Lecture 18: Multigrid

School of Mathematical Sciences, Xiamen University

1. Finite difference discretization of a BVP

- Consider the following 1-D Dirichlet boundary value problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=f(x), \quad x \in(0,1) \\
u(0)=u(1)=0
\end{array}\right.
$$

- For $n \in \mathbb{N}$, let

$$
h=\frac{1}{n+1}, \quad x_{i}=i h=\frac{i}{n+1}, \quad 0 \leq i \leq n+1 .
$$

- The finite difference method is: let $u_{0}^{h}=u_{n+1}^{h}=0, f_{i}^{h}=f\left(x_{i}\right)$, $1 \leq i \leq n$, find

$$
\mathbf{u}^{h}=\left[\begin{array}{llll}
u_{1}^{h} & u_{2}^{h} & \cdots & u_{n}^{h}
\end{array}\right]^{\top}
$$

such that

$$
-\frac{u_{i+1}^{h}-2 u_{i}^{h}+u_{i-1}^{h}}{h^{2}}=f_{i}^{h}, \quad 1 \leq i \leq n .
$$

- The FD system $\mathbf{A}_{h} \mathbf{u}^{h}=\mathbf{f}^{h}$:

$$
\frac{1}{h^{2}}\left[\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right]\left[\begin{array}{c}
u_{1}^{h} \\
u_{2}^{h} \\
\vdots \\
u_{n-1}^{h} \\
u_{n}^{h}
\end{array}\right]=\left[\begin{array}{c}
f_{1}^{h} \\
f_{2}^{h} \\
\vdots \\
f_{n-1}^{h} \\
f_{n}^{h}
\end{array}\right] .
$$

2. Classical stationary iterative methods (Lecture 6)

- Given a starting vector $\mathbf{u}^{(0)}$,

$$
\mathbf{u}^{(j)}=\mathbf{R} \mathbf{u}^{(j-1)}+\mathbf{c}, \quad j=1,2, \ldots
$$

- Jacobi's method
- Gauss-Seidel method
- Successive overrelaxation: $\operatorname{SOR}(\omega)$
- Symmetric successive overrelaxation: $\operatorname{SSOR}(\omega)$
2.1. Jacobi's method and its relaxation for the FD system
- The iteration matrix

$$
\begin{aligned}
\mathbf{R}=\mathbf{D}^{-1}(\mathbf{D}-\mathbf{A}) & =\left[\begin{array}{lllll}
\frac{1}{2} & & & & \\
& \frac{1}{2} & & \\
& & \ddots & & \\
& & & \frac{1}{2} & \\
& & & & \frac{1}{2}
\end{array}\right]\left[\begin{array}{ccccc}
0 & 1 & & & \\
1 & 0 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & 0 & 1 \\
& & & 1 & 0
\end{array}\right] \\
& =\left[\begin{array}{cccccc}
0 & \frac{1}{2} & & & \\
\frac{1}{2} & 0 & \frac{1}{2} & & \\
& \ddots & \ddots & \ddots & \\
& & \frac{1}{2} & 0 & \frac{1}{2} \\
& & & \frac{1}{2} & 0
\end{array}\right] .
\end{aligned}
$$

- The relaxation of Jacobi's method:

$$
\mathbf{R}(\omega)=(1-\omega) \mathbf{I}+\omega \mathbf{R}=\mathbf{I}-\omega \mathbf{D}^{-1} \mathbf{A} .
$$

- The eigenvalues of \mathbf{R} are given by

$$
\lambda_{k}=\cos (k \pi h), \quad 1 \leq k \leq n
$$

and the corresponding eigenvectors are given by

$$
\mathbf{v}_{k}=\left[\begin{array}{llll}
\sin (k \pi h) & \sin (2 k \pi h) & \cdots & \sin (n k \pi h)
\end{array}\right]^{\top}, \quad 1 \leq k \leq n .
$$

The convergence of the Jacobi's method becomes worse for larger n since the spectral radius approaches 1 in this situation.

- The eigenvalues of $\mathbf{R}(\omega)$ are given by

$$
\lambda_{k}(\omega)=1-\omega+\omega \lambda_{k}=1-\omega+\omega \cos (k \pi h), \quad 1 \leq k \leq n
$$

Note that relaxation does not lead to an improved convergence, since, in this case, the optimal relaxation parameter is $\omega_{\star}=1$. (why?)

- $\mathbf{R}(\omega)$ and \mathbf{R} have the same eigenvectors.
2.2. What makes the convergence of Jacobi's method slow?
- Recall that the solution \mathbf{u} of the linear system is a fixed point, i.e.,

$$
\mathbf{u}=\mathbf{R} \mathbf{u}+\mathbf{c}
$$

This leads to

$$
\mathbf{u}-\mathbf{u}^{(j)}=\mathbf{R}\left(\mathbf{u}-\mathbf{u}^{(j-1)}\right)=\cdots=\mathbf{R}^{j}\left(\mathbf{u}-\mathbf{u}^{(0)}\right)
$$

We expand $\mathbf{u}-\mathbf{u}^{(0)}$ in the basis consisting of the eigenvectors:

$$
\mathbf{u}-\mathbf{u}^{(0)}=\sum_{k=1}^{n} \alpha_{k} \mathbf{v}_{k}
$$

This gives

$$
\mathbf{u}-\mathbf{u}^{(j)}=\sum_{k=1}^{n} \alpha_{k} \lambda_{k}^{j} \mathbf{v}_{k}
$$

- If $\left|\lambda_{k}\right|$ is small then the component of $\mathbf{u}-\mathbf{u}^{(j)}$ in the direction of \mathbf{v}_{k} vanishes quickly.
- After only a few iterations, the error is dominated by those components in direction \mathbf{v}_{k}, where $\left|\lambda_{k}\right| \approx 1$.
- The eigenvectors of $\mathbf{R}(\omega)$ with $n=50$. From left to right: $\mathbf{v}_{1}, \mathbf{v}_{25}$, and \mathbf{v}_{50}. Each graph shows the points $\left(i h,\left(\mathbf{v}_{k}\right)_{i}\right)$ for $1 \leq i \leq n$ linearly connected.

