Lecture 6: Stationary iterative methods

School of Mathematical Sciences, Xiamen University

1. Splitting and stationary iterative method

Definition 1

A splitting of $\mathbf{A} \in \mathbb{C}^{n \times n}$ is a decomposition $\mathbf{A}=\mathbf{M}-\mathbf{K}$, with \mathbf{M} nonsingular.

Remark 2

A splitting yields a stationary iterative method as follows. The equation

$$
\mathbf{A x}=(\mathbf{M}-\mathbf{K}) \mathbf{x}=\mathbf{b}
$$

implies

$$
\mathbf{x}=\mathbf{M}^{-1} \mathbf{K} \mathbf{x}+\mathbf{M}^{-1} \mathbf{b}:=\mathbf{R} \mathbf{x}+\mathbf{c}
$$

Given a starting vector $\mathbf{x}^{(0)}$, we obtain a stationary iterative method

$$
\mathbf{x}^{(m)}=\mathbf{R} \mathbf{x}^{(m-1)}+\mathbf{c}, \quad m=1,2, \ldots
$$

We note that $\mathbf{R}=\mathbf{M}^{-1} \mathbf{K}=\mathbf{M}^{-1}(\mathbf{M}-\mathbf{A})=\mathbf{I}-\mathbf{M}^{-1} \mathbf{A}$.

2. Convergence criterion

Definition 3

The spectral radius of a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is $\rho(\mathbf{A})=\max _{\lambda \in \Lambda(\mathbf{A})}|\lambda|$.
Exercise. If \mathbf{A} is singular and $\mathbf{A}=\mathbf{M}-\mathbf{K}$ with \mathbf{M} nonsingular, then $\rho\left(\mathbf{M}^{-1} \mathbf{K}\right) \geq 1$.

Proposition 4
Let $\|\cdot\|$ denote a matrix norm on $\mathbb{C}^{n \times n}$ induced by a vector norm on \mathbb{C}^{n}. For any $\mathbf{A} \in \mathbb{C}^{n \times n}$, we have $\rho(\mathbf{A}) \leq\|\mathbf{A}\|$.

Lemma 5
For any given $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\varepsilon>0$ there exists an induced matrix norm $\|\cdot\|_{\star}$ such that

$$
\rho(\mathbf{A}) \leq\|\mathbf{A}\|_{\star} \leq \rho(\mathbf{A})+\varepsilon .
$$

The norm $\|\cdot\|_{\star}$ depends on both \mathbf{A} and ε.

Proof.

Let $\mathbf{A}=\mathbf{S J S}^{-1}$ be a Jordan form of \mathbf{A}. Let

$$
\mathbf{D}_{\varepsilon}=\operatorname{diag}\left\{1, \varepsilon, \varepsilon^{2}, \cdots, \varepsilon^{n-1}\right\}
$$

Now for all $\mathbf{x} \in \mathbb{C}^{n}$ and for all $\mathbf{B} \in \mathbb{C}^{n \times n}$, define the vector norm

$$
\|\mathbf{x}\|_{\star}:=\left\|\left(\mathbf{S D}_{\varepsilon}\right)^{-1} \mathbf{x}\right\|_{\infty}
$$

and the corresponding induced matrix norm

$$
\begin{aligned}
\|\mathbf{B}\|_{\star}: & =\sup _{\mathbf{x} \in \mathbb{C}^{n}, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{B} \mathbf{x}\|_{\star}}{\|\mathbf{x}\|_{\star}}=\sup _{\mathbf{x} \in \mathbb{C}^{n}, \mathbf{x} \neq \mathbf{0}} \frac{\left\|\left(\mathbf{S D}_{\varepsilon}\right)^{-1} \mathbf{B} \mathbf{x}\right\|_{\infty}}{\left\|\left(\mathbf{S D}_{\varepsilon}\right)^{-1} \mathbf{x}\right\|_{\infty}} \\
& =\sup _{\mathbf{y} \in \mathbb{C}^{n}, \mathbf{y} \neq \mathbf{0}} \frac{\left\|\left(\mathbf{S D}_{\varepsilon}\right)^{-1} \mathbf{B}\left(\mathbf{S D}_{\varepsilon}\right) \mathbf{y}\right\|_{\infty}}{\|\mathbf{y}\|_{\infty}} \\
& =\left\|\mathbf{D}_{\varepsilon}^{-1} \mathbf{S}^{-1} \mathbf{B S D}_{\varepsilon}\right\|_{\infty} .
\end{aligned}
$$

The statement follows from $\|\mathbf{A}\|_{\star}=\left\|\mathbf{D}_{\varepsilon}^{-1} \mathbf{J} \mathbf{D}_{\varepsilon}\right\|_{\infty} \leq \rho(\mathbf{A})+\varepsilon$.

