Numerical Linear Algebra Assignment 5

Exercise 1. (TreBau Exercise 20.1, 10 points)

Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be nonsingular. Show that \mathbf{A} has an LU factorization if and only if for each k with $1 \leq k \leq m$, the upper-left $k \times k$ block $\mathbf{A}_{1: k, 1: k}$ is nonsingular. (Hints: The row operations of Gaussian elimination leave the determinants $\operatorname{det}\left(\mathbf{A}_{1: k, 1: k}\right)$ unchanged.) Prove that this LU factorization is unique.

Exercise 2. (TreBau Exercise 20.3, 10 points)

Suppose an $m \times m$ matrix \mathbf{A} is written in the block form $\mathbf{A}=\left[\begin{array}{ll}\mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22}\end{array}\right]$, where \mathbf{A}_{11} is $n \times n$ and \mathbf{A}_{22} is $(m-n) \times(m-n)$. Assume that \mathbf{A} satisfies the condition of Exercise 1 (TreBau Exercise 20.1).
(a) Verify the formula

$$
\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
-\mathbf{A}_{21} \mathbf{A}_{11}^{-1} & \mathbf{I}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{0} & \mathbf{A}_{22}-\mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}
\end{array}\right]
$$

for "elimination" of the block \mathbf{A}_{21}. The matrix $\mathbf{A}_{22}-\mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$ is known as the Schur complement of \mathbf{A}_{11} in \mathbf{A}.
(b) Suppose \mathbf{A}_{21} is eliminated by means of n steps of Gaussian elimination. Show that the bottom-right $(m-n) \times(m-n)$ block of the result is again $\mathbf{A}_{22}-\mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$.

Exercise 3. (10 points)

Compute the Cholesky factorization of the matrix $\mathbf{A}=\left[\begin{array}{ccc}2 & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & 3 & 1+\sqrt{2} \\ \sqrt{2} & 1+\sqrt{2} & 4\end{array}\right]$.

Exercise 4. (Programming, TreBau Exercises 20.2, 10 points)

Answer the question in TreBau Exercises 20.2 and write matlab codes to provide an example with $p=3$ for a 20×20 matrix \mathbf{A}. Plot the sparisity patterns of \mathbf{A}, \mathbf{L} and \mathbf{U} by using matlab's spy.

Exercise 5. (Programming, TreBau Exercises 20.4, 10 points)

Write two matlab functions, $[\mathrm{L}, \mathrm{U}]=\operatorname{gelu}(\mathrm{A})$ and $[\mathrm{L}, \mathrm{U}]=$ geoplu (A), to implement Algorithm 20.1 and the "outer product" form of Guassian elimination you have designed in Exercises 20.4, respectively. Compare the time required to run functions gelu and geoplu for a 500×500 matrix \mathbf{A}. Use matlab's timeit to measure time.

Further Reading

MathWorks Help Center: Performance and Memory
https://ww2.mathworks.cn/help/matlab/performance-and-memory.html
https://ww2.mathworks.cn/help/matlab/matlab_prog/vectorization.html

Exercise 6. (Programming, 10 points)

Write a matlab function, $[L, U, P]=\operatorname{gepp}(A)$, to implement Algorithm 21.1 of TreBau's book. Test the 4×4 complex matrix $(i=\sqrt{-1})$

$$
\mathbf{A}=\left[\begin{array}{cccc}
1+1 \mathrm{i} & -1 \mathrm{i} & 0 & 1 \mathrm{i} \\
1 & 1+1 \mathrm{i} & 1-1 \mathrm{i} & 1+3 \mathrm{i} \\
0 & 1 \mathrm{i} & -1 \mathrm{i} & -1 \mathrm{i} \\
2 \mathrm{i} & 1 & 0 & 0
\end{array}\right]
$$

Exercise 7. (Programming, 10 points)

Write a matlab function, $\mathrm{R}=\mathrm{mychol}(\mathrm{A})$, to implement Algorithm 23.1 of TreBau's book. Test the 4×4 Hermitian positive definite matrix $(i=\sqrt{-1})$

$$
\mathbf{A}=\left[\begin{array}{cccc}
7 & -2 \mathrm{i} & 1-1 \mathrm{i} & 2+4 \mathrm{i} \\
2 \mathrm{i} & 5 & -1-2 \mathrm{i} & 2+2 \mathrm{i} \\
1+1 \mathrm{i} & -1+2 \mathrm{i} & 3 & -1+4 \mathrm{i} \\
2-4 \mathrm{i} & 2-2 \mathrm{i} & -1-4 \mathrm{i} & 12
\end{array}\right] .
$$

Exercise 8. (Programming, 10 points)

Write a matlab function, $[\mathrm{Q}, \mathrm{R}, \mathrm{P}]=$ hqrp(A), via Householder reflectors, to compute the so-called QR factorization with column pivoting: $\mathrm{AP}=\mathrm{QR}$, where Q is unitary, R is upper triangular, P is a permutation matrix, and abs $(\operatorname{diag}(\mathrm{R}))$ is decreasing. Test the 4×4 matrix in Exercise 7 .

