
Numerical Linear Algebra Assignment 5

Exercise 1. (TreBau Exercise 20.1, 10 points)

Let A ∈ Cm×m be nonsingular. Show that A has an LU factorization if and only if for each k
with 1 ≤ k ≤ m, the upper-left k × k block A1:k,1:k is nonsingular. (Hints: The row operations
of Gaussian elimination leave the determinants det(A1:k,1:k) unchanged.) Prove that this LU
factorization is unique.

Exercise 2. (TreBau Exercise 20.3, 10 points)

Suppose an m×m matrix A is written in the block form A =

!
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A21 A22

"
, where A11 is n×n and

A22 is (m − n) × (m − n). Assume that A satisfies the condition of Exercise 1 (TreBau Exercise
20.1).

(a) Verify the formula
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for “elimination” of the block A21. The matrix A22 − A21A
−1
11 A12 is known as the Schur

complement of A11 in A.

(b) Suppose A21 is eliminated by means of n steps of Gaussian elimination. Show that the
bottom-right (m− n)× (m− n) block of the result is again A22 −A21A

−1
11 A12.

Exercise 3. (10 points)

Compute the Cholesky factorization of the matrix A =
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Exercise 4. (Programming, TreBau Exercises 20.2, 10 points)

Answer the question in TreBau Exercises 20.2 and write matlab codes to provide an example with
p = 3 for a 20× 20 matrix A. Plot the sparisity patterns of A,L and U by using matlab’s spy.

Exercise 5. (Programming, TreBau Exercises 20.4, 10 points)

Write two matlab functions, [L,U]=gelu(A) and [L,U]=geoplu(A), to implement Algorithm 20.1
and the “outer product” form of Guassian elimination you have designed in Exercises 20.4, respec-
tively. Compare the time required to run functions gelu and geoplu for a 500 × 500 matrix A.
Use matlab’s timeit to measure time.

Further Reading

MathWorks Help Center: Performance and Memory
https://ww2.mathworks.cn/help/matlab/performance-and-memory.html
https://ww2.mathworks.cn/help/matlab/matlab prog/vectorization.html

Exercise 6. (Programming, 10 points)

Write a matlab function, [L,U,P]=gepp(A), to implement Algorithm 21.1 of TreBau’s book. Test
the 4× 4 complex matrix (i =

√
−1)

A =
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https://ww2.mathworks.cn/help/matlab/performance-and-memory.html
https://ww2.mathworks.cn/help/matlab/matlab_prog/vectorization.html


Exercise 7. (Programming, 10 points)

Write a matlab function, R=mychol(A), to implement Algorithm 23.1 of TreBau’s book. Test the
4× 4 Hermitian positive definite matrix (i =

√
−1)

A =
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Exercise 8. (Programming, 10 points)

Write a matlab function, [Q,R,P]=hqrp(A), via Householder reflectors, to compute the so-called
QR factorization with column pivoting: AP=QR, where Q is unitary, R is upper triangular, P is a
permutation matrix, and abs(diag(R)) is decreasing. Test the 4× 4 matrix in Exercise 7.
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