Lecture 18: Multigrid

School of Mathematical Sciences, Xiamen University

1. Finite difference discretization of a BVP

• Consider the following 1-D Dirichlet boundary value problem

$$\begin{cases} -u''(x) = f(x), & x \in (0,1) \\ u(0) = u(1) = 0 \end{cases}$$

• For $n \in \mathbb{N}$, let

$$h = \frac{1}{n+1}, \quad x_i = ih = \frac{i}{n+1}, \quad 0 \le i \le n+1.$$

• The finite difference method is: let $u_0^h = u_{n+1}^h = 0$, $f_i^h = f(x_i)$, $1 \le i \le n$, find

$$\mathbf{u}^h = \begin{bmatrix} u_1^h & u_2^h & \cdots & u_n^h \end{bmatrix}^\top$$

such that

$$-\frac{u_{i+1}^h - 2u_i^h + u_{i-1}^h}{h^2} = f_i^h, \quad 1 \le i \le n.$$

• The FD system $\mathbf{A}_h \mathbf{u}^h = \mathbf{f}^h$:

$$\frac{1}{h^2} \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix} \begin{bmatrix} u_1^h \\ u_2^h \\ \vdots \\ u_{n-1}^h \\ u_n^h \end{bmatrix} = \begin{bmatrix} f_1^h \\ f_2^h \\ \vdots \\ f_{n-1}^h \\ f_n^h \end{bmatrix}$$

- 2. Classical stationary iterative methods (Lecture 6)
 - Given a starting vector $\mathbf{u}^{(0)}$,

$$\mathbf{u}^{(j)} = \mathbf{R}\mathbf{u}^{(j-1)} + \mathbf{c}, \quad j = 1, 2, \dots$$

- Jacobi's method
- Gauss–Seidel method
- Successive overrelaxation: $SOR(\omega)$
- Symmetric successive overrelaxation: $SSOR(\omega)$

2.1. Jacobi's method and its relaxation for the FD system

• The iteration matrix

$$\mathbf{R} = \mathbf{D}^{-1}(\mathbf{D} - \mathbf{A}) = \begin{bmatrix} \frac{1}{2} & & & \\ & \frac{1}{2} & & \\ & & \ddots & \\ & & & \frac{1}{2} \\ & & & & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & 1 & & & \\ 1 & 0 & 1 & & \\ & \ddots & \ddots & \ddots \\ & & & & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} & & & \\ \frac{1}{2} & 0 & \frac{1}{2} & & \\ & \frac{1}{2} & 0 & \frac{1}{2} \\ & & & \frac{1}{2} & 0 \end{bmatrix} .$$

• The relaxation of Jacobi's method:

$$\mathbf{R}(\omega) = (1 - \omega)\mathbf{I} + \omega\mathbf{R} = \mathbf{I} - \omega\mathbf{D}^{-1}\mathbf{A}.$$

• The eigenvalues of **R** are given by

$$\lambda_k = \cos(k\pi h), \quad 1 \le k \le n,$$

and the corresponding eigenvectors are given by

$$\mathbf{v}_k = \begin{bmatrix} \sin(k\pi h) & \sin(2k\pi h) & \cdots & \sin(nk\pi h) \end{bmatrix}^\top, \quad 1 \le k \le n.$$

The convergence of the Jacobi's method becomes worse for larger n since the spectral radius approaches 1 in this situation.

• The eigenvalues of $\mathbf{R}(\omega)$ are given by

$$\lambda_k(\omega) = 1 - \omega + \omega \lambda_k = 1 - \omega + \omega \cos(k\pi h), \quad 1 \le k \le n.$$

Note that relaxation does not lead to an improved convergence, since, in this case, the optimal relaxation parameter is $\omega_{\star} = 1$. (why?)

• $\mathbf{R}(\omega)$ and \mathbf{R} have the same eigenvectors.

2.2. What makes the convergence of Jacobi's method slow?

• Recall that the solution **u** of the linear system is a fixed point, i.e.,

$$\mathbf{u} = \mathbf{R}\mathbf{u} + \mathbf{c}$$
.

This leads to

$$\mathbf{u} - \mathbf{u}^{(j)} = \mathbf{R}(\mathbf{u} - \mathbf{u}^{(j-1)}) = \dots = \mathbf{R}^j(\mathbf{u} - \mathbf{u}^{(0)}).$$

We expand $\mathbf{u} - \mathbf{u}^{(0)}$ in the basis consisting of the eigenvectors:

$$\mathbf{u} - \mathbf{u}^{(0)} = \sum_{k=1}^{n} \alpha_k \mathbf{v}_k.$$

This gives

$$\mathbf{u} - \mathbf{u}^{(j)} = \sum_{k=1}^{n} \alpha_k \lambda_k^j \mathbf{v}_k.$$

- If $|\lambda_k|$ is small then the component of $\mathbf{u} \mathbf{u}^{(j)}$ in the direction of \mathbf{v}_k vanishes quickly.
- After only a few iterations, the error is dominated by those components in direction \mathbf{v}_k , where $|\lambda_k| \approx 1$.
- The eigenvectors of $\mathbf{R}(\omega)$ with n = 50. From left to right: \mathbf{v}_1 , \mathbf{v}_{25} , and \mathbf{v}_{50} . Each graph shows the points $(ih, (\mathbf{v}_k)_i)$ for $1 \le i \le n$ linearly connected.

