Lecture 20: Backward stability of an algorithm

School of Mathematical Sciences, Xiamen University

1. Floating point number

- For given integers p and β, in the IEEE floating point standard (founded in 1985, updated in 2008, being undated again now), the elements of the floating point number system \mathbf{F} are the number 0 together with numbers of the form

$$
x= \pm d_{1} \cdot d_{2} \cdots d_{p} \times \beta^{e}
$$

where the integers d_{i}, e satisfy

$$
0 \leqslant d_{i} \leqslant \beta-1, \quad d_{1} \neq 0, \quad e_{\min } \leqslant e \leqslant e_{\max } .
$$

- One need to store sign bit (\pm), exponent (e), and mantissa $\left(d_{1} \cdot d_{2} \cdots d_{p}\right)$; but not the base or radix $(\beta \geqslant 2)$. Floating point number system usually uses $\beta=2$ (10 sometimes, 16 historically).

Precision	β	Bits	p	$e_{\min }$	$e_{\max }$	$\epsilon_{\text {machine }}$
Single (32)	2	$1+8+23$	24	-126	127	2^{-24}
Double (64)	2	$1+11+52$	53	-1022	1023	2^{-53}

1.1. Limitations of digital representations

- Only a finite subset of the real numbers (or the complex numbers) can be represented. Therefore,
(i) the represented numbers cannot be arbitrarily large or small;
(ii) there are gaps between these numbers.

1.2. Floating point number machine accuracy

- In IEEE double precision arithmetic, the interval [1, 2] is represented by the discrete subset

$$
1, \quad 1+2^{-52}, \quad 1+2 \times 2^{-52}, \quad 1+3 \times 2^{-52}, \quad \cdots, \quad 2 .
$$

The interval $[2,4]$ is represented by the same numbers multiplied by 2 ,

$$
2, \quad 2+2^{-51}, \quad 2+2 \times 2^{-51}, \quad 2+3 \times 2^{-51}, \quad \cdots, \quad 4
$$

In general, the interval $\left[2^{j}, 2^{j+1}\right]$ is represented by the numbers for $[1,2]$ times 2^{j}.

- For floating point number system, the machine accuracy, denoted by $\epsilon_{\text {machine }}$, is defined as: half the distance between 1 and the next larger floating point number. We have

$$
\forall x \in[\theta, \Theta], \quad \exists x^{\prime} \in \mathbf{F} \quad \text { s.t., } \quad\left|x-x^{\prime}\right| \leqslant \epsilon_{\text {machine }}|x| .
$$

In Matlab, eps $=2 \epsilon_{\text {machine }}=2^{-52}$ in double precision.

- Let $\mathrm{fl}: \mathbb{R} \rightarrow \mathbf{F}$ denote the function giving the closest floating point approximation. We have
$\forall x \in[\theta, \Theta], \quad \exists \epsilon \in \mathbb{R} \quad$ s.t., $\quad|\epsilon| \leqslant \epsilon_{\text {machine }} \quad$ and $\quad \mathrm{f}(x)=x(1+\epsilon)$.
Exercise. (James Demmel) Prove the following: If floating point numbers x and y satisfy $2 y \geqslant x \geqslant y \geqslant 0$, then $\mathrm{f}(x-y)=x-y$, i.e., $x-y$ is an exact floating point number.

1.3. Floating point arithmetic

- * $(+,-, \times, \div)$ in $\mathbb{R} ; *(\oplus, \ominus, \otimes, \odot)$ in $\mathbf{F} ; x \circledast y=\mathrm{f}(x * y)$.

Fundamental Axiom of Floating Point Arithmetic
For all $x, y \in \mathbf{F}$, there exists ϵ with $|\epsilon| \leq \epsilon_{\text {machine }}$ such that

$$
x \circledast y=(x * y)(1+\epsilon) .
$$

1.4. Programming exercise

- TreBau Exercise 13.3 (Horner's rule for polynomial evaluation).