Low-frequency $(k \leq n / 2)$, high-frequency $(k>n / 2)$

- Since $\left|\lambda_{1}\right|=\left|\lambda_{n}\right| \approx 1$, the error in direction \mathbf{v}_{1} and direction \mathbf{v}_{n} is large, which means no matter how many steps in Jacobi's method we compute, the error will always contain both low-frequency and high-frequency eigenvectors.
- To avoid this, let us have another look at the relaxation of Jacobi's method. Choosing $\omega=1 / 2$ yields the eigenvalues

$$
\lambda_{k}(1 / 2)=(1+\cos (k \pi h)) / 2, \quad 1 \leq k \leq n .
$$

For large k this means that $\lambda_{k}(1 / 2)$ is very close to zero, while for small k we have $\lambda_{k}(1 / 2)$ very close to 1 .

- Consider the error after j iterations

$$
\mathbf{u}-\mathbf{u}^{(j)}=[\mathbf{R}(1 / 2)]^{j}\left(\mathbf{u}-\mathbf{u}^{(0)}\right)=\sum_{k=1}^{n} \alpha_{k}\left[\lambda_{k}(1 / 2)\right]^{j} \mathbf{v}_{k} .
$$

The low-frequency eigenvectors dominate and the influence of the high-frequency eigenvectors tends to zero.

- The error, in a certain way, is "smoothed" during the process.
- A "smoother" error can be represented using a smaller n and this gives the idea of the two-grid method, as follows.
- Compute j steps of the relaxation, resulting in an error

$$
\boldsymbol{\varepsilon}^{(j)}=\mathbf{u}-\mathbf{u}^{(j)}
$$

which is much "smoother" than $\boldsymbol{\varepsilon}^{(0)}$.

- We have $\mathbf{u}=\mathbf{u}^{(j)}+\boldsymbol{\varepsilon}^{(j)}$ and $\boldsymbol{\varepsilon}^{(j)}$ satisfies

$$
\mathbf{A} \boldsymbol{\varepsilon}^{(j)}=\mathbf{A}\left(\mathbf{u}-\mathbf{u}^{(j)}\right)=\mathbf{f}-\mathbf{A} \mathbf{u}^{(j)}=: \mathbf{r}^{(j)}
$$

Hence, if we can solve $\mathbf{A} \boldsymbol{\varepsilon}^{(j)}=\mathbf{r}^{(j)}$ then the overall solution is given by $\mathbf{u}=\mathbf{u}^{(j)}+\boldsymbol{\varepsilon}^{(j)}$.

- Since we expect the error $\boldsymbol{\varepsilon}^{(j)}$ to be "smooth", we will solve the equation $\mathbf{A} \boldsymbol{\varepsilon}^{(j)}=\mathbf{r}^{(j)}$ somehow on a coarser grid to save computational time and transfer the solution back to the finer grid.

3. Two-grid, V-cycle, and Multigrid

- Assume that we are given two grids: a fine grid X_{h} with n_{h} points and a coarse grid X_{H} with $n_{H}<n_{h}$ points. Associated with these grids are discrete solution spaces $V_{h}=\mathbb{R}^{n_{h}}$ and $V_{H}=\mathbb{R}^{n_{H}}$.
- We need a prolongation operator $\mathbf{I}_{H}^{h}: V_{H} \mapsto V_{h}$ which maps from coarse to fine, and a restriction operator $\mathbf{I}_{h}^{H}: V_{h} \mapsto V_{H}$ which maps from fine to coarse.
- For simplicity, suppose the coarse grid is given by

$$
X_{H}=\left\{j H: 0 \leq j \leq n_{H}-1\right\}
$$

with $n_{H}=2^{m}+1, m \in \mathbb{N}$, and $H=1 /\left(n_{H}-1\right)$. Then the natural fine grid X_{h} would consist of X_{H} and all points in the middle between two points from X_{H}, i.e.,

$$
X_{h}=\left\{j h: 0 \leq j \leq n_{h}-1\right\}
$$

with $h=H / 2$ and $n_{h}=2^{m+1}+1$.

- In this case we could define the prolongation and restriction operators as follows. The prolongation $\mathbf{v}^{h}=\mathbf{I}_{H}^{h} \mathbf{v}^{H}$ is defined by linear interpolation on the "in-between" points:

$$
\begin{array}{ll}
v_{2 j}^{h}:=v_{j}^{H}, & 0 \leq j \leq n_{H}-1 \\
v_{2 j+1}^{h}:=\frac{v_{j}^{H}+v_{j+1}^{H}}{2}, & 0 \leq j \leq n_{H}-2 .
\end{array}
$$

In matrix form we have

$$
\mathbf{I}_{H}^{h}=\frac{1}{2}\left[\begin{array}{cccccc}
2 & & & & & \\
1 & 1 & & & & \\
& 2 & & & & \\
& 1 & 1 & & & \\
& & \vdots & \vdots & \vdots & \\
& & & & 1 & 1 \\
& & & & & 2
\end{array}\right]
$$

- For the restriction, $\mathbf{v}^{H}=\mathbf{I}_{h}^{H} \mathbf{v}^{h}$ we could use the natural inclusion, i.e., we could simply define $v_{j}^{H}:=v_{2 j}^{h}, 0 \leq j \leq n_{H}-1$.

We could, however, also use a so-called full weighting, which is given by

$$
v_{j}^{H}=\frac{1}{4}\left(v_{2 j-1}^{h}+2 v_{2 j}^{h}+v_{2 j+1}^{h}\right), \quad 0 \leq j \leq n_{H}-1,
$$

where we have implicitly set $v_{-1}^{h}=v_{n_{h}}^{h}=0$. In matrix form (for the full weighting case) we have

$$
\mathbf{I}_{h}^{H}=\frac{1}{4}\left[\begin{array}{ccccccc}
2 & 1 & & & & & \\
& 1 & 2 & 1 & & & \\
& & & 1 & \cdots & & \\
& & & & \cdots & & \\
& & & & \cdots & 1 & \\
& & & & & 1 & 2
\end{array}\right]
$$

For this case, we have $\mathbf{I}_{H}^{h}=2\left(\mathbf{I}_{h}^{H}\right)^{\top}$.

