)
j = (1− ω)x

(m)
j +

ω

ajj

!

"bj −
j−1#

k=1

ajkx
(m+1)
k −

n#

k=j+1

ajkx
(m)
k

$

%

end
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3.4. Symmetric successive overrelaxation: SSOR(ω), ω ∈ R
This method uses two splittings:

ωA = (D− ωL)− ((1− ω)D+ ωU)

= (D− ωU)− ((1− ω)D+ ωL),

and the corresponding

R = (D− ωU)−1((1− ω)D+ ωL)(D− ωL)−1((1− ω)D+ ωU),

c = ω(2− ω)(D− ωU)−1D(D− ωL)−1b.
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3.5. Convergence (see Demmel’s book ANLA, section 6.5.5)

Definition 9

A is an irreducible matrix if there is no permutation matrix such that

PAP⊤ =

&
A11 A12

0 A22

'
.

Definition 10

A matrix A ∈ Cn×n is weakly row diagonally dominant if for all i,

|aii| ≥
#

j ∕=i

|aij |

with strict inequality at least once. A matrix A is strictly row
diagonally dominant if for all i:

|aii| >
#

j ∕=i

|aij |.
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Theorem 11

If A is strictly row diagonally dominant, then both Jacobi’s and
Gauss–Seidel methods converge. In fact ‖RGS‖∞ ≤ ‖RJ‖∞ < 1.

Theorem 12

If A is irreducible and weakly row diagonally dominant, then both
Jacobi’s and Gauss–Seidel methods converge, and ρ(RGS) < ρ(RJ) < 1.

Theorem 13

For any matrix A, it holds ρ(RSOR(ω)) ≥ |ω − 1|. Therefore 0 < ω < 2
is required for the convergence of SOR(ω) for all starting vectors.

Theorem 14

If A is Hermitian positive definite, then ρ(RSOR(ω)) < 1 for all
0 < ω < 2, i.e., SOR(ω) converges for all 0 < ω < 2. Gauss–Seidel
(SOR(1)) converges for Hermitian positive definite A.
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