Low-frequency $(k \le n/2)$, high-frequency (k > n/2)

- Since $|\lambda_1| = |\lambda_n| \approx 1$, the error in direction \mathbf{v}_1 and direction \mathbf{v}_n is large, which means no matter how many steps in Jacobi's method we compute, the error will always contain both low-frequency and high-frequency eigenvectors.
- To avoid this, let us have another look at the relaxation of Jacobi's method. Choosing $\omega = 1/2$ yields the eigenvalues

$$\lambda_k(1/2) = (1 + \cos(k\pi h))/2, \quad 1 \le k \le n.$$

For large k this means that $\lambda_k(1/2)$ is very close to zero, while for small k we have $\lambda_k(1/2)$ very close to 1.

• Consider the error after j iterations

$$\mathbf{u} - \mathbf{u}^{(j)} = [\mathbf{R}(1/2)]^j (\mathbf{u} - \mathbf{u}^{(0)}) = \sum_{k=1}^n \alpha_k [\lambda_k(1/2)]^j \mathbf{v}_k.$$

The low-frequency eigenvectors dominate and the influence of the high-frequency eigenvectors tends to zero.

- The error, in a certain way, is "smoothed" during the process.
- A "smoother" error can be represented using a smaller *n* and this gives the idea of the two-grid method, as follows.
 - \bullet Compute j steps of the relaxation, resulting in an error

$$oldsymbol{arepsilon}^{(j)} = \mathbf{u} - \mathbf{u}^{(j)}$$

which is much "smoother" than $\boldsymbol{\varepsilon}^{(0)}$.

• We have $\mathbf{u} = \mathbf{u}^{(j)} + \boldsymbol{\varepsilon}^{(j)}$ and $\boldsymbol{\varepsilon}^{(j)}$ satisfies

$$\mathbf{A}\boldsymbol{\varepsilon}^{(j)} = \mathbf{A}(\mathbf{u} - \mathbf{u}^{(j)}) = \mathbf{f} - \mathbf{A}\mathbf{u}^{(j)} =: \mathbf{r}^{(j)}.$$

Hence, if we can solve $\mathbf{A}\boldsymbol{\varepsilon}^{(j)} = \mathbf{r}^{(j)}$ then the overall solution is given by $\mathbf{u} = \mathbf{u}^{(j)} + \boldsymbol{\varepsilon}^{(j)}$.

• Since we expect the error $\varepsilon^{(j)}$ to be "smooth", we will solve the equation $\mathbf{A}\varepsilon^{(j)} = \mathbf{r}^{(j)}$ somehow on a coarser grid to save computational time and transfer the solution back to the finer grid.

3. Two-grid, V-cycle, and Multigrid

- Assume that we are given two grids: a fine grid X_h with n_h points and a coarse grid X_H with $n_H < n_h$ points. Associated with these grids are discrete solution spaces $V_h = \mathbb{R}^{n_h}$ and $V_H = \mathbb{R}^{n_H}$.
- We need a *prolongation* operator $\mathbf{I}_{H}^{h}: V_{H} \mapsto V_{h}$ which maps from coarse to fine, and a *restriction* operator $\mathbf{I}_{h}^{H}: V_{h} \mapsto V_{H}$ which maps from fine to coarse.
- For simplicity, suppose the coarse grid is given by

$$X_H = \{ jH : 0 \le j \le n_H - 1 \}$$

with $n_H = 2^m + 1$, $m \in \mathbb{N}$, and $H = 1/(n_H - 1)$. Then the natural fine grid X_h would consist of X_H and all points in the middle between two points from X_H , i.e.,

$$X_h = \{jh : 0 \le j \le n_h - 1\}$$

with h = H/2 and $n_h = 2^{m+1} + 1$.

• In this case we could define the prolongation and restriction operators as follows. The prolongation $\mathbf{v}^h = \mathbf{I}_H^h \mathbf{v}^H$ is defined by linear interpolation on the "in-between" points:

$$v_{2j}^h := v_j^H, \qquad 0 \le j \le n_H - 1;$$

$$v_{2j+1}^h := \frac{v_j^H + v_{j+1}^H}{2}, \qquad 0 \le j \le n_H - 2.$$

In matrix form we have

$$\mathbf{I}_{H}^{h} = \frac{1}{2} \begin{bmatrix} 2 & & & \\ 1 & 1 & & \\ & 2 & & \\ & 1 & 1 & \\ & & \vdots & \vdots & \vdots \\ & & & 1 & 1 \\ & & & & 2 \end{bmatrix}.$$

• For the restriction, $\mathbf{v}^H = \mathbf{I}_h^H \mathbf{v}^h$ we could use the natural inclusion, i.e., we could simply define $v_j^H := v_{2j}^h$, $0 \le j \le n_H - 1$. We could, however, also use a so-called full weighting, which is given by

$$v_j^H = \frac{1}{4}(v_{2j-1}^h + 2v_{2j}^h + v_{2j+1}^h), \quad 0 \le j \le n_H - 1,$$

where we have implicitly set $v_{-1}^{h} = v_{n_{h}}^{h} = 0$. In matrix form (for the full weighting case) we have

$$\mathbf{I}_{h}^{H} = \frac{1}{4} \begin{bmatrix} 2 & 1 & & & \\ & 1 & 2 & 1 & & \\ & & 1 & \cdots & & \\ & & & 1 & \cdots & \\ & & & & \ddots & 1 & \\ & & & & & 1 & 2 \end{bmatrix}$$

For this case, we have $\mathbf{I}_{H}^{h} = 2(\mathbf{I}_{h}^{H})^{\top}$.

• Our goal is to solve the finite difference system $\mathbf{A}_{h}\mathbf{u}^{h} = \mathbf{f}^{h}$ on the fine level, using the possibility of solving a system $\mathbf{A}_{H}\boldsymbol{\varepsilon}^{H} = \mathbf{r}^{H}$ on a coarse level.