- Our goal is to solve the finite difference system $\mathbf{A}_{h} \mathbf{u}^{h}=\mathbf{f}^{h}$ on the fine level, using the possibility of solving a system $\mathbf{A}_{H} \varepsilon^{H}=\mathbf{r}^{H}$ on a coarse level.

Note that the matrix \mathbf{A}_{h} and \mathbf{A}_{H} only refer to interior nodes. Hence, we delete the first and last columns and rows in the matrix representation of \mathbf{I}_{H}^{h} and \mathbf{I}_{h}^{H}. We still use \mathbf{I}_{H}^{h} and \mathbf{I}_{h}^{H} to denote the resulting matrices, i.e.,

$$
\mathbf{I}_{H}^{h}=\frac{1}{2}\left[\begin{array}{cccc}
1 & & & \\
2 & & & \\
1 & 1 & & \\
& \vdots & \vdots & \vdots \\
& & & 1
\end{array}\right], \quad \mathbf{I}_{h}^{H}=\frac{1}{4}\left[\begin{array}{ccccc}
1 & 2 & 1 & & \\
& & 1 & \ldots & \\
& & & \cdots & \\
& & & \cdots & 1
\end{array}\right]
$$

We can prove that (Exercise)

$$
\mathbf{A}_{H}=\mathbf{I}_{h}^{H} \mathbf{A}_{h} \mathbf{I}_{H}^{h}
$$

- We will use a stationary iterative method as a "smoother". Recall that such an iterative method for solving $\mathbf{A}_{h} \mathbf{u}^{h}=\mathbf{f}^{h}$ is given by

$$
\mathbf{u}_{(j+1)}^{h}=\mathbf{S}_{h}\left(\mathbf{u}_{(j)}^{h}\right):=\mathbf{R}_{h} \mathbf{u}_{(j)}^{h}+\mathbf{c}^{h}
$$

where the solution \mathbf{u}^{h} of the linear system is a fixed point of $\mathbf{S}_{h}(\cdot)$, i.e., it satisfies

$$
\mathbf{u}^{h}=\mathbf{S}_{h}\left(\mathbf{u}^{h}\right):=\mathbf{R}_{h} \mathbf{u}^{h}+\mathbf{c}^{h} .
$$

Sometimes we call it a consistent iterative method.

- If we apply $\ell \in \mathbb{N}$ iterations of such a smoother with initial data $\mathbf{u}_{(0)}^{h}$, it is easy to see that the result has the form

$$
\mathbf{S}_{h}^{\ell}\left(\mathbf{u}_{(0)}^{h}\right)=\mathbf{R}_{h}^{\ell} \mathbf{u}_{(0)}^{h}+\sum_{j=0}^{\ell-1} \mathbf{R}_{h}^{j} \mathbf{c}^{h}:=\mathbf{R}_{h}^{\ell} \mathbf{u}_{(0)}^{h}+\mathbf{s}^{h}
$$

- Note that we can use any consistent method as the smoother $\mathbf{S}_{h}(\cdot)$.

Algorithm: Two-grid for $\mathbf{A}_{h} \mathbf{u}^{h}=\mathbf{f}^{h}, \operatorname{TG}\left(\mathbf{A}_{h}, \mathbf{f}^{h}, \mathbf{u}_{(0)}^{h}, \ell_{1}, \ell_{2}\right)$
Input: $\mathbf{A}_{h}, \mathbf{f}^{h}, \mathbf{u}_{(0)}^{h}, \ell_{1}, \ell_{2} \in \mathbb{N}$.
Output: Approximation to $\mathbf{A}_{h}^{-1} \mathbf{f}^{h}$.

1. Presmooth: $\quad \mathbf{u}^{h}:=\mathbf{S}_{h}^{\ell_{1}}\left(\mathbf{u}_{(0)}^{h}\right)$
2. Get residual : $\mathbf{r}^{h}:=\mathbf{f}^{h}-\mathbf{A}_{h} \mathbf{u}^{h}$
3. Coarsen: $\quad \mathbf{r}^{H}:=\mathbf{I}_{h}^{H} \mathbf{r}^{h}$
4. Solve : $\quad \varepsilon^{H}:=\mathbf{A}_{H}^{-1} \mathbf{r}^{H}$
5. Prolong: $\quad \varepsilon^{h}:=\mathbf{I}_{H}^{h} \varepsilon^{H}$
6. Correct :
$\mathbf{u}^{h}:=\mathbf{u}^{h}+\boldsymbol{\varepsilon}^{h}$
7. Postsmooth :

$$
\mathbf{u}^{h}:=\mathbf{S}_{h}^{\ell_{2}}\left(\mathbf{u}^{h}\right)
$$

- The two-grid method can be seen as only one update of a new stationary iterative method.

Theorem 1

Assume that \mathbf{A}_{H} is invertible. Assume that $\mathbf{u}_{(j)}^{h}$ is the input vector and $\mathbf{u}_{(j+1)}^{h}$ is the resulting output vector of the two-grid method. Then, we have

$$
\mathbf{u}_{(j+1)}^{h}=\mathbf{T}_{h} \mathbf{u}_{(j)}^{h}+\mathbf{d}^{h} \quad \text { and } \quad \mathbf{u}^{h}=\mathbf{T}_{h} \mathbf{u}^{h}+\mathbf{d}^{h}
$$

where the iteration matrix \mathbf{T}_{h} is given by

$$
\mathbf{T}_{h}=\mathbf{R}_{h}^{\ell_{2}} \mathbf{T}_{h, H} \mathbf{R}_{h}^{\ell_{1}} \quad \text { with } \quad \mathbf{T}_{h, H}=\mathbf{I}-\mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{A}_{h}
$$

Moreover, we have the error representation

$$
\mathbf{u}_{(j+1)}^{h}-\mathbf{u}^{h}=\mathbf{T}_{h}\left(\mathbf{u}_{(j)}^{h}-\mathbf{u}^{h}\right)=\mathbf{T}_{h}^{j+1}\left(\mathbf{u}_{(0)}^{h}-\mathbf{u}^{h}\right),
$$

showing that the method converges if the spectral radius $\rho\left(\mathbf{T}_{h}\right)<1$.