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

```
Algorithm Horner's rule for \(p(x)=\sum_{i=0}^{n} a_{i} x^{i}\).
    \(p=a_{n}\)
    for \(i=n-1:-1: 0\)
    \(p=x p+a_{i} ;\)
    end
```


2. Algorithm

- Given a problem $f: \mathbb{X} \rightarrow \mathbb{Y}$. An algorithm for the problem f can be viewed as a map $\tilde{f}: \mathbb{X} \rightarrow \mathbb{Y}$.
- More precisely, assume that a problem f, a computer with floating point system, and a program for solving the problem are fixed:
(1) given $x \in \mathbb{X}$, let $\mathrm{f}(x)$ be the corresponding floating point representation;
(2) input $\mathrm{fl}(x)$ to the program and run it in the computer;
(3) the output (computed result) of the program belongs to \mathbb{Y} and is called $\widetilde{f}(x)$.
- A problem may have different algorithms (due to different programs). For example: the problem of sum of three numbers: $a+b+c$. Programs: $(a+b)+c, a+(b+c)$, and $(a+c)+b$.
- What can happen for an ill-conditioned problem? Since x is perturbed to $\mathrm{ll}(x)$, then $\|\tilde{f}(x)-f(x)\|$ maybe large.

2.1. Accuracy

- An algorithm \tilde{f} for a problem f is accurate if for each $x \in \mathbb{X}$,

$$
\frac{\|\tilde{f}(x)-f(x)\|}{\|f(x)\|}=\mathcal{O}\left(\epsilon_{\text {machine }}\right) .
$$

- The meaning of $\mathcal{O}(\cdot): \phi(t)=\mathcal{O}(\psi(t))$ means there exists a positive constant C such that $|\phi(t)| \leqslant C \psi(t)$ for all t sufficiently close to an understood limit (e.g., $t \rightarrow 0$ or $t \rightarrow \infty$).

2.2. Stability

- An algorithm \tilde{f} for a problem f is stable if for each $x \in \mathbb{X}$, there exists $\tilde{x} \in \mathbb{X}$, such that

$$
\frac{\|\widetilde{x}-x\|}{\|x\|}=\mathcal{O}\left(\epsilon_{\text {machine }}\right), \quad \frac{\|\widetilde{f}(x)-f(\widetilde{x})\|}{\|f(\widetilde{x})\|}=\mathcal{O}\left(\epsilon_{\text {machine }}\right) .
$$

Remark 1

A stable algorithm gives nearly the right answer to nearly the right question.

2.3. Backward stability

- An algorithm \tilde{f} for a problem f is backward stable if for each $x \in \mathbb{X}$, there exists $\widetilde{x} \in \mathbb{X}$, such that

$$
\frac{\|\widetilde{x}-x\|}{\|x\|}=\mathcal{O}\left(\epsilon_{\text {machine }}\right), \quad \widetilde{f}(x)=f(\widetilde{x}) .
$$

Remark 2

A backward stable algorithm gives exactly the right answer to nearly the right question.

Remark 3

Backward stability obviously implies stability.

Remark 4

Backward stability is both stronger and simpler than stability. Many algorithms of NLA are backward stable.

3. Backward error analysis

- The first step is to investigate the conditioning of the problem. The second step is to investigate the backward stability of the corresponding algorithm.
- Forward error \lesssim Condition number \times Backward error.

Theorem 5 (Accuracy of a backward stable algorithm)

Suppose \tilde{f} is backward stable for f. Let $\kappa(f(x))$ denote the condition number of the problem $f(x)$. Then the relative errors satisfy

$$
\frac{\|\tilde{f}(x)-f(x)\|}{\|f(x)\|}=\mathcal{O}\left(\kappa(f(x)) \epsilon_{\text {machine }}\right)
$$

Proof.

By the definition of backward stability, we have there exists \widetilde{x} such that

$$
\frac{\|\tilde{x}-x\|}{\|x\|}=\mathcal{O}\left(\epsilon_{\text {machine }}\right), \quad \tilde{f}(x)=f(\widetilde{x})
$$

By the definition of $\kappa(f(x))$,

$$
\kappa(f(x))=\lim _{\varepsilon \rightarrow 0^{+}} \sup _{\|\delta x\| \leqslant \varepsilon}\left(\frac{\|\delta f\|}{\|f(x)\|} / \frac{\|\delta x\|}{\|x\|}\right)
$$

we have

$$
\frac{\|\tilde{f}(x)-f(x)\|}{\|f(x)\|} \leqslant(\kappa(f(x))+o(1)) \frac{\|\tilde{x}-x\|}{\|x\|}
$$

where $o(1)$ denotes a quantity that converges to zero as $\epsilon_{\text {machine }} \rightarrow 0$. Then the statement follows.