Theorem 6

The iteration $\mathbf{x}^{(m)}=\mathbf{R} \mathbf{x}^{(m-1)}+\mathbf{c}$ converges to the solution of $\mathbf{A x}=\mathbf{b}$ for all starting vectors $\mathbf{x}^{(0)}$ if and only if $\rho(\mathbf{R})<1$.

Proof.

For all $\mathbf{x}^{(0)}$, we have $\mathbf{x}^{(m)}-\mathbf{x}=\mathbf{R}\left(\mathbf{x}^{(m-1)}-\mathbf{x}\right)=\cdots=\mathbf{R}^{m}\left(\mathbf{x}^{(0)}-\mathbf{x}\right)$. If $\rho(\mathbf{R}) \geq 1$, choose $\mathbf{x}^{(0)}-\mathbf{x}$ to be an eigenvector of \mathbf{R} with eigenvalue λ where $|\lambda|=\rho(\mathbf{R})$. Then $\mathbf{x}^{(m)}-\mathbf{x}=\lambda^{m}\left(\mathbf{x}^{(0)}-\mathbf{x}\right)$ will not approach $\mathbf{0}$. If $\rho(\mathbf{R})<1$, by Lemma 5 there exists an induced matrix norm $\|\cdot\|_{\star}$ such that $\|\mathbf{R}\|_{\star}<1$, then we have $\left\|\mathbf{x}^{(m)}-\mathbf{x}\right\|_{\star} \leq\|\mathbf{R}\|_{\star}^{m}\left\|\mathbf{x}^{(0)}-\mathbf{x}\right\|_{\star} \rightarrow 0$ for all $\mathbf{x}^{(0)}$.

Remark 7

The goal is to choose a splitting $\mathbf{A}=\mathbf{M}-\mathbf{K}$ so that both
(1) $\mathbf{R v}=\mathbf{M}^{-1} \mathbf{K v}$ and $\mathbf{c}=\mathbf{M}^{-1} \mathbf{b}$ are easy to evaluate, and
(2) $\rho(\mathbf{R})$ is small (<1).

- (1) and (2) are conflicting goals, and need to be balanced.
- If $\Lambda(\mathbf{R}) \subset(-\rho(\mathbf{R}), \rho(\mathbf{R}))$, then Chebyshev acceleration technique can be used. See Demmel's book ANLA, section 6.5.6.

3. Classical stationary iterative methods

- Let $\mathbf{A}=\mathbf{D}-\mathbf{L}-\mathbf{U}$, where
\mathbf{D} is the diagonal matrix with diagonal entries $d_{i i}=a_{i i}$,
$-\mathbf{L}$ is the strictly lower triangular part of \mathbf{A},
$-\mathbf{U}$ is the strictly upper triangular part of \mathbf{A}.
- Assume that A has no zero diagonal entries. We will introduce
(1) Jacobi's method,
(2) Gauss-Seidel method,
(3) Successive overrelaxation: $\operatorname{SOR}(\omega)$,
(4) Symmetric successive overrelaxation: $\operatorname{SSOR}(\omega)$.

3.1. Jacobi's method

- The splitting is

$$
\mathbf{A}=\mathbf{D}-(\mathbf{L}+\mathbf{U})
$$

and the corresponding

$$
\mathbf{R}=\mathbf{D}^{-1}(\mathbf{L}+\mathbf{U})=\mathbf{I}-\mathbf{D}^{-1} \mathbf{A} \quad \text { and } \quad \mathbf{c}=\mathbf{D}^{-1} \mathbf{b}
$$

Algorithm 1: Jacobi's method
for $j=1$ to n

$$
x_{j}^{(m+1)}=\frac{1}{a_{j j}}\left(b_{j}-\sum_{k \neq j} a_{j k} x_{k}^{(m)}\right)
$$

end

Theorem 8

If \mathbf{A} is Hermitian and $a_{i i}>0$ for all i, then Jacobi's method converges for all starting vectors if and only if \mathbf{A} and $2 \mathbf{D}-\mathbf{A}$ are both HPD.

3.2. Gauss-Seidel method

- The splitting is

$$
\mathbf{A}=(\mathbf{D}-\mathbf{L})-\mathbf{U}
$$

and the corresponding

$$
\mathbf{R}=(\mathbf{D}-\mathbf{L})^{-1} \mathbf{U}
$$

and

$$
\mathbf{c}=(\mathbf{D}-\mathbf{L})^{-1} \mathbf{b} .
$$

Algorithm 2: Gauss-Seidel method
for $j=1$ to n

$$
x_{j}^{(m+1)}=\frac{1}{a_{j j}}\left(b_{j}-\sum_{k=1}^{j-1} a_{j k} x_{k}^{(m+1)}-\sum_{k=j+1}^{n} a_{j k} x_{k}^{(m)}\right)
$$

end
3.3. Successive overrelaxation: $\operatorname{SOR}(\omega), \omega \in \mathbb{R}$

