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Krylov subspaces and Arnoldi process

® Krylov subspaces for A € R™*" and b € R™
Ki(A,b) :=span{b, Ab,--- ;A" 'b}.
® The grade of b with respect to A is ¢ that satisfies

] E, if1<k<l{,
dim/C (A, b) =
¢, itk>0+1.
® Arnoldi relation:

AW, =W, Hipy, Hy= W/ AW, 1<k<(-1,

AW, =W, H,, W,/ W, =1,
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Krylov subspace methods for Ax = b with xy, =0

¢ GMRES and MINRES:

r, L AKL(A,b) < x, = argmin ||b — Ax|).
XE’Ck(A,b)

* FOM and CG:
rp L ICk(A, b) <~ X = ||b||2WkH,;181

e SYMMLQ:

Xp = argmin ||x||2 subjectto b— Ax L K 1(A,b).

xEK 1 (A,b)

® QR, LU, and LQ factorizations

Yousef Saad. [terative Methods for Sparse Linear Systems, 2nd edition, SIAM, 2003.
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Golub—Kahan bidiagonalization

Algorithm: GKB for A € R™*™, b € R”
Compute Biu; :=b and oy vy := AT u.
for )=1,2,--- do

Bintj1 = Av; — ajuy;
aji1vien = AT — B vy

end

AV; =U;1Bj1; =U;B; + 6j+1uj+1e;'r7
AU, = Vj+1BjT+1 - VijTﬂ,j + Oéj+1Vj+1ejT+1a
U/U; =V/V,; =1,
range(U;) = IC;(AAT,b), range(V,) = K;(ATA Ab).
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CRAIG, LSQR, LSMR, LSLQ, LNLQ

® The normal equations (NE)

ATAx=A"b

The normal equations of the second kind (NE2)

AA'y=b, x=A'y

CRAIG (1955, also called CGNE) “=" CG for NE2
LSQR (1982) “=" CG for NE or MINRES for NE2
LSMR (2011) “=" MINRES for NE

LSLQ (2019) “=" SYMMLQ for NE

LNLQ (2019) “=" SYMMLQ for NE2
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Saunders—Simon-Yip tridiagonalization

Algorithm: SSY for A € R"™™ b € R”, and c € R™
Set ug = 0, vy = 0. Compute Sju; := b and a;v; := c.
fork=1,2,--- do

q:=Av, —opuy_y; O = UZQ;

Br1Upy1 = q — Opuy;
AT .
Q1 Vit = A uy — Bpvi—1 — 0pvy;

end

AV, = U1 Tiiip = Up Ty + Brpieraey
AU, = Vi T = VilTy + apvie,
U U,=V/V,=1, T,=U AV,
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USYMLQ, USYMQR

e C. C. Paige and M. A. Saunders
Solution of Sparse Indefinite Systems of Linear Equations

SINUM 1975, 12(4), pp. 617629

e M. A. Saunders, H. D. Simon and E. L. Yip

Two conjugate-gradient-type methods for unsymmetric
linear equations

SINUM 1988, 25(4), pp. 927-940

e USYMLQ and USYMQR are in the same fashion as
SYMMLQ and MINRES.

e If AT=—A and c=b, then SSY = Arnoldi = skew-Lanczos.
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skew-Lanczos

® AT = —A (skew-symmetric), skew-Lanczos, H] = —H;,
"0 -
0o .
- B V2 | | [ H,
k1 = T | T e |
Y 0
i Vk+1]

Theorem

Assume that AT = —A. For each j with 1 < j < (/2, Hy; is
nonsingular. If b € range(A), then ( is even and Hy is
nonsingular. Otherwise, { is odd and H, is singular.

® one step of Golub—Kahan = two steps of skew-Lanczos
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S2CG and CRAIG for skew-symmetric systems

e CG-type solution (if any):
X = HbHQWkH;lel

® For nonsingular skew-symmetric systems, S2CG of Greif and
Varah computes the even iterates xg}j and returns A~'b in
exact arithmetic.

Proposition

Assume that A is a singular skew-symmetric matrix, and that
b € range(A). Let x§ and xS*MC be the jth iterates of $°CG
and CRAIG for Ax = b, respectively. For each 1 < j < /(/2, we
have x§; = xSRMG - Moreover, $*CG returns A'b.
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S?MR and LSQR for skew-symmetric systems

e Greif and Varah (2009) proposed S?MR for a nonsingular
skew-symmetric system. Greif et al. (2016) showed that

M _ M LSQR
Xoj = Xojt1 = X .

Proposition

Assume that A is a singular skew-symmetric matrix. Let x}' and
XJLSQR be the jth iterates of > MR and LSQR for Ax = b,
respectively. For each j with X?SQR £ Afb, ie., LSQR does not
converge at the jth iteration, we have x3; = x3; | = X?SQR.
Whether Ax = b is consistent or not, S*MR always returns the
pseudoinverse solution A'b.

12/30



Numerical experiments

® A singular consistent skew-symmetric system Sx = b with
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Numerical experiments

® A singular inconsistent skew-symmetric system Sx = b with
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The convergence for A'b when AT = —A

Summary of the convergence of different methods for Afb of all
types of skew-symmetric linear systems. Y means the algorithm is

convergent and N means not.

Method
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Shifted skew-symmetric systems

® Assume that A = ol + S with a # 0 and ST = —S.

® Arnoldi relation:
W,/ W,=1, SW,=WH, H,=W/SW,.
AW, =aW,+ WH, =W,T,, T,:=al,+ H,.

