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1. Floating point number

For given integers p and β, in the IEEE floating point standard
(founded in 1985, updated in 2008, being undated again now), the
elements of the floating point number system F are the number 0
together with numbers of the form

x “ ˘d1.d2 ¨ ¨ ¨ dp ˆ βe

where the integers di, e satisfy

0 ď di ď β ´ 1, d1 ‰ 0, emin ď e ď emax.

One need to store sign bit (˘), exponent (e), and mantissa
pd1.d2 ¨ ¨ ¨ dpq; but not the base or radix (β ě 2). Floating point
number system usually uses β “ 2 (10 sometimes, 16 historically).

Precision β Bits p emin emax εmachine

Single (32) 2 1+8+23 24 ´126 127 2´24

Double (64) 2 1+11+52 53 ´1022 1023 2´53
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1.1. Limitations of digital representations

Only a finite subset of the real numbers (or the complex numbers)
can be represented. Therefore,

(i) the represented numbers cannot be arbitrarily large or small;

(ii) there are gaps between these numbers.

1.2. Floating point number machine accuracy

In IEEE double precision arithmetic, the interval r1, 2s is
represented by the discrete subset

1, 1 ` 2´52, 1 ` 2 ˆ 2´52, 1 ` 3 ˆ 2´52, ¨ ¨ ¨ , 2.

The interval r2, 4s is represented by the same numbers multiplied
by 2,

2, 2 ` 2´51, 2 ` 2 ˆ 2´51, 2 ` 3 ˆ 2´51, ¨ ¨ ¨ , 4.
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In general, the interval r2j , 2j`1s is represented by the numbers for
r1, 2s times 2j .

For floating point number system, the machine accuracy, denoted
by εmachine, is defined as: half the distance between 1 and the next
larger floating point number. We have

@x P rθ,Θs, Dx1 P F s.t., |x ´ x1| ď εmachine|x|.

In Matlab, eps “ 2εmachine “ 2´52 in double precision.

Let fl: R Ñ F denote the function giving the closest floating point
approximation. We have

@x P rθ,Θs, Dε P R s.t., |ε| ď εmachine and flpxq “ xp1 ` εq.

Exercise. (James Demmel) Prove the following: If floating point
numbers x and y satisfy 2y ě x ě y ě 0, then flpx ´ yq “ x ´ y,
i.e., x ´ y is an exact floating point number.
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1.3. Floating point arithmetic

˚ (`,´,ˆ,˜) in R; f (‘,a,b,c) in F; x f y “ flpx˚yq.

1.4. Programming exercise

TreBau Exercise 13.3 (Horner’s rule for polynomial evaluation).

ppxq “ anx
n ` an´1x

n´1 ` ¨ ¨ ¨ ` a1x ` a0.

Algorithm Horner’s rule for ppxq “
řn

i“0 aix
i.

p “ an
for i “ n ´ 1 : ´1 : 0

p “ xp ` ai;
end
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2. Algorithm

Given a problem f : X Ñ Y. An algorithm for the problem f can
be viewed as a map rf : X Ñ Y.
More precisely, assume that a problem f , a computer with floating
point system, and a program for solving the problem are fixed:

(1) given x P X, let flpxq be the corresponding floating point
representation;

(2) input flpxq to the program and run it in the computer;
(3) the output (computed result) of the program belongs to Y and is

called rfpxq.

A problem may have different algorithms (due to different
programs). For example: the problem of sum of three numbers:
a ` b ` c. Programs: pa ` bq ` c, a ` pb ` cq, and pa ` cq ` b.

What can happen for an ill-conditioned problem? Since x is
perturbed to flpxq, then } rfpxq ´ fpxq} maybe large.
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2.1. Accuracy

An algorithm rf for a problem f is accurate if for each x P X,

} rfpxq ´ fpxq}
}fpxq}

“ Opεmachineq.

The meaning of Op¨q: φptq “ Opψptqq means there exists a positive
constant C such that |φptq| ď Cψptq for all t sufficiently close to an
understood limit (e.g., t Ñ 0 or t Ñ 8).

2.2. Stability

An algorithm rf for a problem f is stable if for each x P X, there
exists rx P X, such that

}rx ´ x}
}x}

“ Opεmachineq,
} rfpxq ´ fprxq}

}fprxq}
“ Opεmachineq.