4. Examples

- Floating point arithmetic: The floating point operations $\oplus, \ominus, \otimes, \odot$ are all backward stable. Let $x_{1}, x_{2} \in \mathbb{R}$. Consider the problem $f\left(x_{1}, x_{2}\right)=x_{1} * x_{2}$ and the corresponding algorithm $\tilde{f}\left(x_{1}, x_{2}\right)=\mathrm{f}\left(x_{1}\right) \circledast \mathrm{fl}\left(x_{2}\right)$. There exist $\left|\epsilon_{1}\right|,\left|\epsilon_{2}\right|,\left|\epsilon_{3}\right| \leqslant \epsilon_{\text {machine }}$ and $\left|\epsilon_{4}\right|,\left|\epsilon_{5}\right| \leqslant 2 \epsilon_{\text {machine }}+\mathcal{O}\left(\epsilon_{\text {machine }}^{2}\right)$ such that (except \otimes and $\left.\odot\right)$

$$
\begin{aligned}
\tilde{f}\left(x_{1}, x_{2}\right) & =\mathrm{fl}\left(x_{1}\right) \circledast \mathrm{fl}\left(x_{2}\right) \\
& =\left(\left[x_{1}\left(1+\epsilon_{1}\right)\right] *\left[x_{2}\left(1+\epsilon_{2}\right)\right]\right)\left(1+\epsilon_{3}\right) \\
& =\left[x_{1}\left(1+\epsilon_{1}\right)\left(1+\epsilon_{3}\right)\right] *\left[x_{2}\left(1+\epsilon_{2}\right)\left(1+\epsilon_{3}\right)\right] \\
& =\left[x_{1}\left(1+\epsilon_{4}\right)\right] *\left[x_{2}\left(1+\epsilon_{5}\right)\right] \\
& =\widetilde{x}_{1} * \widetilde{x}_{2}=f\left(\widetilde{x}_{1}, \widetilde{x}_{2}\right) .
\end{aligned}
$$

Backward stability follows from

$$
\frac{\left|\tilde{x}_{1}-x_{1}\right|}{\left|x_{1}\right|}=\mathcal{O}\left(\epsilon_{\text {machine }}\right), \quad \frac{\left|\tilde{x}_{2}-x_{2}\right|}{\left|x_{2}\right|}=\mathcal{O}\left(\epsilon_{\text {machine }}\right)
$$

- Inner product
$\mathbf{x}, \mathbf{y} \in \mathbb{R}^{m}, \alpha=\mathbf{x}^{\top} \mathbf{y} . \widetilde{\alpha}$ by \otimes and \oplus. Backward stable.
- Outer product
$\mathbf{x}, \mathbf{y} \in \mathbb{R}^{m}, \mathbf{A}=\mathbf{x y}^{\top} . \widetilde{\mathbf{A}}$ by \otimes. Stable but not backward stable. Explanation: the matrix $\widetilde{\mathbf{A}}$ will be most unlikely to have rank exactly 1, i.e., cannot be written as $(\mathbf{x}+\delta \mathbf{x})(\mathbf{y}+\delta \mathbf{y})^{*}$. As a rule, for problems where the dimension of the space \mathbb{Y} is greater than that of the space \mathbb{X}, backward stability is rare.
- Compute $f(x)=x+1$

By $\oplus, \tilde{f}(x)=\mathrm{fl}(x) \oplus 1$. Stable but not backward stable. We have

$$
\begin{aligned}
\tilde{f}(x)=\mathrm{fl}(x) \oplus 1 & =\left(x\left(1+\epsilon_{1}\right)+1\right)\left(1+\epsilon_{2}\right) \\
& =x\left(1+\epsilon_{1}+\epsilon_{2}+\epsilon_{1} \epsilon_{2}\right)+\epsilon_{2}+1
\end{aligned}
$$