Proof. We go through the two-grid method step by step. With the first step $\mathbf{u}_{(j)}^{h}$ is mapped to $\mathbf{S}_{h}^{\ell_{1}}\left(\mathbf{u}_{(j)}^{h}\right)$, which is the input to the second step. After the second and third steps we have

$$
\mathbf{r}_{(j)}^{H}=\mathbf{I}_{h}^{H}\left(\mathbf{f}^{h}-\mathbf{A}_{h} \mathbf{S}_{h}^{\ell_{1}}\left(\mathbf{u}_{(j)}^{h}\right)\right),
$$

which is the input for the fourth step, so that the results after the fourth and fifth steps become

$$
\varepsilon_{(j)}^{h}=\mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H}\left(\mathbf{f}^{h}-\mathbf{A}_{h} \mathbf{S}_{h}^{\ell_{1}}\left(\mathbf{u}_{(j)}^{h}\right)\right)
$$

Applying steps 6 and 7 to this finally results in the new iteration

$$
\begin{aligned}
\mathbf{u}_{(j+1)}^{h} & =\mathbf{S}_{h}^{\ell_{2}}\left(\mathbf{S}_{h}^{\ell_{1}}\left(\mathbf{u}_{(j)}^{h}\right)+\mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H}\left(\mathbf{f}^{h}-\mathbf{A}_{h} \mathbf{S}_{h}^{\ell_{1}}\left(\mathbf{u}_{(j)}^{h}\right)\right)\right) \\
& =\mathbf{S}_{h}^{\ell_{2}}\left(\left(\mathbf{I}-\mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{A}_{h}\right) \mathbf{S}_{h}^{\ell_{1}}\left(\mathbf{u}_{(j)}^{h}\right)+\mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{f}^{h}\right) \\
& =\mathbf{S}_{h}^{\ell_{2}}\left(\mathbf{T}_{h, H} \mathbf{S}_{h}^{\ell_{1}}\left(\mathbf{u}_{(j)}^{h}\right)+\mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{f}^{h}\right) .
\end{aligned}
$$

Note that the operator $\mathbf{S}_{h}(\cdot)$ is only affine and not linear. Define

$$
\widetilde{\mathbf{T}}_{h}(\cdot):=\mathbf{S}_{h}^{\ell_{2}}\left(\mathbf{T}_{h, H} \mathbf{S}_{h}^{\ell_{1}}(\cdot)\right), \quad \widetilde{\mathbf{d}}^{h}:=\mathbf{R}_{h}^{\ell_{2}} \mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{f}^{h}
$$

By straightforward calculations, we have

$$
\mathbf{u}_{(j+1)}^{h}=\widetilde{\mathbf{T}}_{h}\left(\mathbf{u}_{(j)}^{h}\right)+\widetilde{\mathbf{d}}^{h},
$$

and

$$
\begin{aligned}
\widetilde{\mathbf{T}}_{h}(\mathbf{u}) & =\mathbf{S}_{h}^{\ell_{2}}\left(\mathbf{T}_{h, H} \mathbf{S}_{h}^{\ell_{1}}(\mathbf{u})\right) \\
& =\mathbf{S}_{h}^{\ell_{2}}\left(\mathbf{T}_{h, H}\left(\mathbf{R}_{h}^{\ell_{1}} \mathbf{u}+\sum_{j=0}^{\ell_{1}-1} \mathbf{R}_{h}^{j} \mathbf{c}^{h}\right)\right) \\
& =\mathbf{R}_{h}^{\ell_{2}} \mathbf{T}_{h, H} \mathbf{R}_{h}^{\ell_{1}} \mathbf{u}+\mathbf{R}_{h}^{\ell_{2}} \mathbf{T}_{h, H} \sum_{j=0}^{\ell_{1}-1} \mathbf{R}_{h}^{j} \mathbf{c}^{h}+\sum_{j=0}^{\ell_{2}-1} \mathbf{R}_{h}^{j} \mathbf{c}^{h} \\
& =: \mathbf{T}_{h} \mathbf{u}+\widehat{\mathbf{d}}^{h},
\end{aligned}
$$

which shows

$$
\mathbf{u}_{(j+1)}^{h}=\mathbf{T}_{h} \mathbf{u}_{(j)}^{h}+\mathbf{d}^{h} \quad \text { with } \quad \mathbf{d}^{h}=\widehat{\mathbf{d}}^{h}+\widetilde{\mathbf{d}}^{h} .
$$

Hence, the iteration matrix is indeed given by

$$
\mathbf{T}_{h}=\mathbf{R}_{h}^{\ell_{2}} \mathbf{T}_{h, H} \mathbf{R}_{h}^{\ell_{1}}
$$

As $\mathbf{S}_{h}(\cdot)$ is consistent, i.e., $\mathbf{S}_{h}\left(\mathbf{u}^{h}\right)=\mathbf{u}^{h}$, we have

$$
\begin{aligned}
\mathbf{T}_{h} \mathbf{u}^{h}+\mathbf{d}^{h} & =\mathbf{T}_{h} \mathbf{u}^{h}+\widehat{\mathbf{d}}^{h}+\widetilde{\mathbf{d}}^{h}=\widetilde{\mathbf{T}}_{h}\left(\mathbf{u}^{h}\right)+\widetilde{\mathbf{d}}^{h} \\
& =\mathbf{S}_{h}^{\ell_{2}}\left(\left(\mathbf{I}-\mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{A}_{h}\right) \mathbf{u}^{h}\right)+\mathbf{R}_{h}^{\ell_{2}} \mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{f}^{h} \\
& =\mathbf{S}_{h}^{\ell_{2}}\left(\mathbf{u}^{h}\right)-\mathbf{R}_{h}^{\ell_{2}} \mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{f}^{h}+\mathbf{R}_{h}^{\ell_{2}} \mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{f}^{h} \\
& =\mathbf{u}^{h} .
\end{aligned}
$$

