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1. Floating point number

o For given integers p and 3, in the IEEE floating point standard
(founded in 1985, updated in 2008, being undated again now), the
elements of the floating point number system F are the number 0
together with numbers of the form

xTr = idl.dg'--dp X ﬁe
where the integers d;, e satisfy
0<d; <p—-1, di#0, emn<e<enax-

@ One need to store sign bit (£), exponent (e), and mantissa
(dy.dy - --dp); but not the base or radiz (§ = 2). Floating point
number system usually uses 5 = 2 (10 sometimes, 16 historically).

Precision 8 Bits P €min  €max €machine
Single (32) 2 1+8+23 24 126 127 27#
Double (64) 2 1+11+52 53 —1022 1023 2793
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1.1. Limitations of digital representations

e Only a finite subset of the real numbers (or the complex numbers)
can be represented. Therefore,

(i) the represented numbers cannot be arbitrarily large or small;
(ii) there are gaps between these numbers.
1.2. Floating point number machine accuracy

e In IEEE double precision arithmetic, the interval [1,2] is
represented by the discrete subset

1, 14272 142x2% 143x27% ... 2

The interval [2,4] is represented by the same numbers multiplied
by 2,

2, 2+427° 2492x27% 243x27% ... 4.
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In general, the interval [27,27+1] is represented by the numbers for
[1,2] times 27.
o For floating point number system, the machine accuracy, denoted

by €machine, 1S defined as: half the distance between 1 and the next
larger floating point number. We have

Ve [0,0], 32’ eF st., |z— 2| < emachinelT|-

In Matlab, eps = 2€machine = 2792 in double precision.

o Let fl: R — F denote the function giving the closest floating point
approximation. We have

Vee[0,0], JeeR s.t., € <émachine and fl(z) =z(1+e€).

Exercise. (James Demmel) Prove the following: If floating point
numbers = and y satisfy 2y > >y > 0, then fl(x —y) =z — y,
i.e., x —y is an exact floating point number.
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1.3. Floating point arithmetic
o x (+,— x,-)inR; ® (0,6,8,8) in F; c®y = fl(z*y).
Fundamental Axiom of Floating Point Arithmetic

For all z,y € F, there exists € with |€| < €machine Such that

t@y = (xxy)(1+e).

1.4. Programming exercise
o TreBau Exercise 13.3 (Horner’s rule for polynomial evaluation).

p(r) = apz™ + ap_12"t + -+ a1 + ag.

Algorithm Horner’s rule for p(z) = >, a;z".

P =an
fori=n—-1:-1:0
D = xp + a;;

end

Numerical Linear Algebra Lecture 20 Xiamen University



2. Algorithm

Given a problem f:X — Y. An algorithm for the problem f can
be viewed as a map f: X — Y.

More precisely, assume that a problem f, a computer with floating
point system, and a program for solving the problem are fixed:
(1) given z € X, let fl(x) be the corresponding floating point
representation;
(2) input fli(z) to the program and run it in the computer;
(3) the output (computed result) of the program belongs to Y and is
called f(z).
A problem may have different algorithms (due to different
programs). For example: the problem of sum of three numbers:

a+ b+ c. Programs: (a +b)+ ¢, a+ (b+c¢), and (a + c) + b.

What can happen for an ill-conditioned problem? Since « is

~

perturbed to fl(x), then ||f(x) — f(x)| maybe large.
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2.1. Accuracy

o An algorithm f for a problem f is accurate if for each x € X,

~

F@) —f@l _
W = O( machlne)-

e The meaning of O(-): ¢(t) = O(¥(t)) means there exists a positive
constant C' such that |¢(t)| < C¥(t) for all ¢ sufficiently close to an
understood limit (e.g., ¢ — 0 or ¢t — ).

2.2. Stability

@ An algorithm f for a problem f is stable if for each z € X, there
exists 7 € X, such that

~

|f(z) = f@)]
|£(@)]

= O(fmachine)a = O(emachine)-

Remark 1

A stable algorithm gives nearly the right answer to nearly the right
question.
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2.3. Backward stability

o An algorithm f for a problem f is backward stable if for each
x € X, there exists T € X, such that

|7 — = p

= Ol€machine),  f(z) = f().

Remark 2

A backward stable algorithm gives exactly the right answer to nearly the
right question.

v

Remark 3
Backward stability obviously implies stability.