Obviously, $x\left(1+\epsilon_{1}+\epsilon_{2}+\epsilon_{1} \epsilon_{2}\right)+\epsilon_{2}$ is not small compared with $x \rightarrow 0$, i.e., for $x \rightarrow 0$,

$$
\frac{\left|x\left(1+\epsilon_{1}+\epsilon_{2}+\epsilon_{1} \epsilon_{2}\right)+\epsilon_{2}\right|}{|x|} \neq \mathcal{O}\left(\epsilon_{\text {machine }}\right) .
$$

Explanation: For $x \approx 0, \oplus$ introduces absolute errors of size $\mathcal{O}\left(\epsilon_{\text {machine }}\right)$, which cannot be interpreted as caused by small relative perturbations in x. Therefore, not backward stable.
To show stability, for all x, let $\widetilde{x}=x\left(1+\epsilon_{1}\right)$. Note that

$$
\frac{|\widetilde{f}(x)-f(\widetilde{x})|}{|f(\widetilde{x})|}=\frac{\left|\epsilon_{2}\left(x\left(1+\epsilon_{1}\right)+1\right)\right|}{\left|x\left(1+\epsilon_{1}\right)+1\right|}=\left|\epsilon_{2}\right|=\mathcal{O}\left(\epsilon_{\text {machine }}\right)
$$

Then stability follows.
Comparison: Let $x, y \in \mathbb{R}$. Consider $f(x, y)=x+y$ and the corresponding backward stable algorithm $\widetilde{f}(x, y)=\mathrm{fl}(x) \oplus \mathrm{fl}(y)$.
4.1. Unitary matrix multiplication: (see also TreBau Exercise 16.1)

- In the rest of this lecture, for simplicity, we always assume that the given data are floating point numbers already if not explicitly stated.

Theorem 6

Left and/or right unitary matrix multiplications are backward stable in the sense: Let \mathbf{Q} be a unitary matrix. The computed quantity $\widetilde{\mathbf{B}}$ for $\mathbf{B}=\mathbf{Q} \mathbf{A}$ or $\mathbf{B}=\mathbf{A Q}$ satisfies

$$
\widetilde{\mathbf{B}}=\mathbf{Q}(\mathbf{A}+\delta \mathbf{A}), \quad \text { or } \quad \widetilde{\mathbf{B}}=(\mathbf{A}+\delta \mathbf{A}) \mathbf{Q}, \quad \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}=\mathcal{O}\left(\epsilon_{\text {machine }}\right)
$$

Proof.

We only prove the real case. The complex case is similar. Consider the algorithm for the inner product $\mathbf{q}^{\top} \mathbf{a}$, then matrix-vector product $\mathbf{Q a}$, and then matrix-matrix product QA.
4.2. An unstable algorithm for computing eigenvalues

- Since z is an eigenvalue of \mathbf{A} if and only if $p(z)=0$, where $p(z)$ is the characteristic polynomial $\operatorname{det}(z \mathbf{I}-\mathbf{A})$, the roots of $p(z)$ are the eigenvalues of \mathbf{A}. This suggests the following algorithm:
(1). Find the coefficients of the characteristic polynomial.
(2). Find its roots.
- This algorithm is unstable due to the second step.

Explanation: The problem of finding the roots of a polynomial, given the coefficients, is generally ill-conditioned. Therefore, although only small errors exist in the coefficients of the polynomials, the difference between their roots, $\|r(p)-r(\widetilde{p})\|$, maybe vastly larger than $\epsilon_{\text {machine }}\|r(p)\|$. Instability follows.

- See the discussion of TreBau's book - Numerical linear algebra, page 110-111.