This shows

$$
\mathbf{u}_{(j+1)}^{h}-\mathbf{u}^{h}=\mathbf{T}_{h}\left(\mathbf{u}_{(j)}^{h}-\mathbf{u}^{h}\right)=\mathbf{T}_{h}^{j+1}\left(\mathbf{u}_{(0)}^{h}-\mathbf{u}^{h}\right)
$$

Proposition 2

Assume the following four conditions hold.
(1) The matrix \mathbf{A}_{h} is symmetric and positive definite.
(2) The prolongation and restriction operators are connected by

$$
\mathbf{I}_{H}^{h}=\gamma\left(\mathbf{I}_{h}^{H}\right)^{\top}
$$

with $\gamma>0$.
(3) The prolongation operator \mathbf{I}_{H}^{h} is injective.
(4) The coarse grid matrix is given by $\mathbf{A}_{H}:=\mathbf{I}_{h}^{H} \mathbf{A}_{h} \mathbf{I}_{H}^{h}$.

Then we have:
(i) The coarse-grid correction operator $\mathbf{T}_{h, H}$ is an orthogonal projector with respect to the inner product $\langle\cdot, \cdot\rangle_{\mathbf{A}_{h}}$.
(ii) The range of $\mathbf{T}_{h, H}$ is $\langle\cdot, \cdot\rangle_{\mathbf{A}_{h}}$-orthogonal to the range of \mathbf{I}_{H}^{h}.

Proof. We start by showing that \mathbf{A}_{H} is symmetric and positive definite. It is symmetric since

$$
\mathbf{A}_{H}^{\top}=\left(\mathbf{I}_{H}^{h}\right)^{\top} \mathbf{A}_{h}^{\top}\left(\mathbf{I}_{h}^{H}\right)^{\top}=\gamma \mathbf{I}_{h}^{H} \mathbf{A}_{h} \frac{1}{\gamma} \mathbf{I}_{H}^{h}=\mathbf{I}_{h}^{H} \mathbf{A}_{h} \mathbf{I}_{H}^{h}=\mathbf{A}_{H}
$$

It is positive definite since we have for any $\mathbf{x} \neq \mathbf{0}$ that $\mathbf{I}_{H}^{h} \mathbf{x} \neq \mathbf{0}$ because of the injectivity of \mathbf{I}_{H}^{h} and hence

$$
\mathbf{x}^{\top} \mathbf{A}_{H} \mathbf{x}=\mathbf{x}^{\top} \mathbf{I}_{h}^{H} \mathbf{A}_{h} \mathbf{I}_{H}^{h} \mathbf{x}=\frac{1}{\gamma}\left(\mathbf{I}_{H}^{h} \mathbf{x}\right)^{\top} \mathbf{A}_{h}\left(\mathbf{I}_{H}^{h} \mathbf{x}\right)>0
$$

This means in particular that the coarse grid correction operator

$$
\mathbf{T}_{h, H}=\mathbf{I}-\mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{A}_{h}
$$

is well-defined. Next, let

$$
\mathbf{Q}_{h, H}:=\mathbf{I}-\mathbf{T}_{h, H}=\mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} I_{h}^{H} \mathbf{A}_{h}
$$

Actually, the mapping $\mathbf{Q}_{h, H}$ is a projection since we have

$$
\begin{aligned}
\mathbf{Q}_{h, H}^{2} & =\left(\mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} I_{h}^{H} \mathbf{A}_{h}\right)\left(\mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} I_{h}^{H} \mathbf{A}_{h}\right) \\
& =\mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1}\left(I_{h}^{H} \mathbf{A}_{h} \mathbf{I}_{H}^{h}\right) \mathbf{A}_{H}^{-1} I_{h}^{H} \mathbf{A}_{h} \\
& =\mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} I_{h}^{H} \mathbf{A}_{h} \\
& =\mathbf{Q}_{h, H}
\end{aligned}
$$

It is also self-adjoint and hence an orthogonal projector:

$$
\begin{aligned}
\left\langle\mathbf{Q}_{h, H} \mathbf{x}, \mathbf{y}\right\rangle_{\mathbf{A}_{h}} & =\mathbf{x}^{\top} \mathbf{Q}_{h, H}^{\top} \mathbf{A}_{h} \mathbf{y}=\mathbf{x}^{\top} \mathbf{A}_{h}^{\top}\left(\mathbf{I}_{h}^{H}\right)^{\top}\left(\mathbf{A}_{H}^{-1}\right)^{\top}\left(\mathbf{I}_{H}^{h}\right)^{\top} \mathbf{A}_{h} \mathbf{y} \\
& =\mathbf{x}^{\top} \mathbf{A}_{h}\left(\frac{1}{\gamma} \mathbf{I}_{H}^{h}\right) \mathbf{A}_{H}^{-1} \gamma \mathbf{I}_{h}^{H} \mathbf{A}_{h} \mathbf{y} \\
& =\mathbf{x}^{\top} \mathbf{A}_{h} \mathbf{Q}_{h, H} \mathbf{y} \\
& =\left\langle\mathbf{x}, \mathbf{Q}_{h, H} \mathbf{y}\right\rangle_{\mathbf{A}_{h}} .
\end{aligned}
$$

Then $\mathbf{T}_{h, H}$ is also an orthogonal projector with respect to $\langle\cdot, \cdot\rangle_{\mathbf{A}_{h}}$.