Remark 4

Backward stability is both stronger and simpler than stability. Many
algorithms of NLA are backward stable.
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3. Backward error analysis

o The first step is to investigate the conditioning of the problem.
The second step is to investigate the backward stability of the
corresponding algorithm.

o Forward error < Condition number x Backward error.

f(x)

<4— Forward error

2 f@) = @)
Theorem 5 (Accuracy of a backward stable algorithm)

Suppose [ is backward stable for f. Let x(f(x)) denote the condition
number of the problem f(x). Then the relative errors satisfy

~

|f(z) = f(=)]

1 ()] = O(K(f())€machine)-
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Proof.
By the definition of backward stability, we have there exists Z such that

|7 — = %

= O(€machine), (z) = f(2)-

By the definition of x(f(x)),

K(f(@)) = lim sup ( 651 6:c|>

e=0" saj<e \[F @)/ ||

we have

|f(z) - f()] |2 — =|
—— 7 < (s(f(2)) +o(1)) :
If (@) (el
where o(1) denotes a quantity that converges to zero as emachine — 0.
Then the statement follows. 0 )
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4. Examples

o Floating point arithmetic: The floating point operations
®,0,R®,O are all backward stable. Let x1, 22 € R. Consider the
problem f(z1,x2) = z1#x2 and the corresponding algorithm
f(z1,29) = fi(z1) ® fl(x2). There exist |e1], |e2], |€3] < €machine and
lea], |€s] < 2€machine + O(€2,ine) Such that (except ® and @)

~

f(a1, w2) = fi(z1) @ (x2)
= ([21(1 + &)] = [22(1 + €2)])(1 + €3)
= [z1(1 + €1)(1 + €3)]*[x2(1 + €2)(1 + €3)]
= [#1(1 + e4)]#[w2(1 + €5)]

| T2 — @2

’$2| = O(Emachine)'
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o Inner product
x,yeR" a=x'y. & by ® and @. Backward stable.

@ Outer product
x,yeR™ A =xy!. A by ®. Stable but not backward stable.

Explanation: the matrix A will be most unlikely to have rank
exactly 1, i.e., cannot be written as (x + 0x)(y + dy)*.

As a rule, for problems where the dimension of the space Y is
greater than that of the space X, backward stability is rare.

e Compute f(z) =z +1

By @, f(z) = fl(x) ® 1. Stable but not backward stable.
We have

~

fl@)y=1(z)®1=(x(1+e)+1)(1+e)
=xz(l+e +e+e€62) + e+ 1.
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Obviously, x(1 + €1 + €3 + €1€2) + €2 is not small compared with
x — 0, ie., for x — 0,

|x(1 4 €1 + €2 + €1€2) + €3]
|z

#0O (Emachine) .

Explanation: For z ~ 0, @ introduces absolute errors of size
O(€machine)s Which cannot be interpreted as caused by small
relative perturbations in z. Therefore, not backward stable.

To show stability, for all z, let = z(1 + €1). Note that

f(2) = @) _ Jea(a(l + 1) + 1)
()] (1 +€1) + 1]

= ‘62| = O(emachine)-

Then stability follows.

Comparison: Let z,y € R. Consider f(z,y) = = +y and the
corresponding backward stable algorithm f(x,y) = fi(z) ® fi(y).
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4.1. Unitary matrix multiplication: (see also TreBau Exercise 16.1)

o In the rest of this lecture, for simplicity, we always assume that

the given data are floating point numbers already if not explicitly
stated.

Theorem 6

Left and/or right unitary matriz multiplications are backward stable in
the sense: Let Q be a unitary matriz. The computed quantity B for
B = QA or B = AQ satisfies

- ~ 0A
B= Q(A 4F 5A), or B= (A + 5A)Q, % = O(Emachine)-

Proof.

We only prove the real case. The complex case is similar. Consider the
algorithm for the inner product q' a, then matriz-vector product Qa,
and then matriz-matriz product QA.. ]
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4.2.

(-]

An unstable algorithm for computing eigenvalues

Since z is an eigenvalue of A if and only if p(z) = 0, where p(z) is
the characteristic polynomial det(zI — A), the roots of p(z) are the
eigenvalues of A. This suggests the following algorithm:

(1). Find the coefficients of the characteristic polynomial.
(2). Find its roots.

This algorithm is unstable due to the second step.

Explanation: The problem of finding the roots of a polynomial,
given the coefficients, is generally ill-conditioned. Therefore,
although only small errors exist in the coefficients of the
polynomials, the difference between their roots, |r(p) — r(p)|,
maybe vastly larger than eyachine|7(p)|. Instability follows.