Note that the matrix \mathbf{A}_h and \mathbf{A}_H only refer to interior nodes. Hence, we delete the first and last columns and rows in the matrix representation of \mathbf{I}_H^h and \mathbf{I}_h^H . We still use \mathbf{I}_H^h and \mathbf{I}_h^H to denote the resulting matrices, i.e.,

$$\mathbf{I}_{H}^{h} = \frac{1}{2} \begin{bmatrix} 1 & & \\ 2 & & \\ 1 & 1 & \\ & \vdots & \vdots & \vdots \\ & & & 1 \end{bmatrix}, \quad \mathbf{I}_{h}^{H} = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 & & \\ & 1 & \cdots & \\ & & & \cdots & \\ & & & & \cdots & 1 \end{bmatrix}.$$

We can prove that (Exercise)

$$\mathbf{A}_H = \mathbf{I}_h^H \mathbf{A}_h \mathbf{I}_H^h.$$

• We will use a stationary iterative method as a "smoother". Recall that such an iterative method for solving $\mathbf{A}_h \mathbf{u}^h = \mathbf{f}^h$ is given by

$$\mathbf{u}_{(j+1)}^h = \mathbf{S}_h(\mathbf{u}_{(j)}^h) := \mathbf{R}_h \mathbf{u}_{(j)}^h + \mathbf{c}^h,$$

where the solution \mathbf{u}^h of the linear system is a fixed point of $\mathbf{S}_h(\cdot)$, i.e., it satisfies

$$\mathbf{u}^h = \mathbf{S}_h(\mathbf{u}^h) := \mathbf{R}_h \mathbf{u}^h + \mathbf{c}^h.$$

Sometimes we call it a consistent iterative method.

• If we apply $\ell \in \mathbb{N}$ iterations of such a smoother with initial data $\mathbf{u}_{(0)}^{h}$, it is easy to see that the result has the form

$$\mathbf{S}_h^\ell(\mathbf{u}_{(0)}^h) = \mathbf{R}_h^\ell \mathbf{u}_{(0)}^h + \sum_{j=0}^{\ell-1} \mathbf{R}_h^j \mathbf{c}^h := \mathbf{R}_h^\ell \mathbf{u}_{(0)}^h + \mathbf{s}^h.$$

• Note that we can use any consistent method as the smoother $\mathbf{S}_h(\cdot)$.

Algorithm: Two-grid for $\mathbf{A}_h \mathbf{u}^h = \mathbf{f}^h$, $\mathrm{TG}(\mathbf{A}_h, \mathbf{f}^h, \mathbf{u}^h_{(0)}, \ell_1, \ell_2)$

Input: \mathbf{A}_h , \mathbf{f}^h , $\mathbf{u}_{(0)}^h$, $\ell_1, \ell_2 \in \mathbb{N}$. **Output**: Approximation to $\mathbf{A}_{h}^{-1}\mathbf{f}^{h}$. $\mathbf{u}^h := \mathbf{S}_h^{\ell_1}(\mathbf{u}^h_{(0)})$ 1 Presmooth: $\mathbf{r}^h := \mathbf{f}^h - \mathbf{A}_h \mathbf{u}^h$ Get residual : 2 $\mathbf{r}^H := \mathbf{I}_h^H \mathbf{r}^h$ 3. Coarsen: $\boldsymbol{\varepsilon}^{H} := \mathbf{A}_{H}^{-1} \mathbf{r}^{H}$ Solve: 4 $\boldsymbol{\varepsilon}^h := \mathbf{I}^h_{II} \boldsymbol{\varepsilon}^H$ 5. Prolong: $\mathbf{u}^h := \mathbf{u}^h + \boldsymbol{\varepsilon}^h$ 6. Correct : $\mathbf{u}^h := \mathbf{S}_h^{\ell_2}(\mathbf{u}^h)$ 7. Postsmooth:

• The two-grid method can be seen as only one update of a new stationary iterative method.

Theorem 1

Assume that \mathbf{A}_H is invertible. Assume that $\mathbf{u}_{(j)}^h$ is the input vector and $\mathbf{u}_{(j+1)}^h$ is the resulting output vector of the two-grid method. Then, we have

$$\mathbf{u}_{(j+1)}^h = \mathbf{T}_h \mathbf{u}_{(j)}^h + \mathbf{d}^h$$
 and $\mathbf{u}^h = \mathbf{T}_h \mathbf{u}^h + \mathbf{d}^h$

where the iteration matrix \mathbf{T}_h is given by

$$\mathbf{T}_{h} = \mathbf{R}_{h}^{\ell_{2}} \mathbf{T}_{h,H} \mathbf{R}_{h}^{\ell_{1}} \quad with \quad \mathbf{T}_{h,H} = \mathbf{I} - \mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{A}_{h}.$$

Moreover, we have the error representation

$$\mathbf{u}_{(j+1)}^h - \mathbf{u}^h = \mathbf{T}_h(\mathbf{u}_{(j)}^h - \mathbf{u}^h) = \mathbf{T}_h^{j+1}(\mathbf{u}_{(0)}^h - \mathbf{u}^h),$$

showing that the method converges if the spectral radius $\rho(\mathbf{T}_h) < 1$.