Remark 1

A stable algorithm gives nearly the right answer to nearly the right
question.
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2.3. Backward stability

An algorithm rf for a problem f is backward stable if for each
x P X, there exists rx P X, such that

}rx ´ x}
}x}

“ Opεmachineq, rfpxq “ fprxq.

Remark 2

A backward stable algorithm gives exactly the right answer to nearly the
right question.

Remark 3

Backward stability obviously implies stability.

Remark 4

Backward stability is both stronger and simpler than stability. Many
algorithms of NLA are backward stable.
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3. Backward error analysis

The first step is to investigate the conditioning of the problem.
The second step is to investigate the backward stability of the
corresponding algorithm.

Forward error À Condition number ˆ Backward error.

Theorem 5 (Accuracy of a backward stable algorithm)

Suppose rf is backward stable for f . Let κpfpxqq denote the condition
number of the problem fpxq. Then the relative errors satisfy

} rfpxq ´ fpxq}
}fpxq}

“ Opκpfpxqqεmachineq.
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Proof.

By the definition of backward stability, we have there exists rx such that

}rx ´ x}
}x}

“ Opεmachineq, rfpxq “ fprxq.

By the definition of κpfpxqq,

κpfpxqq “ lim
εÑ0`

sup
}δx}ďε

ˆ

}δf}
}fpxq}

M}δx}
}x}

˙

,

we have
} rfpxq ´ fpxq}

}fpxq}
ď pκpfpxqq ` op1qq

}rx ´ x}
}x}

,

where op1q denotes a quantity that converges to zero as εmachine Ñ 0.
Then the statement follows.
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4. Examples

Floating point arithmetic: The floating point operations
‘,a,b,c are all backward stable. Let x1, x2 P R. Consider the
problem fpx1, x2q “ x1˚x2 and the corresponding algorithm
rfpx1, x2q “ flpx1q f flpx2q. There exist |ε1|, |ε2|, |ε3| ď εmachine and
|ε4|, |ε5| ď 2εmachine ` Opε2machineq such that (except b and c)

rfpx1, x2q “ flpx1q f flpx2q

“ prx1p1 ` ε1qs ˚ rx2p1 ` ε2qsqp1 ` ε3q

“ rx1p1 ` ε1qp1 ` ε3qs˚rx2p1 ` ε2qp1 ` ε3qs

“ rx1p1 ` ε4qs˚rx2p1 ` ε5qs

“ rx1˚rx2 “ fprx1, rx2q.

Backward stability follows from

|rx1 ´ x1|
|x1|

“ Opεmachineq,
|rx2 ´ x2|

|x2|
“ Opεmachineq.
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Inner product

x,y P Rm, α “ xJy. rα by b and ‘. Backward stable.

Outer product

x,y P Rm, A “ xyJ. rA by b. Stable but not backward stable.

Explanation: the matrix rA will be most unlikely to have rank
exactly 1, i.e., cannot be written as px ` δxqpy ` δyq˚.

As a rule, for problems where the dimension of the space Y is
greater than that of the space X, backward stability is rare.

Compute fpxq “ x ` 1

By ‘, rfpxq “ flpxq ‘ 1. Stable but not backward stable.

We have

rfpxq “ flpxq ‘ 1 “ pxp1 ` ε1q ` 1qp1 ` ε2q

“ xp1 ` ε1 ` ε2 ` ε1ε2q ` ε2 ` 1.
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Obviously, xp1 ` ε1 ` ε2 ` ε1ε2q ` ε2 is not small compared with
x Ñ 0, i.e., for x Ñ 0,

|xp1 ` ε1 ` ε2 ` ε1ε2q ` ε2|
|x|

‰ Opεmachineq.

Explanation: For x « 0, ‘ introduces absolute errors of size
Opεmachineq, which cannot be interpreted as caused by small
relative perturbations in x. Therefore, not backward stable.

To show stability, for all x, let rx “ xp1 ` ε1q. Note that

| rfpxq ´ fprxq|
|fprxq|

“
|ε2pxp1 ` ε1q ` 1q|

|xp1 ` ε1q ` 1|
“ |ε2| “ Opεmachineq.