4.3. Backward stability of back substitution

- The solution of the nonsingular upper-triangular system

$$
\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 m} \\
& r_{22} & \ddots & \vdots \\
& & \ddots & \vdots \\
& & & r_{m m}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

can be obtained by the following back substitution algorithm

Algorithm: Back substitution

$$
\begin{aligned}
& x_{m}=b_{m} / r_{m m} \\
& x_{m-1}=\left(b_{m-1}-x_{m} r_{m-1, m}\right) / r_{m-1, m-1} \\
& x_{m-2}=\left(b_{m-2}-x_{m-1} r_{m-2, m-1}-x_{m} r_{m-2, m}\right) / r_{m-2, m-2} \\
& \quad \vdots \\
& x_{j}=\left(b_{j}-\sum_{k=j+1}^{m} x_{k} r_{j k}\right) / r_{j j}
\end{aligned}
$$

Theorem 7

Back substitution is backward stable in the sense that the computed solution $\widetilde{\mathbf{x}} \in \mathbb{C}^{m}$ satisfies

$$
(\mathbf{R}+\delta \mathbf{R}) \widetilde{\mathbf{x}}=\mathbf{b}
$$

for some upper-triangular $\delta \mathbf{R} \in \mathbb{C}^{m \times m}$ with

$$
\frac{\|\delta \mathbf{R}\|}{\|\mathbf{R}\|}=\mathcal{O}\left(\epsilon_{\text {machine }}\right) .
$$

Specifically, for each i, j,

$$
\frac{\left|\delta r_{i j}\right|}{\left|r_{i j}\right|} \leqslant m \epsilon_{\text {machine }}+\mathcal{O}\left(\epsilon_{\text {machine }}^{2}\right) .
$$

- Our task is to express every floating point error as a perturbation of the input.
(i) The case $m=1$:

$$
\widetilde{x}_{1}=b_{1} \odot r_{11}=\frac{b_{1}\left(1+\epsilon_{1}\right)}{r_{11}}, \quad\left|\epsilon_{1}\right| \leqslant \epsilon_{\text {machine }}
$$

Set $1+\epsilon_{1}^{\prime}=1 /\left(1+\epsilon_{1}\right)$. We have

$$
\epsilon_{1}^{\prime}=-\frac{\epsilon_{1}}{1+\epsilon_{1}} \Rightarrow \widetilde{x}_{1}=\frac{b_{1}}{r_{11}\left(1+\epsilon_{1}^{\prime}\right)}, \quad\left|\epsilon_{1}^{\prime}\right| \leqslant \epsilon_{\text {machine }}+\mathcal{O}\left(\epsilon_{\text {machine }}^{2}\right)
$$

Therefore

$$
\left(r_{11}+\delta r_{11}\right) \widetilde{x}_{1}=b_{1} ; \quad \delta r_{11}=\epsilon_{1}^{\prime} r_{11} ; \quad \frac{\left|\delta r_{11}\right|}{\left|r_{11}\right|} \leqslant \epsilon_{\text {machine }}+\mathcal{O}\left(\epsilon_{\text {machine }}^{2}\right)
$$

(ii) The case $m=2$. The first step is the same as in $m=1$ case,

$$
\widetilde{x}_{2}=b_{2} \odot r_{22}=\frac{b_{2}}{r_{22}\left(1+\epsilon_{1}\right)}, \quad\left|\epsilon_{1}\right| \leqslant \epsilon_{\text {machine }}+\mathcal{O}\left(\epsilon_{\text {machine }}^{2}\right) .
$$

The second step: there exist $\left|\epsilon_{2}\right|,\left|\epsilon_{3}\right|,\left|\epsilon_{4}\right| \leqslant \epsilon_{\text {machine }}$,

$$
\begin{aligned}
\widetilde{x}_{1} & =\left(b_{1} \ominus\left(\widetilde{x}_{2} \otimes r_{12}\right)\right) \odot r_{11}=\left(b_{1} \ominus \widetilde{x}_{2} r_{12}\left(1+\epsilon_{2}\right)\right) \odot r_{11} \\
& =\left(b_{1}-\widetilde{x}_{2} r_{12}\left(1+\epsilon_{2}\right)\right)\left(1+\epsilon_{3}\right) \odot r_{11} \\
& =\frac{\left(b_{1}-\widetilde{x}_{2} r_{12}\left(1+\epsilon_{2}\right)\right)\left(1+\epsilon_{3}\right)}{r_{11}}\left(1+\epsilon_{4}\right) .
\end{aligned}
$$