Proof. We go through the two-grid method step by step. With the first step $\mathbf{u}_{(j)}^h$ is mapped to $\mathbf{S}_h^{\ell_1}(\mathbf{u}_{(j)}^h)$, which is the input to the second step. After the second and third steps we have

$$\mathbf{r}_{(j)}^{H} = \mathbf{I}_{h}^{H}(\mathbf{f}^{h} - \mathbf{A}_{h}\mathbf{S}_{h}^{\ell_{1}}(\mathbf{u}_{(j)}^{h})),$$

which is the input for the fourth step, so that the results after the fourth and fifth steps become

$$oldsymbol{arepsilon}_{(j)}^h = \mathbf{I}_H^h \mathbf{A}_H^{-1} \mathbf{I}_h^H (\mathbf{f}^h - \mathbf{A}_h \mathbf{S}_h^{\ell_1}(\mathbf{u}_{(j)}^h)).$$

Applying steps 6 and 7 to this finally results in the new iteration

$$\begin{split} \mathbf{u}_{(j+1)}^{h} &= \mathbf{S}_{h}^{\ell_{2}} \left(\mathbf{S}_{h}^{\ell_{1}}(\mathbf{u}_{(j)}^{h}) + \mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H}(\mathbf{f}^{h} - \mathbf{A}_{h} \mathbf{S}_{h}^{\ell_{1}}(\mathbf{u}_{(j)}^{h})) \right) \\ &= \mathbf{S}_{h}^{\ell_{2}} \left((\mathbf{I} - \mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{A}_{h}) \mathbf{S}_{h}^{\ell_{1}}(\mathbf{u}_{(j)}^{h}) + \mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{f}^{h} \right) \\ &= \mathbf{S}_{h}^{\ell_{2}} \left(\mathbf{T}_{h,H} \mathbf{S}_{h}^{\ell_{1}}(\mathbf{u}_{(j)}^{h}) + \mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{f}^{h} \right). \end{split}$$

Note that the operator $\mathbf{S}_h(\cdot)$ is only affine and not linear. Define

$$\widetilde{\mathbf{T}}_h(\cdot) := \mathbf{S}_h^{\ell_2}(\mathbf{T}_{h,H}\mathbf{S}_h^{\ell_1}(\cdot)), \qquad \widetilde{\mathbf{d}}^h := \mathbf{R}_h^{\ell_2}\mathbf{I}_H^h\mathbf{A}_H^{-1}\mathbf{I}_h^H\mathbf{f}^h.$$

By straightforward calculations, we have

$$\mathbf{u}_{(j+1)}^{h} = \widetilde{\mathbf{T}}_{h}(\mathbf{u}_{(j)}^{h}) + \widetilde{\mathbf{d}}^{h},$$

and

$$\begin{split} \widetilde{\mathbf{T}}_{h}(\mathbf{u}) &= \mathbf{S}_{h}^{\ell_{2}}(\mathbf{T}_{h,H}\mathbf{S}_{h}^{\ell_{1}}(\mathbf{u})) \\ &= \mathbf{S}_{h}^{\ell_{2}}\left(\mathbf{T}_{h,H}\left(\mathbf{R}_{h}^{\ell_{1}}\mathbf{u} + \sum_{j=0}^{\ell_{1}-1}\mathbf{R}_{h}^{j}\mathbf{c}^{h}\right)\right) \\ &= \mathbf{R}_{h}^{\ell_{2}}\mathbf{T}_{h,H}\mathbf{R}_{h}^{\ell_{1}}\mathbf{u} + \mathbf{R}_{h}^{\ell_{2}}\mathbf{T}_{h,H}\sum_{j=0}^{\ell_{1}-1}\mathbf{R}_{h}^{j}\mathbf{c}^{h} + \sum_{j=0}^{\ell_{2}-1}\mathbf{R}_{h}^{j}\mathbf{c}^{h} \\ &=:\mathbf{T}_{h}\mathbf{u} + \widehat{\mathbf{d}}^{h}, \end{split}$$

which shows

$$\mathbf{u}_{(j+1)}^h = \mathbf{T}_h \mathbf{u}_{(j)}^h + \mathbf{d}^h$$
 with $\mathbf{d}^h = \widehat{\mathbf{d}}^h + \widetilde{\mathbf{d}}^h$.

Hence, the iteration matrix is indeed given by

$$\mathbf{T}_h = \mathbf{R}_h^{\ell_2} \mathbf{T}_{h,H} \mathbf{R}_h^{\ell_1}.$$

As $\mathbf{S}_h(\cdot)$ is consistent, i.e., $\mathbf{S}_h(\mathbf{u}^h) = \mathbf{u}^h$, we have

$$\begin{split} \mathbf{T}_{h}\mathbf{u}^{h} + \mathbf{d}^{h} &= \mathbf{T}_{h}\mathbf{u}^{h} + \widehat{\mathbf{d}}^{h} + \widetilde{\mathbf{d}}^{h} = \widetilde{\mathbf{T}}_{h}(\mathbf{u}^{h}) + \widetilde{\mathbf{d}}^{h} \\ &= \mathbf{S}_{h}^{\ell_{2}}((\mathbf{I} - \mathbf{I}_{H}^{h}\mathbf{A}_{H}^{-1}\mathbf{I}_{h}^{H}\mathbf{A}_{h})\mathbf{u}^{h}) + \mathbf{R}_{h}^{\ell_{2}}\mathbf{I}_{H}^{h}\mathbf{A}_{H}^{-1}\mathbf{I}_{h}^{H}\mathbf{f}^{h} \\ &= \mathbf{S}_{h}^{\ell_{2}}(\mathbf{u}^{h}) - \mathbf{R}_{h}^{\ell_{2}}\mathbf{I}_{H}^{h}\mathbf{A}_{H}^{-1}\mathbf{I}_{h}^{H}\mathbf{f}^{h} + \mathbf{R}_{h}^{\ell_{2}}\mathbf{I}_{H}^{h}\mathbf{A}_{H}^{-1}\mathbf{I}_{h}^{H}\mathbf{f}^{h} \\ &= \mathbf{u}^{h}. \end{split}$$

This shows

$$\mathbf{u}_{(j+1)}^{h} - \mathbf{u}^{h} = \mathbf{T}_{h}(\mathbf{u}_{(j)}^{h} - \mathbf{u}^{h}) = \mathbf{T}_{h}^{j+1}(\mathbf{u}_{(0)}^{h} - \mathbf{u}^{h}).$$

Proposition 2

Assume the following four conditions hold.

