On Krylov subspace methods for skew-symmetric and shifted skew-symmetric linear systems

Kui Du kuidu@xmu.edu.cn

School of Mathematical Sciences, Xiamen University

<https://kuidu.github.io>

joint work with J.-J. Fan, X.-H. Sun, F. Wang, Y.-L. Zhang

Numerical Algebra @ Xiangtan on January 14, 2025

- *•* C. Greif, C.C. Paige, D. Titley-Peloquin and J. M. Varah Numerical equivalences among Krylov subspace algorithms for skew-symmetric matrices SIMAX 2016, 37(3), pp. 1071–1087
- *•* C. Greif and J. M. Varah

Iterative solution of skew-symmetric linear systems SIMAX 2009, 31(2), pp. 584–601

• E. Jiang

Algorithm for solving shifted skew-symmetric linear system Frontiers of Mathematics in China 2007, 2(2), pp. 227–242

n [Preliminaries](#page-3-0)

• Krylov subspace methods for [skew-symmetric](#page-9-0) linear systems

- ³ [Krylov](#page-15-0) subspace methods for shifted skew-symmetric linear systems
- **4 [Summary](#page-27-0) and future work**

Krylov subspaces and Arnoldi process

• Krylov subspaces for A ∈ R*ⁿ*×*ⁿ* and b ∈ R*ⁿ*:

$$
\mathcal{K}_k(\mathbf{A},\mathbf{b}):=\mathrm{span}\{\mathbf{b},\mathbf{A}\mathbf{b},\cdots,\mathbf{A}^{k-1}\mathbf{b}\}.
$$

• The grade of **b** with respect to **A** is ℓ that satisfies

$$
\dim \mathcal{K}_k(\mathbf{A}, \mathbf{b}) = \begin{cases} k, & \text{if } 1 \le k \le \ell, \\ \ell, & \text{if } k \ge \ell + 1. \end{cases}
$$

• Arnoldi relation:

 $AW_k = W_{k+1}H_{k+1,k}, \quad H_k = W_k^{\top}AW_k, \quad 1 \leq k \leq \ell-1,$ $\mathbf{A}\mathbf{W}_\ell=\mathbf{W}_\ell\mathbf{H}_\ell,\quad \mathbf{W}_\ell^\top\mathbf{W}_\ell=\mathbf{I}_\ell.$

Krylov subspace methods for $Ax = b$ with $x_0 = 0$

• GMRES and MINRES:

$$
\mathbf{r}_k \perp \mathbf{A} \mathcal{K}_k(\mathbf{A}, \mathbf{b}) \quad \Leftrightarrow \quad \mathbf{x}_k = \operatorname*{argmin}_{\mathbf{x} \in \mathcal{K}_k(\mathbf{A}, \mathbf{b})} \|\mathbf{b} - \mathbf{A} \mathbf{x}\|_2.
$$

• FOM and CG:

$$
\mathbf{r}_k \perp \mathcal{K}_k(\mathbf{A}, \mathbf{b}) \quad \Leftrightarrow \quad \mathbf{x}_k = \|\mathbf{b}\|_2 \mathbf{W}_k \mathbf{H}_k^{-1} \mathbf{e}_1.
$$

• SYMMLQ:

 $\mathbf{x}_k = \operatorname*{argmin}_{\mathbf{x} \in \mathcal{K}} \|\mathbf{x}\|_2$ subject to $\mathbf{b} - \mathbf{A}\mathbf{x} \perp \mathcal{K}_{k-1}(\mathbf{A}, \mathbf{b}).$ $\mathbf{x} \in \mathcal{K}_k(\mathbf{A}, \mathbf{b})$

• QR, LU, and LQ factorizations

Yousef Saad. *Iterative Methods for Sparse Linear Systems*, 2nd edition, SIAM, 2003.

Golub–Kahan bidiagonalization

Algorithm: GKB for $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$ Compute $\beta_1 \mathbf{u}_1 := \mathbf{b}$ and $\alpha_1 \mathbf{v}_1 := \mathbf{A}^\top \mathbf{u}_1$.