Proposition

GKB applied to A = ol + S and b must stop in {y = [{/2] steps
with oy, > 0 and By,41 = 0. For each j with1 < j </{y—1, we
have Q5 > Yo and 5j+1 = 72j+172j/aj < V2j+1-

e S3LQ, S3CG, S3MR via LQ, LU, and QR factorizations.
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S3CG (a special case of CGW)

Algorithm: S3CG for shifted skew-symmetric systems

Set x§ =0, r§ =b and p§ = r;

for k =1,2,..., do until convergence:
Oz]? _ (rg ) ey ;
pi ) AP,
Xi =Xy + oy PRy
ry =1y, —afApy;
BG = — (ri) ey
G ;

(rk—1>TrS—1
pi =i + Bipy s
end
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S3CG: properties

Proposition

Let S>CG be applied to a shifted skew-symmetric matrix problem
Ax = b. In exact arithmetic, as long as the algorithm has not
yet converged (i.e., r$ | # 0), it proceeds without breaking
down, and we have the following identities of subspaces:

Kr (A b) _Span{xlax27"' 7XS}

= Span{p() 7p1 ) T 7pg—1}
- Span{r(?7r?7 co 7rkG_1}‘

The residuals are mutually orthogonal, (r&)T rk =0 fori # k,
and the search directions are “semiconjugate”, (p% )TApk =0
for i < k.

18/30



S3CG: optimality and convergence

® S3CG has the optimality properties

x5 — A”'bll = min [x - A7'bl),
XEAT’CQk(A,b)
and
%51 — A™'b]2 = min [x — A7'b[,.

XEb/a+ATK2k+1 (A,b)

e Let 5 =|S|[2. Then

k
x5~ A~'blly _, (y/IE[B/aP ~1
[A=bll 7\ \/1+[B/aP+1
The same bound holds for ||x§;_; — A7 bl]»/|x7 — A~'b]..
The bound indicates that a “fast” convergence of S?CG can

be expected when |5/a| > 0 is "small”.
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S3CG: relation to CRAIG

Lemma

Let A = al + S be a shifted skew-symmetric matrix. The
subspaces ATK1,(S?,b) and ATK,(S?,Sb) are orthogonal, and
the solution A='b is orthogonal to A"K(S?, Sb).

Theorem

Let A = al + S be a shifted skew-symmetric matrix. Let x¢ and
xURAIG pe the kth iterates of SCG and CRAIG for Ax = b,
respectively. Then we have

G _ L CRAIG
Xo, = X, .
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S3MR (see Jiang 2007)

® The kth iterate: x)' = argmin ||b — Ax|,.
XE/Ck(A b)

® S3MR does not stagnate, i.e., ||r}]|, is strictly decreasing.

[EasllP: <9 |8/
[bll2 V1+18/alz+1

Proposition

Let A=al+S anda#0. Foreach k with1 <k </{y—1, it
holds that
b — Axi 2 < b — Ax 5o,

Moreover, we have x}! = x,°¥* = A~'b.

LSQP{“Q.
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S’MR

Algorithm: S3MR for shifted skew-symmetric systems

Set x) =0, 5~1 =a,c=1 wyg=0, 13w; =b, and {/?1 = v1;

for k=1,2,..., do until convergence:

end

Vh41Wht1 := SWg + VpWr_1;

0 = \/g,% + Vi1 k= Ok /Ok Sk = Yot/ 0k

ki1 = QCk + Vht1Ch_15k, Uk = CkUk, Vi1 = —SkVk;
if £ <2 then
Pr = Wi/0k;
else
Pt = (Wi + YkSk—2Pk—2)/0k;
end

M _ M .
X = Xp_1 + YxPk;
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S°LQ
® The kth iterate:
Xy := argmin ||x|| subjectto b—Ax L K, ;(A,b).

x€K1,(A,b)

Theorem

Fork > 1, we havex; = argmin  ||x — A7'b|.
x€ATKy_1(A,b)

Theorem

Let x} and x be the iterates generated at iteration k of S’LQ
and S3CG, respectively. As long as the algorithms have not yet

converged, we have Xj; = Xj;,, = x5 for j > 1.
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S°LQ

Algorithm: S3LQ for shifted skew-symmetric systems

Set fo =0, gl =a,s1=1¢,=-1,5 =0,
§=0,c0o=17m=]|b
Set Wy = 0, Wi = b/’}/l, and ﬁl = Wiy,

|2

for k =1,2,..., do until convergence:

Vi1 W41 1= SWg + Ve Wi_1;

e = VR4 R ek = Bl 5=~/

Okt1 = QCk — Vk1Ck—15k; €k = —VrSk—28k—2/0k;
Pr = CkPg + SEWgi1;

L _ oL o= =
Xp1 = X + &Pk Pke1 = CWki1 — SkDk

end
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Numerical experiments

e Consider S=1,, ® S,.(01) + Spu(02) ® I,
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Numerical experiments
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Numerical experiments
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Summary and future work

e We extend the results of Greif et al. (SIMAX 2016) to
singular skew-symmetric linear systems.

e We systematically study three Krylov subspace methods
(called S3CG, S?MR, and S3LQ) for solving shifted
skew-symmetric linear systems. We provide relations among
the three methods and those based on GKB and SSY.

e Effects of finite precision

® Preconditioning techniques

® More general cases: I replaced by an SPD matrix
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Our paper and slides

e K. Du, J.-J. Fan, X.-H. Sun, F. Wang, and Y.-L. Zhang.

On Krylov subspace methods for skew-symmetric and shifted

skew-symmetric linear systems.

Advances in Computational Mathematics (2024) 50:78

® The slides are available at
https://kuidu.github.io/talk.html
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