- (1) The matrix \mathbf{A}_h is symmetric and positive definite.
- (2) The prolongation and restriction operators are connected by

$$\mathbf{I}_{H}^{h} = \gamma(\mathbf{I}_{h}^{H})^{\top}$$

with $\gamma > 0$.

- (3) The prolongation operator \mathbf{I}_{H}^{h} is injective.
- (4) The coarse grid matrix is given by $\mathbf{A}_H := \mathbf{I}_h^H \mathbf{A}_h \mathbf{I}_H^h$. Then we have:
- (i) The coarse-grid correction operator $\mathbf{T}_{h,H}$ is an orthogonal projector with respect to the inner product $\langle \cdot, \cdot \rangle_{\mathbf{A}_h}$.
- (ii) The range of $\mathbf{T}_{h,H}$ is $\langle \cdot, \cdot \rangle_{\mathbf{A}_h}$ -orthogonal to the range of \mathbf{I}_H^h .

Proof. We start by showing that \mathbf{A}_H is symmetric and positive definite. It is symmetric since

$$\mathbf{A}_{H}^{ op} = (\mathbf{I}_{H}^{h})^{ op} \mathbf{A}_{h}^{ op} (\mathbf{I}_{h}^{H})^{ op} = \gamma \mathbf{I}_{h}^{H} \mathbf{A}_{h} rac{1}{\gamma} \mathbf{I}_{H}^{h} = \mathbf{I}_{h}^{H} \mathbf{A}_{h} \mathbf{I}_{H}^{h} = \mathbf{A}_{H}.$$

It is positive definite since we have for any $\mathbf{x} \neq \mathbf{0}$ that $\mathbf{I}_{H}^{h}\mathbf{x} \neq \mathbf{0}$ because of the injectivity of \mathbf{I}_{H}^{h} and hence

$$\mathbf{x}^{\top} \mathbf{A}_{H} \mathbf{x} = \mathbf{x}^{\top} \mathbf{I}_{h}^{H} \mathbf{A}_{h} \mathbf{I}_{H}^{h} \mathbf{x} = \frac{1}{\gamma} (\mathbf{I}_{H}^{h} \mathbf{x})^{\top} \mathbf{A}_{h} (\mathbf{I}_{H}^{h} \mathbf{x}) > 0.$$

This means in particular that the coarse grid correction operator

$$\mathbf{T}_{h,H} = \mathbf{I} - \mathbf{I}_H^h \mathbf{A}_H^{-1} \mathbf{I}_h^H \mathbf{A}_h$$

is well-defined. Next, let

$$\mathbf{Q}_{h,H} := \mathbf{I} - \mathbf{T}_{h,H} = \mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} I_{h}^{H} \mathbf{A}_{h}.$$

Actually, the mapping $\mathbf{Q}_{h,H}$ is a projection since we have

$$\begin{split} \mathbf{Q}_{h,H}^2 &= (\mathbf{I}_H^h \mathbf{A}_H^{-1} I_h^H \mathbf{A}_h) (\mathbf{I}_H^h \mathbf{A}_H^{-1} I_h^H \mathbf{A}_h) \\ &= \mathbf{I}_H^h \mathbf{A}_H^{-1} (I_h^H \mathbf{A}_h \mathbf{I}_H^h) \mathbf{A}_H^{-1} I_h^H \mathbf{A}_h \\ &= \mathbf{I}_H^h \mathbf{A}_H^{-1} I_h^H \mathbf{A}_h \\ &= \mathbf{Q}_{h,H}. \end{split}$$

It is also self-adjoint and hence an orthogonal projector:

$$\begin{split} \langle \mathbf{Q}_{h,H} \mathbf{x}, \mathbf{y} \rangle_{\mathbf{A}_{h}} &= \mathbf{x}^{\top} \mathbf{Q}_{h,H}^{\top} \mathbf{A}_{h} \mathbf{y} = \mathbf{x}^{\top} \mathbf{A}_{h}^{\top} (\mathbf{I}_{h}^{H})^{\top} (\mathbf{A}_{H}^{-1})^{\top} (\mathbf{I}_{H}^{h})^{\top} \mathbf{A}_{h} \mathbf{y} \\ &= \mathbf{x}^{\top} \mathbf{A}_{h} \left(\frac{1}{\gamma} \mathbf{I}_{H}^{h} \right) \mathbf{A}_{H}^{-1} \gamma \mathbf{I}_{h}^{H} \mathbf{A}_{h} \mathbf{y} \\ &= \mathbf{x}^{\top} \mathbf{A}_{h} \mathbf{Q}_{h,H} \mathbf{y} \\ &= \langle \mathbf{x}, \mathbf{Q}_{h,H} \mathbf{y} \rangle_{\mathbf{A}_{h}}. \end{split}$$

Then $\mathbf{T}_{h,H}$ is also an orthogonal projector with respect to $\langle \cdot, \cdot \rangle_{\mathbf{A}_h}$.