> for $j = 1, 2, \cdots$ do $\beta_{i+1}\mathbf{u}_{i+1} := \mathbf{A}\mathbf{v}_i - \alpha_i\mathbf{u}_i$; α_{i+1} **v**_{*i*+1} := A^{\top} **u**_{*i*+1} - β_{i+1} **v**_{*i*};

end

$$
\mathbf{A}\mathbf{V}_{j} = \mathbf{U}_{j+1}\mathbf{B}_{j+1,j} = \mathbf{U}_{j}\mathbf{B}_{j} + \beta_{j+1}\mathbf{u}_{j+1}\mathbf{e}_{j}^{\top},
$$

$$
\mathbf{A}^{\top}\mathbf{U}_{j+1} = \mathbf{V}_{j+1}\mathbf{B}_{j+1}^{\top} = \mathbf{V}_{j}\mathbf{B}_{j+1,j}^{\top} + \alpha_{j+1}\mathbf{v}_{j+1}\mathbf{e}_{j+1}^{\top},
$$

$$
\mathbf{U}_{j}^{\top}\mathbf{U}_{j} = \mathbf{V}_{j}^{\top}\mathbf{V}_{j} = \mathbf{I}_{j},
$$
range $(\mathbf{U}_{j}) = \mathcal{K}_{j}(\mathbf{A}\mathbf{A}^{\top}, \mathbf{b}),$ range $(\mathbf{V}_{j}) = \mathcal{K}_{j}(\mathbf{A}^{\top}\mathbf{A}, \mathbf{A}^{\top}\mathbf{b}).$

CRAIG, LSQR, LSMR, LSLQ, LNLQ

• The normal equations (NE)

$$
\mathbf{A}^{\top} \mathbf{A} \mathbf{x} = \mathbf{A}^{\top} \mathbf{b}
$$

• The normal equations of the second kind (NE2)

$$
\mathbf{A}\mathbf{A}^{\top}\mathbf{y} = \mathbf{b}, \quad \mathbf{x} = \mathbf{A}^{\top}\mathbf{y}
$$

- CRAIG (1955, also called CGNE) "=" CG for NE2
- LSQR (1982) "=" CG for NE or MINRES for NE2
- LSMR (2011) "=" MINRES for NE
- LSLQ (2019) "=" SYMMLQ for NE
- LNLQ (2019) "=" SYMMLQ for NE2

Saunders–Simon–Yip tridiagonalization

Algorithm: SSY for $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, and $c \in \mathbb{R}^m$ Set $u_0 = 0$, $v_0 = 0$. Compute $\beta_1 u_1 := b$ and $\alpha_1 v_1 := c$. for $k = 1, 2, \cdots$ do $\mathbf{q} := \mathbf{A} \mathbf{v}_k - \alpha_k \mathbf{u}_{k-1}; \ \theta_k := \mathbf{u}_k^{\top} \mathbf{q};$ β_{k+1} **u**_{$k+1$} := **q** - θ_k **u**_k; α_{k+1} **v**_{k+1} := A^{\top} **u**_k $-\beta_k$ **v**_{k-1} $-\theta_k$ **v**_k; end

$$
\mathbf{A}\mathbf{V}_k = \mathbf{U}_{k+1}\mathbf{T}_{k+1,k} = \mathbf{U}_k\mathbf{T}_k + \beta_{k+1}\mathbf{u}_{k+1}\mathbf{e}_k^{\top},
$$

$$
\mathbf{A}^{\top}\mathbf{U}_k = \mathbf{V}_{k+1}\mathbf{T}_{k,k+1}^{\top} = \mathbf{V}_k\mathbf{T}_k^{\top} + \alpha_{k+1}\mathbf{v}_{k+1}\mathbf{e}_k^{\top},
$$

$$
\mathbf{U}_k^{\top}\mathbf{U}_k = \mathbf{V}_k^{\top}\mathbf{V}_k = \mathbf{I}_k, \quad \mathbf{T}_k = \mathbf{U}_k^{\top}\mathbf{A}\mathbf{V}_k.
$$

- *•* C. C. Paige and M. A. Saunders Solution of Sparse Indefinite Systems of Linear Equations SINUM 1975, 12(4), pp. 617–629
- *•* M. A. Saunders, H. D. Simon and E. L. Yip Two conjugate-gradient-type methods for unsymmetric linear equations

SINUM 1988, 25(4), pp. 927–940

- *•* USYMLQ and USYMQR are in the same fashion as SYMMLQ and MINRES.
- If $A^T = -A$ and $c = b$, then $SSY = Arnoldi = skew-Lanczos$.

