Numerical Linear Algebra Assignment 5

Exercise 1. (TreBau Exercise 20.1, 10 points)

Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be nonsingular. Show that \mathbf{A} has an LU factorization if and only if for each k with $1 \leq k \leq m$, the upper-left $k \times k$ block $\mathbf{A}_{1:k,1:k}$ is nonsingular. (Hints: The row operations of Gaussian elimination leave the determinants $\det(\mathbf{A}_{1:k,1:k})$ unchanged.) Prove that this LU factorization is unique.

Exercise 2. (TreBau Exercise 20.3, 10 points)

Suppose an $m \times m$ matrix **A** is written in the block form $\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$, where \mathbf{A}_{11} is $n \times n$ and \mathbf{A}_{22} is $(m-n) \times (m-n)$. Assume that **A** satisfies the condition of Exercise 1 (TreBau Exercise 20.1).

(a) Verify the formula

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{A}_{21}\mathbf{A}_{11}^{-1} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{0} & \mathbf{A}_{22} - \mathbf{A}_{21}\mathbf{A}_{11}^{-1}\mathbf{A}_{12} \end{bmatrix}$$

for "elimination" of the block \mathbf{A}_{21} . The matrix $\mathbf{A}_{22} - \mathbf{A}_{21}\mathbf{A}_{11}^{-1}\mathbf{A}_{12}$ is known as the *Schur* complement of \mathbf{A}_{11} in \mathbf{A} .

(b) Suppose \mathbf{A}_{21} is eliminated by means of n steps of Gaussian elimination. Show that the bottom-right $(m-n) \times (m-n)$ block of the result is again $\mathbf{A}_{22} - \mathbf{A}_{21}\mathbf{A}_{11}^{-1}\mathbf{A}_{12}$.

Exercise 3. (10 points)

Compute the Cholesky factorization of the matrix $\mathbf{A} = \begin{bmatrix} 2 & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & 3 & 1 + \sqrt{2} \\ \sqrt{2} & 1 + \sqrt{2} & 4 \end{bmatrix}$.

Exercise 4. (Programming, TreBau Exercises 20.2, 10 points)

Answer the question in TreBau Exercises 20.2 and write matlab codes to provide an example with p = 3 for a 20×20 matrix **A**. Plot the sparisity patterns of **A**, **L** and **U** by using matlab's **spy**.

Exercise 5. (Programming, TreBau Exercises 20.4, 10 points)

Write two matlab functions, [L,U]=gelu(A) and [L,U]=geoplu(A), to implement Algorithm 20.1 and the "outer product" form of Guassian elimination you have designed in Exercises 20.4, respectively. Compare the time required to run functions gelu and geoplu for a 500×500 matrix **A**. Use matlab's timeit to measure time.

Further Reading

MathWorks Help Center: Performance and Memory

https://ww2.mathworks.cn/help/matlab/performance-and-memory.html https://ww2.mathworks.cn/help/matlab/matlab_prog/vectorization.html

Exercise 6. (Programming, 10 points)

Write a matlab function, [L,U,P]=gepp(A), to implement Algorithm 21.1 of TreBau's book. Test the 4×4 complex matrix (i = $\sqrt{-1}$)

$$\mathbf{A} = \begin{bmatrix} 1+1i & -1i & 0 & 1i \\ 1 & 1+1i & 1-1i & 1+3i \\ 0 & 1i & -1i & -1i \\ 2i & 1 & 0 & 0 \end{bmatrix}.$$

Exercise 7. (Programming, 10 points)

Write a matlab function, R=mychol(A), to implement Algorithm 23.1 of TreBau's book. Test the 4×4 Hermitian positive definite matrix (i = $\sqrt{-1}$)

$$\mathbf{A} = \begin{bmatrix} 7 & -2\mathbf{i} & 1-1\mathbf{i} & 2+4\mathbf{i} \\ 2\mathbf{i} & 5 & -1-2\mathbf{i} & 2+2\mathbf{i} \\ 1+1\mathbf{i} & -1+2\mathbf{i} & 3 & -1+4\mathbf{i} \\ 2-4\mathbf{i} & 2-2\mathbf{i} & -1-4\mathbf{i} & 12 \end{bmatrix}.$$

Exercise 8. (Programming, 10 points)

Write a matlab function, [Q,R,P]=hqrp(A), via Householder reflectors, to compute the so-called QR factorization with column pivoting: AP=QR, where Q is unitary, R is upper triangular, P is a permutation matrix, and abs(diag(R)) is decreasing. Test the 4×4 matrix in Exercise 7.