It remains to show that range($\mathbf{T}_{h,H}$) is $\langle \cdot, \cdot \rangle_{\mathbf{A}_h}$ -orthogonal to range(\mathbf{I}_H^h). This is true because we have

$$\begin{split} \langle \mathbf{T}_{h,H} \mathbf{x}, \mathbf{I}_{H}^{h} \mathbf{y} \rangle_{\mathbf{A}_{h}} &= \mathbf{x}^{\top} (\mathbf{I} - \mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{A}_{h})^{\top} \mathbf{A}_{h} \mathbf{I}_{H}^{h} \mathbf{y} \\ &= \mathbf{x}^{\top} (\mathbf{I} - \mathbf{A}_{h} \mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H}) \mathbf{A}_{h} \mathbf{I}_{H}^{h} \mathbf{y} \\ &= \mathbf{x}^{\top} (\mathbf{A}_{h} \mathbf{I}_{H}^{h} - \mathbf{A}_{h} \mathbf{I}_{H}^{h} \mathbf{A}_{H}^{-1} \mathbf{I}_{h}^{H} \mathbf{A}_{h} \mathbf{I}_{H}^{h}) \mathbf{y} \\ &= \mathbf{x}^{\top} (\mathbf{A}_{h} \mathbf{I}_{H}^{h} - \mathbf{A}_{h} \mathbf{I}_{H}^{h}) \mathbf{y} \\ &= \mathbf{z}^{\top} (\mathbf{A}_{h} \mathbf{I}_{H}^{h} - \mathbf{A}_{h} \mathbf{I}_{H}^{h}) \mathbf{y} \\ &= 0 \end{split}$$

for all \mathbf{x} and \mathbf{y} .

• Let \mathbf{D}_h be the diagonal part of \mathbf{A}_h . We say that $\mathbf{S}_h(\cdot)$ has the smoothing property if there is a constant $\alpha > 0$ such that

$$\|\mathbf{R}_{h}\mathbf{v}^{h}\|_{\mathbf{A}_{h}}^{2} \leq \|\mathbf{v}^{h}\|_{\mathbf{A}_{h}}^{2} - \alpha\|\mathbf{A}_{h}\mathbf{v}^{h}\|_{\mathbf{D}_{h}^{-1}}^{2}, \quad \forall \ \mathbf{v}^{h}.$$

We say that the prolongation operator \mathbf{I}_{H}^{h} has the *approximation* property if there is a constant $\beta > 0$ such that

$$\min_{\mathbf{v}^{H}} \|\mathbf{v}^{h} - \mathbf{I}_{H}^{h} \mathbf{v}^{H}\|_{\mathbf{D}_{h}} \leq \beta \|\mathbf{A}_{h} \mathbf{v}^{h}\|_{\mathbf{D}_{h}^{-1}}, \quad \forall \mathbf{v}^{h}.$$

Theorem 3

Let the conditions of Proposition 2 be satisfied. Assume:

- (1) the smoothing process $\mathbf{S}_{h}(\cdot)$ has the smoothing property,
- (2) the prolongation operator \mathbf{I}_{H}^{h} has the approximation property. Then, we have

$$\alpha \leq \beta$$

and for the iteration matrix \mathbf{T}_h of the two-grid method,

$$\|\mathbf{T}_h\|_{\mathbf{A}_h} < \sqrt{1 - \alpha/\beta} \text{ if } \alpha < \beta \text{ and } \|\mathbf{T}_h\|_{\mathbf{A}_h} = 0 \text{ if } \alpha = \beta.$$

Hence, as an iterative scheme, the two-grid method converges.

Proof. Since range($\mathbf{T}_{h,H}$) is $\langle \cdot, \cdot \rangle_{\mathbf{A}_h}$ -orthogonal to range(\mathbf{I}_H^h), we have

$$\langle \mathbf{v}^h, \mathbf{I}^h_H \mathbf{v}^H \rangle_{\mathbf{A}_h} = 0, \quad \forall \ \mathbf{v}^h \in \operatorname{range}(\mathbf{T}_{h,H}), \quad \forall \ \mathbf{v}^H.$$

From this, we can conclude for all $\mathbf{v}^h \in \operatorname{range}(\mathbf{T}_{h,H})$ and \mathbf{v}^H that

$$\begin{split} \|\mathbf{v}^{h}\|_{\mathbf{A}_{h}}^{2} &= \langle \mathbf{v}^{h}, \mathbf{v}^{h} - \mathbf{I}_{H}^{h} \mathbf{v}^{H} \rangle_{\mathbf{A}_{h}} = \langle \mathbf{A}_{h} \mathbf{v}^{h}, \mathbf{v}^{h} - \mathbf{I}_{H}^{h} \mathbf{v}^{H} \rangle \\ &= \langle \mathbf{D}_{h}^{-1/2} \mathbf{A}_{h} \mathbf{v}^{h}, \mathbf{D}_{h}^{1/2} (\mathbf{v}^{h} - \mathbf{I}_{H}^{h} \mathbf{v}^{H}) \rangle \\ &\leq \|\mathbf{D}_{h}^{-1/2} \mathbf{A}_{h} \mathbf{v}^{h}\|_{2} \|\mathbf{D}_{h}^{1/2} (\mathbf{v}^{h} - \mathbf{I}_{H}^{h} \mathbf{v}^{H}) \|_{2} \\ &= \|\mathbf{A}_{h} \mathbf{v}^{h}\|_{\mathbf{D}_{h}^{-1}} \|\mathbf{v}^{h} - \mathbf{I}_{H}^{h} \mathbf{v}^{H}\|_{\mathbf{D}_{h}}. \end{split}$$