skew-Lanczos

 \bullet ${\bf A}^{\scriptscriptstyle \top} = -{\bf A}$ (skew-symmetric), skew-Lanczos, ${\bf H}_k^{\scriptscriptstyle \top} = -{\bf H}_k$ $\begin{bmatrix} 0 & -\gamma_2 \end{bmatrix}$ 1

$$
\mathbf{H}_{k+1,k} = \begin{bmatrix} \gamma_2 & 0 & \ddots & \\ & \ddots & \ddots & -\gamma_k \\ & & \gamma_k & 0 \\ & & & \gamma_{k+1} \end{bmatrix} = \begin{bmatrix} \mathbf{H}_k \\ \gamma_{k+1} \mathbf{e}_k^\top \end{bmatrix}.
$$

Theorem

Assume that $A^{\top} = -A$ *. For each j with* $1 \le j \le \ell/2$, H_{2j} *is nonsingular. If* $\mathbf{b} \in \text{range}(\mathbf{A})$, then ℓ *is even and* \mathbf{H}_{ℓ} *is nonsingular. Otherwise,* ℓ *is odd and* H^ℓ *is singular.*

• one step of Golub–Kahan = two steps of skew-Lanczos

$S²CG$ and CRAIG for skew-symmetric systems

• CG-type solution (if any):

$$
\mathbf{x}_k = \|\mathbf{b}\|_2 \mathbf{W}_k \mathbf{H}_k^{-1} \mathbf{e}_1.
$$

• For nonsingular skew-symmetric systems, S²CG of Greif and Varah computes the even iterates $\bold {x}_{2j}^{\mathrm{G}}$ and returns $\bold {A}^{-1}\bold {b}$ in exact arithmetic.

Proposition

Assume that A *is a singular skew-symmetric matrix, and that* $\mathbf{b} \in \mathrm{range}(\mathbf{A})$. Let \mathbf{x}^G_j and $\mathbf{x}^\mathrm{CRAIG}_j$ be the j th iterates of S^2CG *and CRAIG for* $Ax = b$ *, respectively. For each* $1 \le j \le \ell/2$ *, we* h ave $\mathbf{x}_{2j}^{\text{G}} = \mathbf{x}_{j}^{\text{CRAIG}}$. Moreover, S^2 CG returns $\mathbf{A}^\dagger \mathbf{b}$.

$S²MR$ and LSQR for skew-symmetric systems

• Greif and Varah (2009) proposed S²MR for a nonsingular skew-symmetric system. Greif et al. (2016) showed that

$$
\mathbf{x}_{2j}^{\mathrm{M}} = \mathbf{x}_{2j+1}^{\mathrm{M}} = \mathbf{x}_{j}^{\mathrm{LSQR}}.
$$

Proposition

Assume that ${\bf A}$ *is a singular skew-symmetric matrix. Let* ${\bf x}_j^{\rm M}$ and $\mathbf{x}_{j}^{\text{LSQR}}$ be the j th iterates of S^{2} MR and LSQR for $\mathbf{Ax} = \mathbf{b}$, *respectively. For each j* with $\mathbf{x}_j^{\text{LSQR}} \neq \mathbf{A}^{\dagger} \mathbf{b}$, *i.e.*, *LSQR* does not *converge at the* j *th iteration, we have* $\mathbf{x}_{2j}^{\mathrm{M}} = \mathbf{x}_{2j+1}^{\mathrm{M}} = \mathbf{x}_{j}^{\mathrm{LSQR}}$. *Whether* $Ax = b$ *is consistent or not,* S^2MR *always returns the pseudoinverse solution* A*†* b*.*

Numerical experiments

• A singular consistent skew-symmetric system $Sx = b$ with

Numerical experiments

• A singular inconsistent skew-symmetric system $Sx = b$ with

The convergence for A^Tb when $A^T = -A$

Summary of the convergence of different methods for A*†* b of all types of skew-symmetric linear systems. Y means the algorithm is convergent and N means not.