Then stability follows.

Comparison: Let x, y P R. Consider fpx, yq “ x ` y and the
corresponding backward stable algorithm rfpx, yq “ flpxq ‘ flpyq.
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4.1. Unitary matrix multiplication: (see also TreBau Exercise 16.1)

In the rest of this lecture, for simplicity, we always assume that
the given data are floating point numbers already if not explicitly
stated.

Theorem 6

Left and/or right unitary matrix multiplications are backward stable in
the sense: Let Q be a unitary matrix. The computed quantity rB for
B “ QA or B “ AQ satisfies

rB“ QpA ` δAq, or rB“ pA ` δAqQ,
}δA}
}A}

“ Opεmachineq.

Proof.

We only prove the real case. The complex case is similar. Consider the
algorithm for the inner product qJa, then matrix-vector product Qa,
and then matrix-matrix product QA.
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4.2. An unstable algorithm for computing eigenvalues

Since z is an eigenvalue of A if and only if ppzq “ 0, where ppzq is
the characteristic polynomial detpzI ´ Aq, the roots of ppzq are the
eigenvalues of A. This suggests the following algorithm:

(1). Find the coefficients of the characteristic polynomial.

(2). Find its roots.

This algorithm is unstable due to the second step.

Explanation: The problem of finding the roots of a polynomial,
given the coefficients, is generally ill-conditioned. Therefore,
although only small errors exist in the coefficients of the
polynomials, the difference between their roots, }rppq ´ rprpq},
maybe vastly larger than εmachine}rppq}. Instability follows.

See the discussion of TreBau’s book – Numerical linear algebra,
page 110–111.
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4.3. Backward stability of back substitution

The solution of the nonsingular upper-triangular system

»

—

—

—

—

–

r11 r12 ¨ ¨ ¨ r1m

r22
. . .

...
. . .

...
rmm

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

–

x1
x2
...

xm

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

b1
b2
...
bm

fi

ffi

ffi

ffi

fl

,

can be obtained by the following back substitution algorithm

Algorithm: Back substitution

xm “ bm{rmm

xm´1 “ pbm´1 ´ xmrm´1,mq{rm´1,m´1

xm´2 “ pbm´2 ´ xm´1rm´2,m´1 ´ xmrm´2,mq{rm´2,m´2
...

xj “ pbj ´
řm

k“j`1 xkrjkq{rjj
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Theorem 7

Back substitution is backward stable in the sense that the computed
solution rx P Cm satisfies

pR ` δRqrx “ b,

for some upper-triangular δR P Cmˆm with

}δR}
}R}

“ Opεmachineq.

Specifically, for each i, j,

|δrij |
|rij |

ď mεmachine ` Opε2machineq.

Our task is to express every floating point error as a perturbation
of the input.
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(i) The case m “ 1:

rx1 “ b1 c r11 “
b1p1 ` ε1q

r11
, |ε1| ď εmachine

Set 1 ` ε1
1 “ 1{p1 ` ε1q. We have

ε1
1 “ ´

ε1
1 ` ε1

ñ rx1 “
b1

r11p1 ` ε1
1q
, |ε1

1| ď εmachine ` Opε2machineq.

Therefore

pr11 ` δr11qrx1 “ b1; δr11 “ ε1
1r11;

|δr11|
|r11|

ď εmachine ` Opε2machineq.

(ii) The case m “ 2. The first step is the same as in m “ 1 case,

rx2 “ b2 c r22 “
b2

r22p1 ` ε1q
, |ε1| ď εmachine ` Opε2machineq.

The second step: there exist |ε2|, |ε3|, |ε4| ď εmachine,
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rx1 “ pb1 a prx2 b r12qq c r11 “ pb1 a rx2r12p1 ` ε2qq c r11

“ pb1 ´ rx2r12p1 ` ε2qqp1 ` ε3q c r11

“
pb1 ´ rx2r12p1 ` ε2qqp1 ` ε3q

r11
p1 ` ε4q.