Going over to the infimum over all \mathbf{v}^H and using the approximation property leads to

$$\|\mathbf{v}^{h}\|_{\mathbf{A}_{h}} \leq \sqrt{\beta} \|\mathbf{A}_{h}\mathbf{v}^{h}\|_{\mathbf{D}_{h}^{-1}}, \qquad \forall \ \mathbf{v}^{h} \in \operatorname{range}(\mathbf{T}_{h,H}).$$

This is equivalent to

$$\|\mathbf{T}_{h,H}\mathbf{v}^{h}\|_{\mathbf{A}_{h}} \leq \sqrt{\beta} \|\mathbf{A}_{h}\mathbf{T}_{h,H}\mathbf{v}^{h}\|_{\mathbf{D}_{h}^{-1}}, \qquad \forall \ \mathbf{v}^{h}.$$

Using this and the smoothing property then leads to

$$0 \leq \|\mathbf{R}_{h}\mathbf{T}_{h,H}\mathbf{v}^{h}\|_{\mathbf{A}_{h}}^{2} \leq \|\mathbf{T}_{h,H}\mathbf{v}^{h}\|_{\mathbf{A}_{h}}^{2} - \alpha\|\mathbf{A}_{h}\mathbf{T}_{h,H}\mathbf{v}^{h}\|_{\mathbf{D}_{h}^{-1}}^{2}$$
$$\leq \|\mathbf{T}_{h,H}\mathbf{v}^{h}\|_{\mathbf{A}_{h}}^{2} - \frac{\alpha}{\beta}\|\mathbf{T}_{h,H}\mathbf{v}^{h}\|_{\mathbf{A}_{h}}^{2}$$
$$= (1 - \alpha/\beta)\|\mathbf{T}_{h,H}\mathbf{v}^{h}\|_{\mathbf{A}_{h}}^{2}$$
$$\leq (1 - \alpha/\beta)\|\mathbf{v}^{h}\|_{\mathbf{A}_{h}}^{2},$$

where the last inequality follows from the fact that $\mathbf{T}_{h,H}$ is an orthogonal projector with respect to $\langle \cdot, \cdot \rangle_{\mathbf{A}_h}$. This means, first of all, $\alpha \leq \beta$ and secondly

$$\|\mathbf{R}_{h}\mathbf{T}_{h,H}\|_{\mathbf{A}_{h}} \leq \sqrt{1-\alpha/\beta}.$$

By the smoothing property, we have $\|\mathbf{R}_h\|_{\mathbf{A}_h} < 1$. Then we finally derive $\|\mathbf{T}_h\|_{\mathbf{A}_h} = 0$ if $\alpha = \beta$, and if $\alpha < \beta$,

$$\|\mathbf{T}_h\|_{\mathbf{A}_h} = \|\mathbf{R}_h^{\ell_2} \mathbf{T}_{h,H} \mathbf{R}_h^{\ell_1}\|_{\mathbf{A}_h} < \|\mathbf{R}_h \mathbf{T}_{h,H}\|_{\mathbf{A}_h} \le \sqrt{1 - \alpha/\beta}.$$

Algorithm: V-cycle for $\mathbf{A}_h \mathbf{u}^h = \mathbf{f}^h$, V-cycle $(\mathbf{A}_h, \mathbf{f}^h, \mathbf{u}^h_{(0)}, \ell_1, \ell_2, h_0)$

Algorithm: Multigrid for $\mathbf{A}_{h}\mathbf{u}^{h} = \mathbf{f}^{h}$, MG $(\mathbf{A}_{h}, \mathbf{f}^{h}, \mathbf{u}_{(0)}^{h}, \ell_{1}, \ell_{2}, \ell, h_{0})$

Input: \mathbf{A}_h , \mathbf{f}^h , $\mathbf{u}_{(0)}^h$, $\ell_1, \ell_2, \ell \in \mathbb{N}$, h_0 . **Output**: Approximation to $\mathbf{A}_{h}^{-1}\mathbf{f}^{h}$. 1. Presmooth: $\mathbf{u}^h := \mathbf{S}_h^{\ell_1}(\mathbf{u}_{(0)}^h)$ 2. Get residual : $\mathbf{r}^h := \mathbf{f}^h - \mathbf{A}_h \mathbf{u}^h$ 3. Coarsen: H := 2h, $\mathbf{r}^H := \mathbf{I}_h^H \mathbf{r}^h$ 4. **if** $H = h_0$ Solve $\mathbf{A}_{H} \boldsymbol{\varepsilon}^{H} = \mathbf{r}^{H}$ else $\boldsymbol{\varepsilon}^H := \mathbf{0}$ for $j = 1 : \ell$ $\boldsymbol{\varepsilon}^{H} := \mathrm{MG}(\mathbf{A}_{H}, \mathbf{r}^{H}, \boldsymbol{\varepsilon}^{H}, \ell_{1}, \ell_{2}, \ell, h_{0})$ end end $\boldsymbol{\varepsilon}^h := \mathbf{I}^h_{\, \mu} \boldsymbol{\varepsilon}^H$ 5. Prolong: $\mathbf{u}^h := \mathbf{u}^h + \boldsymbol{\varepsilon}^h$ 6. Correct : $\mathbf{u}^h := \mathbf{S}_{L}^{\ell_2}(\mathbf{u}^h)$ 7. Postsmooth:

• Obviously, $\ell = 1$ leads to the V-cycle method. It is helpful to visualize the recursion in the following way, depending on the choice of ℓ and how many levels there are, meaning how many grids we use. Assume that k levels are used, i.e., k satisfies $h_0 = 2^k h$.