Shifted skew-symmetric systems

- Assume that $\mathbf{A} = \alpha \mathbf{I} + \mathbf{S}$ with $\alpha \neq 0$ and $\mathbf{S}^{\top} = -\mathbf{S}$.
- *•* Arnoldi relation:

 $\mathbf{W}_{\ell}^{\top} \mathbf{W}_{\ell} = \mathbf{I}_{\ell}, \quad \mathbf{SW}_{\ell} = \mathbf{W}_{\ell} \mathbf{H}_{\ell}, \quad \mathbf{H}_{\ell} = \mathbf{W}_{\ell}^{\top} \mathbf{SW}_{\ell}.$ $\mathbf{A}\mathbf{W}_{\ell}=\alpha\mathbf{W}_{\ell}+\mathbf{W}_{\ell}\mathbf{H}_{\ell}=\mathbf{W}_{\ell}\mathbf{T}_{\ell},\quad \mathbf{T}_{\ell}:=\alpha\mathbf{I}_{\ell}+\mathbf{H}_{\ell}.$

Proposition

GKB applied to $A = \alpha I + S$ and b must stop in $\ell_0 = \lceil \ell/2 \rceil$ steps *with* $\alpha_{\ell_0} > 0$ *and* $\beta_{\ell_0+1} = 0$ *. For each j with* $1 \leq j \leq \ell_0 - 1$ *, we have* $\alpha_i > \gamma_{2i}$ *and* $\beta_{i+1} = \gamma_{2i+1}\gamma_{2i}/\alpha_i < \gamma_{2i+1}$ *.*

• S³LQ, S³CG, S³MR via LQ, LU, and QR factorizations.

$S³CG$ (a special case of CGW)

Algorithm: S^3CG for shifted skew-symmetric systems

$$
\text{Set} \; \mathbf{x}^{\text{G}}_0 = \mathbf{0}, \; \mathbf{r}^{\text{G}}_0 = \mathbf{b} \; \text{and} \; \mathbf{p}^{\text{G}}_0 = \mathbf{r}^{\text{G}}_0;
$$

for $k = 1, 2, \ldots$, do until convergence:

$$
\alpha_k^{\mathrm{G}} = \frac{(\mathbf{r}_{k-1}^{\mathrm{G}})^{\top} \mathbf{r}_{k-1}^{\mathrm{G}}}{(\mathbf{p}_{k-1}^{\mathrm{G}})^{\top} \mathbf{A} \mathbf{p}_{k-1}^{\mathrm{G}}};
$$
\n
$$
\mathbf{x}_k^{\mathrm{G}} = \mathbf{x}_{k-1}^{\mathrm{G}} + \alpha_k^{\mathrm{G}} \mathbf{p}_{k-1}^{\mathrm{G}};
$$
\n
$$
\mathbf{r}_k^{\mathrm{G}} = \mathbf{r}_{k-1}^{\mathrm{G}} - \alpha_k^{\mathrm{G}} \mathbf{A} \mathbf{p}_{k-1}^{\mathrm{G}};
$$
\n
$$
\beta_k^{\mathrm{G}} = -\frac{(\mathbf{r}_k^{\mathrm{G}})^{\top} \mathbf{r}_k^{\mathrm{G}}}{(\mathbf{r}_{k-1}^{\mathrm{G}})^{\top} \mathbf{r}_{k-1}^{\mathrm{G}}};
$$
\n
$$
\mathbf{p}_k^{\mathrm{G}} = \mathbf{r}_k^{\mathrm{G}} + \beta_k^{\mathrm{G}} \mathbf{p}_{k-1}^{\mathrm{G}};
$$
\nend

S³CG: properties

Proposition

*Let S*³*CG be applied to a shifted skew-symmetric matrix problem* Ax = b*. In exact arithmetic, as long as the algorithm has not* y et converged $(i.e., \mathbf{r}_{k-1}^{\mathrm{G}} \neq \mathbf{0})$, *it proceeds without breaking down, and we have the following identities of subspaces:*

$$
\mathcal{K}_k(\mathbf{A}, \mathbf{b}) = \text{span}\{\mathbf{x}_1^{\text{G}}, \mathbf{x}_2^{\text{G}}, \cdots, \mathbf{x}_k^{\text{G}}\}
$$

$$
= \text{span}\{\mathbf{p}_0^{\text{G}}, \mathbf{p}_1^{\text{G}}, \cdots, \mathbf{p}_{k-1}^{\text{G}}\}
$$

$$
= \text{span}\{\mathbf{r}_0^{\text{G}}, \mathbf{r}_1^{\text{G}}, \cdots, \mathbf{r}_{k-1}^{\text{G}}\}.
$$

The residuals are mutually orthogonal, $(\mathbf{r}_i^{\text{G}})^{\top} \mathbf{r}_k^{\text{G}} = 0$ *for* $i \neq k$, \bm{a} nd the search directions are *"semiconjugate",* $(\mathbf{p}^{\mathrm{G}}_i)^{\top} \mathbf{A} \mathbf{p}^{\mathrm{G}}_k = 0$ *for* $i < k$.