Shift ϵ_{3} and ϵ_{4} to the denominator

$$
\widetilde{x}_{1}=\frac{b_{1}-\widetilde{x}_{2} r_{12}\left(1+\epsilon_{2}\right)}{r_{11}\left(1+\epsilon_{3}^{\prime}\right)\left(1+\epsilon_{4}^{\prime}\right)}
$$

or equivalently,

$$
\tilde{x}_{1}=\frac{b_{1}-\widetilde{x}_{2} r_{12}\left(1+\epsilon_{2}\right)}{r_{11}\left(1+2 \epsilon_{5}\right)}, \quad\left|\epsilon_{3}^{\prime}\right|,\left|\epsilon_{4}^{\prime}\right|,\left|\epsilon_{5}\right| \leqslant \epsilon_{\text {machine }}+\mathcal{O}\left(\epsilon_{\text {machine }}^{2}\right) .
$$

Obviously, \widetilde{x}_{1} is exactly correct if r_{22}, r_{12} and r_{11} perturbed by factors $\left(1+\epsilon_{1}\right),\left(1+\epsilon_{2}\right)$ and $\left(1+2 \epsilon_{5}\right)$, respectively. Thus,

$$
(\mathbf{R}+\delta \mathbf{R}) \widetilde{\mathbf{x}}=\mathbf{b}
$$

where the entries $\delta r_{i j}$ of $\delta \mathbf{R}$ satisfy

$$
\left[\begin{array}{cc}
\frac{\left|\delta r_{11}\right|}{\left|r_{11}\right|} & \frac{\left|\delta r_{12}\right|}{\left|r_{12}\right|} \\
& \frac{\left|\delta r_{22}\right|}{\left|r_{22}\right|}
\end{array}\right]=\left[\begin{array}{ll}
2\left|\epsilon_{5}\right| & \left|\epsilon_{2}\right| \\
& \left|\epsilon_{1}\right|
\end{array}\right] \leqslant\left[\begin{array}{ll}
2 & 1 \\
& 1
\end{array}\right] \epsilon_{\text {machine }}+\mathcal{O}\left(\epsilon_{\text {machine }}^{2}\right)
$$

The last formula guarantees $\|\delta \mathbf{R}\| /\|\mathbf{R}\|=\mathcal{O}\left(\epsilon_{\text {machine }}\right)$ in any norm. (iii) The case $m=3$. The first two steps are the same as before:

$$
\begin{gathered}
\widetilde{x}_{3}=b_{3} \odot r_{33}=\frac{b_{3}}{r_{33}\left(1+\epsilon_{1}\right)}, \\
\widetilde{x}_{2}=\left(b_{2} \ominus\left(\widetilde{x}_{3} \otimes r_{23}\right)\right) \odot r_{22}=\frac{b_{2}-\widetilde{x}_{3} r_{23}\left(1+\epsilon_{2}\right)}{r_{22}\left(1+2 \epsilon_{3}\right)},
\end{gathered}
$$

where

$$
\left[\begin{array}{cc}
2\left|\epsilon_{3}\right| & \left|\epsilon_{2}\right| \\
& \left|\epsilon_{1}\right|
\end{array}\right] \leqslant\left[\begin{array}{ll}
2 & 1 \\
& 1
\end{array}\right] \epsilon_{1}+\mathcal{O}\left(\epsilon_{\text {machine }}^{2}\right)
$$

The third step:

$$
\begin{aligned}
\widetilde{x}_{1} & =\left[\left(b_{1} \ominus\left(\widetilde{x}_{2} \otimes r_{12}\right)\right) \ominus\left(\widetilde{x}_{3} \otimes r_{13}\right)\right] \odot r_{11} \\
& =\left[\left(b_{1}-\widetilde{x}_{2} r_{12}\left(1+\epsilon_{4}\right)\right)\left(1+\epsilon_{6}\right)-\widetilde{x}_{3} r_{13}\left(1+\epsilon_{5}\right)\right]\left(1+\epsilon_{7}\right) \odot r_{11} \\
& =\frac{\left[\left(b_{1}-\widetilde{x}_{2} r_{12}\left(1+\epsilon_{4}\right)\right)\left(1+\epsilon_{6}\right)-\widetilde{x}_{3} r_{13}\left(1+\epsilon_{5}\right)\right]\left(1+\epsilon_{7}\right)}{r_{11}\left(1+\epsilon_{8}^{\prime}\right)} \\
& =\frac{b_{1}-\widetilde{x}_{2} r_{12}\left(1+\epsilon_{4}\right)-\widetilde{x}_{3} r_{13}\left(1+\epsilon_{5}\right)\left(1+\epsilon_{6}^{\prime}\right)}{r_{11}\left(1+\epsilon_{6}^{\prime}\right)\left(1+\epsilon_{7}^{\prime}\right)\left(1+\epsilon_{8}^{\prime}\right)},
\end{aligned}
$$