The recursion of multigrid with $\ell = 1$ (top, V-cycle) and $\ell = 2$ (bottom, W-cycle).

• To determine the iteration matrix \mathbf{M}_h of the multigrid method, we start with the iteration matrix of the two-grid method

$$\mathbf{T}_h = \mathbf{R}_h^{\ell_2} (\mathbf{I} - \mathbf{I}_H^h \mathbf{A}_H^{-1} \mathbf{I}_h^H \mathbf{A}_h) \mathbf{R}_h^{\ell_1}$$

and recall that the term \mathbf{A}_{H}^{-1} came from step 4 in two-grid cycle and hence has now to be replaced by ℓ steps of the multigrid method on grid X_{H} :

$$egin{aligned} oldsymbol{arepsilon}_{(0)}^H &:= \mathbf{0}, \ oldsymbol{arepsilon}_{(j)}^H &:= \mathbf{M}_H oldsymbol{arepsilon}_{(j-1)}^H + \mathbf{d}^H, \quad 1 \leq j \leq \ell. \end{aligned}$$

As this is a consistent method for solving $\mathbf{A}_H \boldsymbol{\varepsilon}^H = \mathbf{r}^H$, we have

$$oldsymbol{arepsilon}_{(\ell)}^{H}-oldsymbol{arepsilon}^{H}=\mathbf{M}_{H}(oldsymbol{arepsilon}_{(\ell-1)}^{H}-oldsymbol{arepsilon}^{H})=\mathbf{M}_{H}^{\ell}(oldsymbol{arepsilon}_{(0)}^{H}-oldsymbol{arepsilon}^{H})=-\mathbf{M}_{H}^{\ell}oldsymbol{arepsilon}_{(0)}^{H}-oldsymbol{arepsilon}^{H})=-\mathbf{M}_{H}^{\ell}oldsymbol{arepsilon}_{(0)}^{H}-oldsymbol{arepsilon}_{(0)}^{H}-oldsymbol{arepsilon}_{(0)}^{H})=-\mathbf{M}_{H}^{\ell}oldsymbol{arepsilon}_{(\ell-1)}^{H}-oldsymbol{arepsilon}_{(\ell-1$$

Then, we have

$$\boldsymbol{\varepsilon}^{H}_{(\ell)} = (\mathbf{I} - \mathbf{M}^{\ell}_{H}) \boldsymbol{\varepsilon}^{H} = (\mathbf{I} - \mathbf{M}^{\ell}_{H}) \mathbf{A}^{-1}_{H} \mathbf{r}^{H}.$$

Replacing \mathbf{A}_{H}^{-1} by $(\mathbf{I} - \mathbf{M}_{H}^{\ell})\mathbf{A}_{H}^{-1}$ yields

$$\begin{split} \mathbf{M}_{h} &= \mathbf{R}_{h}^{\ell_{2}}[\mathbf{I} - \mathbf{I}_{H}^{h}(\mathbf{I} - \mathbf{M}_{H}^{\ell})\mathbf{A}_{H}^{-1}\mathbf{I}_{h}^{H}\mathbf{A}_{h}]\mathbf{R}_{h}^{\ell_{1}} \\ &= \mathbf{R}_{h}^{\ell_{2}}[\mathbf{I} - \mathbf{I}_{H}^{h}\mathbf{A}_{H}^{-1}\mathbf{I}_{h}^{H}\mathbf{A}_{h} + \mathbf{I}_{H}^{h}\mathbf{M}_{H}^{\ell}\mathbf{A}_{H}^{-1}\mathbf{I}_{h}^{H}\mathbf{A}_{h}]\mathbf{R}_{h}^{\ell_{1}} \\ &= \mathbf{T}_{h} + \mathbf{R}_{h}^{\ell_{2}}\mathbf{I}_{H}^{h}\mathbf{M}_{H}^{\ell}\mathbf{A}_{H}^{-1}\mathbf{I}_{h}^{H}\mathbf{A}_{h}\mathbf{R}_{h}^{\ell_{1}}, \end{split}$$

which can be seen as a perturbation of \mathbf{T}_h .

- Algebraic multigrid (AMG): $\mathbf{A}_{h}\mathbf{u}^{h} = \mathbf{f}^{h}$ with $\mathbf{A}_{h} \in \mathbb{R}^{n_{h} \times n_{h}}$
 - define the coarse subset \mathbb{R}^{n_H} from the fine set \mathbb{R}^{n_h} ,
 - define the coarsening operator \mathbf{I}_{h}^{H} from $\mathbb{R}^{n_{h}}$ to $\mathbb{R}^{n_{H}}$
 - use the abstract definitions

$$\mathbf{I}_{H}^{h} = (\mathbf{I}_{h}^{H})^{\top}, \quad \mathbf{A}_{H} = \mathbf{I}_{h}^{H} \mathbf{A}_{h} \mathbf{I}_{H}^{h}, \quad \mathbf{f}^{H} = \mathbf{I}_{h}^{H} \mathbf{f}^{h}$$

to complete the set-up.

4. Further reading

• Holger Wendland

Numerical Linear Algebra An Introduction Cambridge University Press, 2018

- William L. Briggs, Van E. Henson, and Steve F. McCormick A Multigrid Tutorial Second Edition, SIAM, 2000
- James W. Demmel

Applied Numerical Linear Algebra (Section 6.9, V-cycle, full MG) SIAM, 1997

• Pieter Wesseling

An Introduction to Multigrid Methods

John Wiley & Sons, 1992