S³CG: optimality and convergence

• S³CG has the optimality properties

$$
\|\mathbf{x}_{2k}^{\mathrm{G}} - \mathbf{A}^{-1}\mathbf{b}\|_{2} = \min_{\mathbf{x} \in \mathbf{A}^{\mathrm{T}} \mathcal{K}_{2k}(\mathbf{A}, \mathbf{b})} \|\mathbf{x} - \mathbf{A}^{-1}\mathbf{b}\|_{2},
$$

and

$$
\|\mathbf{x}_{2k+1}^{\mathrm{G}} - \mathbf{A}^{-1}\mathbf{b}\|_{2} = \min_{\mathbf{x} \in \mathbf{b}/\alpha + \mathbf{A}^{\top}\mathcal{K}_{2k+1}(\mathbf{A},\mathbf{b})} \|\mathbf{x} - \mathbf{A}^{-1}\mathbf{b}\|_{2}.
$$

• Let $\beta = \|\mathbf{S}\|_2$. Then

$$
\frac{\|\mathbf{x}_{2k}^{\mathrm{G}} - \mathbf{A}^{-1} \mathbf{b}\|_{2}}{\|\mathbf{A}^{-1} \mathbf{b}\|_{2}} \leq 2 \left(\frac{\sqrt{1 + |\beta/\alpha|^{2}} - 1}{\sqrt{1 + |\beta/\alpha|^{2}} + 1} \right)^{k}
$$

The same bound holds for $\|\mathbf{x}_{2k+1}^{\text{G}} - \mathbf{A}^{-1}\mathbf{b}\|_2 / \|\mathbf{x}_1^{\text{G}} - \mathbf{A}^{-1}\mathbf{b}\|_2.$ The bound indicates that a "fast" convergence of S^3CG can be expected when $|\beta/\alpha| > 0$ is "small".

.

Lemma

 $\mathbf{Let} \ \mathbf{A} = \alpha \mathbf{I} + \mathbf{S} \ \mathbf{be} \ \mathbf{a} \ \mathbf{shifted} \ \mathbf{skew-symmetric} \ \mathbf{matrix}.$ The *subspaces* $A^{\top} \mathcal{K}_k(S^2, b)$ *and* $A^{\top} \mathcal{K}_k(S^2, Sb)$ *are orthogonal, and the solution* $A^{-1}b$ *is orthogonal to* $A^{T}K_{k}(S^{2}, Sb)$ *.*

Theorem

 $\mathbf{Let\ }\mathbf{A}=\alpha\mathbf{I}+\mathbf{S}\ \mathbf{\ }$ be a shifted skew-symmetric matrix. Let $\mathbf{x}_{k}^{\mathrm{G}}$ and $\mathbf{x}_k^{\mathrm{CRAIG}}$ be the k th iterates of S^3 CG and CRAIG for $\mathbf{Ax}=\mathbf{b}$, *respectively. Then we have*

$$
\mathbf{x}_{2k}^{\mathrm{G}} = \mathbf{x}_{k}^{\mathrm{CRAIG}}.
$$

S³MR (see Jiang 2007)

- The *k*th iterate: $\mathbf{x}_k^{\text{M}} = \operatorname*{argmin}_{\mathbf{x} \in \mathcal{K}_k(\mathbf{A}, \mathbf{b})} ||\mathbf{b} \mathbf{A}\mathbf{x}||_2$.
- S^3 MR does not stagnate, i.e., $\|\mathbf{r}_k^{\text{M}}\|_2$ is strictly decreasing.

$$
\frac{\|\mathbf{r}_k^{\mathrm{M}}\|_{2}}{\|\mathbf{b}\|_{2}} \le 2\left(\frac{|\beta/\alpha|}{\sqrt{1+|\beta/\alpha|^2}+1}\right)^{k}
$$

.

Proposition

Let $A = \alpha I + S$ *and* $\alpha \neq 0$ *. For each k with* $1 \leq k \leq \ell_0 - 1$ *, it holds that*

$$
\|\mathbf{b} - \mathbf{A}\mathbf{x}_{2k}^{\mathrm{M}}\|_2 \leq \|\mathbf{b} - \mathbf{A}\mathbf{x}_{k}^{\mathrm{LSQR}}\|_2.
$$

Moreover, we have $\mathbf{x}_{\ell}^{\mathrm{M}} = \mathbf{x}_{\ell_0}^{\mathrm{LSQR}} = \mathbf{A}^{-1}\mathbf{b}$.