- The splitting is $\omega \mathbf{A}=(\mathbf{D}-\omega \mathbf{L})-((1-\omega) \mathbf{D}+\omega \mathbf{U})$, and the corresponding

$$
\mathbf{R}=(\mathbf{D}-\omega \mathbf{L})^{-1}((1-\omega) \mathbf{D}+\omega \mathbf{U})
$$

and

$$
\mathbf{c}=\omega(\mathbf{D}-\omega \mathbf{L})^{-1} \mathbf{b}
$$

- $\omega=1$: Gauss-Seidel method
- $0<\omega<2$: Necessary in some sense (see Theorem 13)
- Optimal ω :

Algorithm 3: $\operatorname{SOR}(\omega)$, here ω is the relaxation parameter

$$
\begin{aligned}
& \text { for } j=1 \text { to } n \\
& \qquad x_{j}^{(m+1)}=(1-\omega) x_{j}^{(m)}+\frac{\omega}{a_{j j}}\left(b_{j}-\sum_{k=1}^{j-1} a_{j k} x_{k}^{(m+1)}-\sum_{k=j+1}^{n} a_{j k} x_{k}^{(m)}\right)
\end{aligned}
$$

3.4. Symmetric successive overrelaxation: $\operatorname{SSOR}(\omega), \omega \in \mathbb{R}$

- This method uses two splittings:

$$
\begin{aligned}
\omega \mathbf{A} & =(\mathbf{D}-\omega \mathbf{L})-((1-\omega) \mathbf{D}+\omega \mathbf{U}) \\
& =(\mathbf{D}-\omega \mathbf{U})-((1-\omega) \mathbf{D}+\omega \mathbf{L})
\end{aligned}
$$

and the corresponding

$$
\begin{aligned}
\mathbf{R} & =(\mathbf{D}-\omega \mathbf{U})^{-1}((1-\omega) \mathbf{D}+\omega \mathbf{L})(\mathbf{D}-\omega \mathbf{L})^{-1}((1-\omega) \mathbf{D}+\omega \mathbf{U}) \\
\mathbf{c} & =\omega(2-\omega)(\mathbf{D}-\omega \mathbf{U})^{-1} \mathbf{D}(\mathbf{D}-\omega \mathbf{L})^{-1} \mathbf{b}
\end{aligned}
$$

Algorithm 4: SSOR(ω)

for $j=1$ to n

$$
x_{j}^{(m+1 / 2)}=(1-\omega) x_{j}^{(m)}+\frac{\omega}{a_{j j}}\left(b_{j}-\sum_{k=1}^{j-1} a_{j k} x_{k}^{(m+1 / 2)}-\sum_{k=j+1}^{n} a_{j k} x_{k}^{(m)}\right)
$$

end
for $j=n$ to 1

$$
x_{j}^{(m+1)}=(1-\omega) x_{j}^{(m+1 / 2)}+\frac{\omega}{a_{j j}}\left(b_{j}-\sum_{k=1}^{j-1} a_{j k} x_{k}^{(m+1 / 2)}-\sum_{k=j+1}^{n} a_{j k} x_{k}^{(m+1)}\right)
$$

end
3.5. Convergence (see Demmel's book ANLA, section 6.5.5)

Definition 9

\mathbf{A} is an irreducible matrix if there is no permutation matrix such that

$$
\mathbf{P A P}^{\top}=\left[\begin{array}{cc}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{0} & \mathbf{A}_{22}
\end{array}\right]
$$

Definition 10

A matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is weakly row diagonally dominant if for all i,

$$
\left|a_{i i}\right| \geq \sum_{j \neq i}\left|a_{i j}\right|
$$

with strict inequality at least once. A matrix \mathbf{A} is strictly row diagonally dominant if for all i :

$$
\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right| .
$$

Theorem 11

If \mathbf{A} is strictly row diagonally dominant, then both Jacobi's and Gauss-Seidel methods converge. In fact $\left\|\mathbf{R}_{\mathrm{GS}}\right\|_{\infty} \leq\left\|\mathbf{R}_{\mathrm{J}}\right\|_{\infty}<1$.

Theorem 12

If \mathbf{A} is irreducible and weakly row diagonally dominant, then both Jacobi's and Gauss-Seidel methods converge, and $\rho\left(\mathbf{R}_{\mathrm{GS}}\right)<\rho\left(\mathbf{R}_{\mathrm{J}}\right)<1$.

Theorem 13

For any matrix A, it holds $\rho\left(\mathbf{R}_{\mathrm{SOR}(\omega)}\right) \geq|\omega-1|$. Therefore $0<\omega<2$ is required for the convergence of $\operatorname{SOR}(\omega)$ for all starting vectors.

Theorem 14

If \mathbf{A} is Hermitian positive definite, then $\rho\left(\mathbf{R}_{\mathrm{SOR}(\omega)}\right)<1$ for all $0<\omega<2$, i.e., $\operatorname{SOR}(\omega)$ converges for all $0<\omega<2$. Gauss-Seidel (SOR(1)) converges for Hermitian positive definite \mathbf{A}.