It remains to show that range $\left(\mathbf{T}_{h, H}\right)$ is $\langle\cdot, \cdot\rangle_{\mathbf{A}_{h}}$-orthogonal to range $\left(\mathbf{I}_{H}^{h}\right)$. This is true because we have

$$
\begin{aligned}
\left\langle\mathbf{T}_{h, H} \mathbf{x}, \mathbf{I}_{H}^{h} \mathbf{y}\right\rangle_{\mathbf{A}_{h}} & =\mathbf{x}^{\top}\left(\mathbf{I}-\mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{A}_{h}\right)^{\top} \mathbf{A}_{h} \mathbf{I}_{H}^{h} \mathbf{y} \\
& =\mathbf{x}^{\top}\left(\mathbf{I}-\mathbf{A}_{h} \mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H}\right) \mathbf{A}_{h} \mathbf{I}_{H}^{h} \mathbf{y} \\
& =\mathbf{x}^{\top}\left(\mathbf{A}_{h} \mathbf{I}_{H}^{h}-\mathbf{A}_{h} \mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{A}_{h} \mathbf{I}_{H}^{h}\right) \mathbf{y} \\
& =\mathbf{x}^{\top}\left(\mathbf{A}_{h} \mathbf{I}_{H}^{h}-\mathbf{A}_{h} \mathbf{I}_{H}^{h}\right) \mathbf{y} \\
& =0
\end{aligned}
$$

for all \mathbf{x} and \mathbf{y}.

- Let \mathbf{D}_{h} be the diagonal part of \mathbf{A}_{h}. We say that $\mathbf{S}_{h}(\cdot)$ has the smoothing property if there is a constant $\alpha>0$ such that

$$
\left\|\mathbf{R}_{h} \mathbf{v}^{h}\right\|_{\mathbf{A}_{h}}^{2} \leq\left\|\mathbf{v}^{h}\right\|_{\mathbf{A}_{h}}^{2}-\alpha\left\|\mathbf{A}_{h} \mathbf{v}^{h}\right\|_{\mathbf{D}_{h}^{-1}}^{2}, \quad \forall \mathbf{v}^{h}
$$

We say that the prolongation operator \mathbf{I}_{H}^{h} has the approximation property if there is a constant $\beta>0$ such that

$$
\min _{\mathbf{v}^{H}}\left\|\mathbf{v}^{h}-\mathbf{I}_{H}^{h} \mathbf{v}^{H}\right\|_{\mathbf{D}_{h}} \leq \beta\left\|\mathbf{A}_{h} \mathbf{v}^{h}\right\|_{\mathbf{D}_{h}^{-1}}, \quad \forall \mathbf{v}^{h}
$$

Theorem 3

Let the conditions of Proposition 2 be satisfied. Assume:
(1) the smoothing process $\mathbf{S}_{h}(\cdot)$ has the smoothing property,
(2) the prolongation operator \mathbf{I}_{H}^{h} has the approximation property.

Then, we have

$$
\alpha \leq \beta
$$

and for the iteration matrix \mathbf{T}_{h} of the two-grid method,

$$
\left\|\mathbf{T}_{h}\right\|_{\mathbf{A}_{h}}<\sqrt{1-\alpha / \beta} \text { if } \alpha<\beta \text { and }\left\|\mathbf{T}_{h}\right\|_{\mathbf{A}_{h}}=0 \text { if } \alpha=\beta .
$$

Hence, as an iterative scheme, the two-grid method converges.
Proof. Since range $\left(\mathbf{T}_{h, H}\right)$ is $\langle\cdot, \cdot\rangle_{\mathbf{A}_{h}}$-orthogonal to range $\left(\mathbf{I}_{H}^{h}\right)$, we have

$$
\left\langle\mathbf{v}^{h}, \mathbf{I}_{H}^{h} \mathbf{v}^{H}\right\rangle_{\mathbf{A}_{h}}=0, \quad \forall \mathbf{v}^{h} \in \operatorname{range}\left(\mathbf{T}_{h, H}\right), \quad \forall \mathbf{v}^{H} .
$$

From this, we can conclude for all $\mathbf{v}^{h} \in \operatorname{range}\left(\mathbf{T}_{h, H}\right)$ and \mathbf{v}^{H} that

$$
\begin{aligned}
\left\|\mathbf{v}^{h}\right\|_{\mathbf{A}_{h}}^{2} & =\left\langle\mathbf{v}^{h}, \mathbf{v}^{h}-\mathbf{I}_{H}^{h} \mathbf{v}^{H}\right\rangle_{\mathbf{A}_{h}}=\left\langle\mathbf{A}_{h} \mathbf{v}^{h}, \mathbf{v}^{h}-\mathbf{I}_{H}^{h} \mathbf{v}^{H}\right\rangle \\
& =\left\langle\mathbf{D}_{h}^{-1 / 2} \mathbf{A}_{h} \mathbf{v}^{h}, \mathbf{D}_{h}^{1 / 2}\left(\mathbf{v}^{h}-\mathbf{I}_{H}^{h} \mathbf{v}^{H}\right)\right\rangle \\
& \leq\left\|\mathbf{D}_{h}^{-1 / 2} \mathbf{A}_{h} \mathbf{v}^{h}\right\|_{2}\left\|\mathbf{D}_{h}^{1 / 2}\left(\mathbf{v}^{h}-\mathbf{I}_{H}^{h} \mathbf{v}^{H}\right)\right\|_{2} \\
& =\left\|\mathbf{A}_{h} \mathbf{v}^{h}\right\|_{\mathbf{D}_{h}^{-1}}\left\|\mathbf{v}^{h}-\mathbf{I}_{H}^{h} \mathbf{v}^{H}\right\|_{\mathbf{D}_{h}} .
\end{aligned}
$$

Going over to the infimum over all \mathbf{v}^{H} and using the approximation property leads to

$$
\left\|\mathbf{v}^{h}\right\|_{\mathbf{A}_{h}} \leq \sqrt{\beta}\left\|\mathbf{A}_{h} \mathbf{v}^{h}\right\|_{\mathbf{D}_{h}^{-1}}, \quad \forall \mathbf{v}^{h} \in \operatorname{range}\left(\mathbf{T}_{h, H}\right)
$$