r_{13} has two perturbations of size at most $\epsilon_{\text {machine }}, r_{11}$ has three. Then we have $(\mathbf{R}+\delta \mathbf{R}) \widetilde{\mathbf{x}}=\mathbf{b}$ with the entries $\delta r_{i j}$ satisfying

$$
\left[\begin{array}{ccc}
\frac{\left|\delta r_{11}\right|}{\left|r_{11}\right|} & \frac{\left|\delta r_{12}\right|}{\left|r_{12}\right|} & \frac{\left|\delta r_{13}\right|}{\left|r_{13}\right|} \\
& \frac{\left|\delta r_{22}\right|}{\left|r_{22}\right|} & \frac{\left|\delta r_{23}\right|}{\left|r_{23}\right|} \\
& & \frac{\left|\delta r_{33}\right|}{\left|r_{33}\right|}
\end{array}\right] \leqslant\left[\begin{array}{lll}
3 & 1 & 2 \\
& 2 & 1 \\
& & 1
\end{array}\right] \epsilon_{\text {machine }}+\mathcal{O}\left(\epsilon_{\text {machine }}^{2}\right)
$$

(iv) General m : Higher-dimensional cases are similar. For example, 5×5 case:

$$
\frac{|\delta \mathbf{R}|}{|\mathbf{R}|} \leqslant\left[\begin{array}{ccccc}
5 & 1 & 2 & 3 & 4 \\
& 4 & 1 & 2 & 3 \\
& & 3 & 1 & 2 \\
& & & 2 & 1 \\
& & & & 1
\end{array}\right] \epsilon_{\text {machine }}+\mathcal{O}\left(\epsilon_{\text {machine }}^{2}\right)
$$

The entries of the matrix in this formula are obtained from three components. The multiplications $\widetilde{x}_{k} r_{j k}$ introduce $\epsilon_{\text {machine }}$ perturbations in the pattern

$$
\otimes: \widetilde{x}_{k} r_{j k} \quad\left[\begin{array}{ccccc}
0 & 1 & 1 & 1 & 1 \\
& 0 & 1 & 1 & 1 \\
& & 0 & 1 & 1 \\
& & & 0 & 1 \\
& & & & 0
\end{array}\right] . \quad(\text { inner level })
$$

The division by $r_{k k}$ introduce perturbations in the pattern
\odot : divisions by $r_{k k}$

$$
\left[\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
& & 1 & & \\
& & & 1 & \\
& & & & 1
\end{array}\right] \cdot \quad \text { (outer level) }
$$

Finally, the subtractions also occur in the pattern for \otimes, and, due to the decision to compute from left to right, each one introduces a perturbation on the diagonal and at each position to the right. This adds up to the pattern

$$
\left[\begin{array}{ccccc}
4 & 0 & 1 & 2 & 3 \\
& 3 & 0 & 1 & 2 \\
& & 2 & 0 & 1 \\
& & & 1 & 0 \\
& & & & 0
\end{array}\right] .
$$

Remark 8

Perturbations of order $\epsilon_{\text {machine }}$ are composed additively and moved freely between numerators and denominators since the difference is of order $\epsilon_{\text {machine }}^{2}$.

Remark 9

More than one error bound can be derived for a given algorithm. In the present case, we could have perturbed b_{j} as well as $r_{i j}$, avoiding the need for the trickery represented pattern for \ominus. On the other hand, a final result in which only \mathbf{R} is perturbed is appealing clean.

Remark 10

We have done componentwise backward error bound. If $r_{i j}=0$, this entry undergoes no perturbation at all: $\delta \mathbf{R}$ has the same sparsity pattern as \mathbf{R}.