See the discussion of TreBau’s book — Numerical linear algebra,
page 110-111.
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4.3. Backward stability of back substitution

@ The solution of the nonsingular upper-triangular system

riL T2 o Tim 1 b1
7’22 1'2 o b2

- )
T'mm Lm bim

can be obtained by the following back substitution algorithm

Algorithm: Back substitution

Tm = bm/rmm
Tm—1 = (bm—l - xmrm—l,m)/rm—l,m—l
Tm—2 = (bmf2 —ITm—-1Tm—-2,m—-1 — xmrm72,m)/rm72,mf2

zj = (bj — Z?:jﬂ TTjk)/Tjj
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Theorem 7

Back substitution is backward stable in the sense that the computed
solution x € C™ satisfies

(R + dR)X = b,
for some upper-triangular 6R € C™*"™ with

[OR] _

— =0 machine /-
[Rej ~ Oemetine)

Specifically, for each i, j,

2
< MeEmachine T O(emachine>'

o Our task is to express every floating point error as a perturbation
of the input.

Numerical Linear Algebra Lecture 20 Xiamen University 17 / 24



(i) The case m = 1:

-~ bi1(1+ ¢
T1=b1@r1 = %7 |61’ €machine

Set 1+ €} =1/(1+ €;). We have

€1 ~ b1 2
6/1 = — T+e =T = m, |€,1| < €machine T O(Emachine)‘
1
Therefore
N o1
(r11 + 0m11)T1 = b1; 0711 = €)r11; H €machine + O(€2achine)-

(ii) The case m = 2. The first step is the same as in m = 1 case,

bo

ma le1] < €machine + O(€ machlne)'

To=by@ro =

The second step: there exist |ea], |€s], |€4] < €machines
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Ti=010@2®r2)@rn = (019Tr2(l+e))@rn
= (bl — fg?“u(l + 62))(1 + 63) ern
(bl — %27‘12(1 + 62))(1 + 63)

= (1 + 64).

11

Shift €3 and €4 to the denominator

b1 — %27’12(1 + 62)
rii(1+€5)(1+¢€))’

T =

or equivalently,

bl — %27‘12(1 + 62)
’1”11(1 + 265)

«%1 = ’ |6£)>|7 |6£1’7 ‘65| < €machine T O<612nachine)‘

Obviously, 1 is exactly correct if 799, 112 and r1; perturbed by factors
(1+e€1), (14 €2) and (1 + 2e5), respectively. Thus,

(R + 0R)X = b,
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where the entries 07;; of R satisfy

’(57"11| |(5T12’

r r 2les| e 2 1 2
’ 11| ||57‘1222” = [ ’61’ < 1 €machine + O(emachine)'
T2z

The last formula guarantees [6R//|R| = O(€émachine) in any norm.
(iii) The case m = 3. The first two steps are the same as before:
b3

T3 =0 r9g = ———————
3 3 @ 133 res(L+ 1)’

by — Z3r23(1 + €2)
7"22(1 + 263)

{ 2les| e } < [ 2 i ]61 + Ol€machine)

To = (02O (T3®123)) ©rog =
where

[=1
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The third step:

T1=[(b1©(T2®712)) © (T3 ®r13)] @11
= [(b1 — T2r12(1 + €4))(1 + €6) — T3r13(1 + €5)](1 + €7) © 11
[(b1 — Zar12(1 + €4))(1 + €) — Tar13(1 + €5)](1 + €7)
r11(1 + €§)
_ by — %27’12(1 + 64) — %3?”13(1 + 65)(1 + 6%)
r11(1 4 €5)(1 + €5) (1 + €)

b

r13 has two perturbations of size at most €yachine, 711 has three. Then
we have (R + 0R)X = b with the entries dr;; satisfying

[ ‘(57“11’ ’5?”12‘ ‘(57“13’ ]

711 ||(;”12|| ||57“13|’ 31 2
T22 23
’T22| |7‘23’ < 2 1 6HléitChine—’_C)(elz‘nachine)'
1
|6733]
|33
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(iv) General m: Higher-dimensional cases are similar. For example,
9 X 5 case:

2
€machine + O(Emachine)'

N~ N W
— N W

The entries of the matrix in this formula are obtained from three
components. The multiplications Zjrj;, introduce €mpachine perturbations
in the pattern

O =
O =

® : Tprji (inner level)

O =) = =
O~~~
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The division by 7 introduce perturbations in the pattern

1
© : divisions by 7 1 . (outer level)

1

Finally, the subtractions also occur in the pattern for &, and, due to
the decision to compute from left to right, each one introduces a
perturbation on the diagonal and at each position to the right. This
adds up to the pattern

= O =N
O O = N W
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Remark 8
Perturbations of order €machine are composed additively and moved
freely between numerators and denominators since the difference is of

2
order € . tine-

Remark 9

More than one error bound can be derived for a given algorithm. In the
present case, we could have perturbed b; as well as r;;, avoiding the
need for the trickery represented pattern for ©. On the other hand, a
final result in which only R is perturbed is appealing clean.

Remark 10

We have done componentwise backward error bound. If r;; = 0, this
entry undergoes no perturbation at all: OR has the same sparsity
pattern as R.
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