This is equivalent to

$$
\left\|\mathbf{T}_{h, H} \mathbf{v}^{h}\right\|_{\mathbf{A}_{h}} \leq \sqrt{\beta}\left\|\mathbf{A}_{h} \mathbf{T}_{h, H} \mathbf{v}^{h}\right\|_{\mathbf{D}_{h}^{-1}}, \quad \forall \mathbf{v}^{h}
$$

Using this and the smoothing property then leads to

$$
\begin{aligned}
0 \leq\left\|\mathbf{R}_{h} \mathbf{T}_{h, H} \mathbf{v}^{h}\right\|_{\mathbf{A}_{h}}^{2} & \leq\left\|\mathbf{T}_{h, H} \mathbf{v}^{h}\right\|_{\mathbf{A}_{h}}^{2}-\alpha\left\|\mathbf{A}_{h} \mathbf{T}_{h, H} \mathbf{v}^{h}\right\|_{\mathbf{D}_{h}^{-1}}^{2} \\
& \leq\left\|\mathbf{T}_{h, H} \mathbf{v}^{h}\right\|_{\mathbf{A}_{h}}^{2}-\frac{\alpha}{\beta}\left\|\mathbf{T}_{h, H} \mathbf{v}^{h}\right\|_{\mathbf{A}_{h}}^{2} \\
& =(1-\alpha / \beta)\left\|\mathbf{T}_{h, H} \mathbf{v}^{h}\right\|_{\mathbf{A}_{h}}^{2} \\
& \leq(1-\alpha / \beta)\left\|\mathbf{v}^{h}\right\|_{\mathbf{A}_{h}}^{2},
\end{aligned}
$$

where the last inequality follows from the fact that $\mathbf{T}_{h, H}$ is an orthogonal projector with respect to $\langle\cdot, \cdot\rangle_{\mathbf{A}_{h}}$. This means, first of all, $\alpha \leq \beta$ and secondly

$$
\left\|\mathbf{R}_{h} \mathbf{T}_{h, H}\right\|_{\mathbf{A}_{h}} \leq \sqrt{1-\alpha / \beta}
$$

By the smoothing property, we have $\left\|\mathbf{R}_{h}\right\|_{\mathbf{A}_{h}}<1$. Then we finally derive $\left\|\mathbf{T}_{h}\right\|_{\mathbf{A}_{h}}=0$ if $\alpha=\beta$, and if $\alpha<\beta$,

$$
\left\|\mathbf{T}_{h}\right\|_{\mathbf{A}_{h}}=\left\|\mathbf{R}_{h}^{\ell_{2}} \mathbf{T}_{h, H} \mathbf{R}_{h}^{\ell_{1}}\right\|_{\mathbf{A}_{h}}<\left\|\mathbf{R}_{h} \mathbf{T}_{h, H}\right\|_{\mathbf{A}_{h}} \leq \sqrt{1-\alpha / \beta}
$$

Algorithm: V-cycle for $\mathbf{A}_{h} \mathbf{u}^{h}=\mathbf{f}^{h}, \operatorname{V-cycle}\left(\mathbf{A}_{h}, \mathbf{f}^{h}, \mathbf{u}_{(0)}^{h}, \ell_{1}, \ell_{2}, h_{0}\right)$
Input: $\mathbf{A}_{h}, \mathbf{f}^{h}, \mathbf{u}_{(0)}^{h}, \ell_{1}, \ell_{2} \in \mathbb{N}, h_{0}$.
Output: Approximation to $\mathbf{A}_{h}^{-1} \mathbf{f}^{h}$.

1. Presmooth : $\quad \mathbf{u}^{h}:=\mathbf{S}_{h}^{\ell_{1}}\left(\mathbf{u}_{(0)}^{h}\right)$
2. Get residual : $\quad \mathbf{r}^{h}:=\mathbf{f}^{h}-\mathbf{A}_{h} \mathbf{u}^{h}$
3. Coarsen:

$$
H:=2 h, \quad \mathbf{r}^{H}:=\mathbf{I}_{h}^{H} \mathbf{r}^{h}
$$

4. if $H=h_{0}$

$$
\text { Solve } \mathbf{A}_{H} \varepsilon^{H}=\mathbf{r}^{H}
$$

else

$$
\varepsilon^{H}:=\operatorname{V-cycle}\left(\mathbf{A}_{H}, \mathbf{r}^{H}, \mathbf{0}, \ell_{1}, \ell_{2}, h_{0}\right)
$$

end
5. Prolong:
$\varepsilon^{h}:=\mathbf{I}_{H}^{h} \varepsilon^{H}$
6. Correct:
$\mathbf{u}^{h}:=\mathbf{u}^{h}+\boldsymbol{\varepsilon}^{h}$
7. Postsmooth : $\quad \mathbf{u}^{h}:=\mathbf{S}_{h}^{\ell_{2}}\left(\mathbf{u}^{h}\right)$

Algorithm: Multigrid for $\mathbf{A}_{h} \mathbf{u}^{h}=\mathbf{f}^{h}, \operatorname{MG}\left(\mathbf{A}_{h}, \mathbf{f}^{h}, \mathbf{u}_{(0)}^{h}, \ell_{1}, \ell_{2}, \ell, h_{0}\right)$
Input: $\mathbf{A}_{h}, \mathbf{f}^{h}, \mathbf{u}_{(0)}^{h}, \ell_{1}, \ell_{2}, \ell \in \mathbb{N}, h_{0}$.
Output: Approximation to $\mathbf{A}_{h}^{-1} \mathbf{f}^{h}$.