Shift ε3 and ε4 to the denominator

rx1 “
b1 ´ rx2r12p1 ` ε2q
r11p1 ` ε1

3qp1 ` ε1
4q
,

or equivalently,

rx1 “
b1 ´ rx2r12p1 ` ε2q

r11p1 ` 2ε5q
, |ε1

3|, |ε1
4|, |ε5| ď εmachine ` Opε2machineq.

Obviously, rx1 is exactly correct if r22, r12 and r11 perturbed by factors
p1 ` ε1q, p1 ` ε2q and p1 ` 2ε5q, respectively. Thus,

pR ` δRqrx “ b,

Numerical Linear Algebra Lecture 20 Xiamen University 19 / 24



where the entries δrij of δR satisfy

»

—

—

–

|δr11|
|r11|

|δr12|
|r12|
|δr22|
|r22|

fi

ffi

ffi

fl

“

„

2|ε5| |ε2|
|ε1|

ȷ

ď

„

2 1
1

ȷ

εmachine ` Opε2machineq.

The last formula guarantees }δR}{}R} “ Opεmachineq in any norm.
(iii) The case m “ 3. The first two steps are the same as before:

rx3 “ b3 c r33 “
b3

r33p1 ` ε1q
,

rx2 “ pb2 a prx3 b r23qq c r22 “
b2 ´ rx3r23p1 ` ε2q

r22p1 ` 2ε3q
,

where
„

2|ε3| |ε2|
|ε1|

ȷ

ď

„

2 1
1

ȷ

ε1 ` Opε2machineq
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The third step:

rx1 “ rpb1 a prx2 b r12qq a prx3 b r13qs c r11

“ rpb1 ´ rx2r12p1 ` ε4qqp1 ` ε6q ´ rx3r13p1 ` ε5qsp1 ` ε7q c r11

“
rpb1 ´ rx2r12p1 ` ε4qqp1 ` ε6q ´ rx3r13p1 ` ε5qsp1 ` ε7q

r11p1 ` ε1
8q

“
b1 ´ rx2r12p1 ` ε4q ´ rx3r13p1 ` ε5qp1 ` ε1

6q
r11p1 ` ε1

6qp1 ` ε1
7qp1 ` ε1

8q
,

r13 has two perturbations of size at most εmachine, r11 has three. Then
we have pR ` δRqrx “ b with the entries δrij satisfying

»

—

—

—

—

—

—

–

|δr11|
|r11|

|δr12|
|r12|

|δr13|
|r13|

|δr22|
|r22|

|δr23|
|r23|
|δr33|
|r33|

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ď

»

–

3 1 2
2 1

1

fi

fl εmachine ` Opε2machineq.
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(iv) General m: Higher-dimensional cases are similar. For example,
5 ˆ 5 case:

|δR|
|R|

ď

»

—

—

—

—

–

5 1 2 3 4
4 1 2 3

3 1 2
2 1

1

fi

ffi

ffi

ffi

ffi

fl

εmachine ` Opε2machineq.

The entries of the matrix in this formula are obtained from three
components. The multiplications rxkrjk introduce εmachine perturbations
in the pattern

b : rxkrjk

»

—

—

—

—

–

0 1 1 1 1
0 1 1 1

0 1 1
0 1

0

fi

ffi

ffi

ffi

ffi

fl

. (inner level)
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The division by rkk introduce perturbations in the pattern

c : divisions by rkk

»

—

—

—

—

–

1
1

1
1

1

fi

ffi

ffi

ffi

ffi

fl

. (outer level)

Finally, the subtractions also occur in the pattern for b, and, due to
the decision to compute from left to right, each one introduces a
perturbation on the diagonal and at each position to the right. This
adds up to the pattern

a :

»

—

—

—

—

–

4 0 1 2 3
3 0 1 2

2 0 1
1 0

0

fi

ffi

ffi

ffi

ffi

fl

.
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Remark 8

Perturbations of order εmachine are composed additively and moved
freely between numerators and denominators since the difference is of
order ε2machine.

Remark 9

More than one error bound can be derived for a given algorithm. In the
present case, we could have perturbed bj as well as rij, avoiding the
need for the trickery represented pattern for a. On the other hand, a
final result in which only R is perturbed is appealing clean.

Remark 10

We have done componentwise backward error bound. If rij “ 0, this
entry undergoes no perturbation at all: δR has the same sparsity
pattern as R.
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