1. Presmooth:

$$
\mathbf{u}^{h}:=\mathbf{S}_{h}^{\ell_{1}}\left(\mathbf{u}_{(0)}^{h}\right)
$$

2. Get residual : $\quad \mathbf{r}^{h}:=\mathbf{f}^{h}-\mathbf{A}_{h} \mathbf{u}^{h}$
3. Coarsen :
$H:=2 h, \quad \mathbf{r}^{H}:=\mathbf{I}_{h}^{H} \mathbf{r}^{h}$
4. if $H=h_{0}$

Solve $\mathbf{A}_{H} \boldsymbol{\varepsilon}^{H}=\mathbf{r}^{H}$
else

$$
\begin{aligned}
& \varepsilon^{H}:=\mathbf{0} \\
& \text { for } j=1: \ell \\
& \quad \varepsilon^{H}:=\operatorname{MG}\left(\mathbf{A}_{H}, \mathbf{r}^{H}, \varepsilon^{H}, \ell_{1}, \ell_{2}, \ell, h_{0}\right)
\end{aligned}
$$

end
end
5. Prolong :

$$
\varepsilon^{h}:=\mathbf{I}_{H}^{h} \varepsilon^{H}
$$

6. Correct :
$\mathbf{u}^{h}:=\mathbf{u}^{h}+\boldsymbol{\varepsilon}^{h}$
7. Postsmooth :

$$
\mathbf{u}^{h}:=\mathbf{S}_{h}^{\ell_{2}}\left(\mathbf{u}^{h}\right)
$$

- Obviously, $\ell=1$ leads to the V-cycle method. It is helpful to visualize the recursion in the following way, depending on the choice of ℓ and how many levels there are, meaning how many grids we use. Assume that k levels are used, i.e., k satisfies $h_{0}=2^{k} h$.

The recursion of multigrid with $\ell=1$ (top, V-cycle) and $\ell=2$ (bottom, W-cycle).

- To determine the iteration matrix \mathbf{M}_{h} of the multigrid method, we start with the iteration matrix of the two-grid method

$$
\mathbf{T}_{h}=\mathbf{R}_{h}^{\ell_{2}}\left(\mathbf{I}-\mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{A}_{h}\right) \mathbf{R}_{h}^{\ell_{1}}
$$

and recall that the term \mathbf{A}_{H}^{-1} came from step 4 in two-grid cycle and hence has now to be replaced by ℓ steps of the multigrid method on grid X_{H} :

$$
\begin{aligned}
& \varepsilon_{(0)}^{H}:=\mathbf{0} \\
& \varepsilon_{(j)}^{H}:=\mathbf{M}_{H} \varepsilon_{(j-1)}^{H}+\mathbf{d}^{H}, \quad 1 \leq j \leq \ell .
\end{aligned}
$$

As this is a consistent method for solving $\mathbf{A}_{H} \varepsilon^{H}=\mathbf{r}^{H}$, we have

$$
\varepsilon_{(\ell)}^{H}-\varepsilon^{H}=\mathbf{M}_{H}\left(\varepsilon_{(\ell-1)}^{H}-\varepsilon^{H}\right)=\mathbf{M}_{H}^{\ell}\left(\varepsilon_{(0)}^{H}-\varepsilon^{H}\right)=-\mathbf{M}_{H}^{\ell} \varepsilon^{H} .
$$

Then, we have

$$
\varepsilon_{(\ell)}^{H}=\left(\mathbf{I}-\mathbf{M}_{H}^{\ell}\right) \varepsilon^{H}=\left(\mathbf{I}-\mathbf{M}_{H}^{\ell}\right) \mathbf{A}_{H}^{-1} \mathbf{r}^{H} .
$$

Replacing \mathbf{A}_{H}^{-1} by $\left(\mathbf{I}-\mathbf{M}_{H}^{\ell}\right) \mathbf{A}_{H}^{-1}$ yields

$$
\begin{aligned}
\mathbf{M}_{h} & =\mathbf{R}_{h}^{\ell_{2}}\left[\mathbf{I}-\mathbf{I}_{H}^{h}\left(\mathbf{I}-\mathbf{M}_{H}^{\ell}\right) \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{A}_{h}\right] \mathbf{R}_{h}^{\ell_{1}} \\
& =\mathbf{R}_{h}^{\ell_{2}}\left[\mathbf{I}-\mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{A}_{h}+\mathbf{I}_{H}^{h} \mathbf{M}_{H}^{\ell} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{A}_{h}\right] \mathbf{R}_{h}^{\ell_{1}} \\
& =\mathbf{T}_{h}+\mathbf{R}_{h}^{\ell_{2}} \mathbf{I}_{H}^{h} \mathbf{M}_{H}^{\ell} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{A}_{h} \mathbf{R}_{h}^{\ell_{1}},
\end{aligned}
$$

which can be seen as a perturbation of \mathbf{T}_{h}.

- Algebraic multigrid (AMG): $\mathbf{A}_{h} \mathbf{u}^{h}=\mathbf{f}^{h}$ with $\mathbf{A}_{h} \in \mathbb{R}^{n_{h} \times n_{h}}$
- define the coarse subset $\mathbb{R}^{n_{H}}$ from the fine set $\mathbb{R}^{n_{h}}$,
- define the coarsening operator \mathbf{I}_{h}^{H} from $\mathbb{R}^{n_{h}}$ to $\mathbb{R}^{n_{H}}$
- use the abstract definitions

$$
\mathbf{I}_{H}^{h}=\left(\mathbf{I}_{h}^{H}\right)^{\top}, \quad \mathbf{A}_{H}=\mathbf{I}_{h}^{H} \mathbf{A}_{h} \mathbf{I}_{H}^{h}, \quad \mathbf{f}^{H}=\mathbf{I}_{h}^{H} \mathbf{f}^{h}
$$

to complete the set-up.

4. Further reading

- Holger Wendland

Numerical Linear Algebra An Introduction
Cambridge University Press, 2018

- William L. Briggs, Van E. Henson, and Steve F. McCormick

A Multigrid Tutorial
Second Edition, SIAM, 2000

- James W. Demmel

Applied Numerical Linear Algebra (Section 6.9, V-cycle, full MG) SIAM, 1997

- Pieter Wesseling

An Introduction to Multigrid Methods
John Wiley \& Sons, 1992