• Numerical experiments: $\|\mathbf{b} - \mathbf{A}\mathbf{x}_{2k}^{\mathrm{M}}\|_{2} < \|\mathbf{b} - \mathbf{A}\mathbf{x}_{k}^{\mathrm{LSQR}}\|_{2}.$

S³MR

Algorithm: $S³MR$ for shifted skew-symmetric systems

Set
$$
x_0^M = 0
$$
, $\tilde{\delta}_1 = \alpha$, $c_0 = 1$, $\mathbf{w}_0 = 0$, $\gamma_1 \mathbf{w}_1 = \mathbf{b}$, and $\tilde{\psi}_1 = \gamma_1$;

for $k = 1, 2, \ldots$, do until convergence:

$$
\gamma_{k+1}\mathbf{w}_{k+1} := \mathbf{S}\mathbf{w}_k + \gamma_k \mathbf{w}_{k-1};
$$

\n
$$
\delta_k = \sqrt{\tilde{\delta}_k^2 + \gamma_{k+1}^2}, c_k = \tilde{\delta}_k/\delta_k, s_k = \gamma_{k+1}/\delta_k;
$$

\n
$$
\tilde{\delta}_{k+1} = \alpha c_k + \gamma_{k+1} c_{k-1} s_k, \ \psi_k = c_k \tilde{\psi}_k, \ \tilde{\psi}_{k+1} = -s_k \tilde{\psi}_k;
$$

\nif $k \le 2$ then

$$
\mathbf{p}_k = \mathbf{w}_k / \delta_k;
$$

else

$$
\mathbf{p}_k = (\mathbf{w}_k + \gamma_k s_{k-2} \mathbf{p}_{k-2})/\delta_k;
$$

end

$$
\mathbf{x}_k^{\mathrm{M}} = \mathbf{x}_{k-1}^{\mathrm{M}} + \psi_k \mathbf{p}_k;
$$

end

• The *k*th iterate:

$$
\mathbf{x}_k^{\mathrm{L}} := \underset{\mathbf{x} \in \mathcal{K}_k(\mathbf{A}, \mathbf{b})}{\mathrm{argmin}} \|\mathbf{x}\|_2 \quad \text{subject to} \quad \mathbf{b} - \mathbf{A}\mathbf{x} \perp \mathcal{K}_{k-1}(\mathbf{A}, \mathbf{b}).
$$

Theorem

For
$$
k > 1
$$
, we have $\mathbf{x}_k^{\text{L}} = \operatorname*{argmin}_{\mathbf{x} \in \mathbf{A}^\top \mathcal{K}_{k-1}(\mathbf{A}, \mathbf{b})} \|\mathbf{x} - \mathbf{A}^{-1} \mathbf{b}\|_2$.

Theorem

Let \mathbf{x}_k^{L} and \mathbf{x}_k^{G} be the iterates generated at iteration k of $S^3 L Q$ *and S*³*CG, respectively. As long as the algorithms have not yet converged,* we have $\mathbf{x}_{2j}^{\text{L}} = \mathbf{x}_{2j+1}^{\text{L}} = \mathbf{x}_{2j}^{\text{G}}$ for $j \geq 1$.

S^3LQ

Algorithm: S^3LQ for shifted skew-symmetric systems

Set
$$
\mathbf{x}_1^L = \mathbf{0}
$$
, $\tilde{\delta}_1 = \alpha$, $s_{-1} = 1$, $\xi_{-1} = -1$, $s_0 = 0$,
\n $\xi_0 = 0$, $c_0 = 1$, $\gamma_1 = ||\mathbf{b}||_2$;
\nSet $\mathbf{w}_0 = \mathbf{0}$, $\mathbf{w}_1 = \mathbf{b}/\gamma_1$, and $\tilde{\mathbf{p}}_1 = \mathbf{w}_1$;

for $k = 1, 2, \ldots$, do until convergence:

$$
\gamma_{k+1}\mathbf{w}_{k+1} := \mathbf{S}\mathbf{w}_k + \gamma_k \mathbf{w}_{k-1};
$$

\n
$$
\delta_k = \sqrt{\tilde{\delta}_k^2 + \gamma_{k+1}^2}, \ c_k = \tilde{\delta}_k/\delta_k, \ s_k = -\gamma_{k+1}/\delta_k;
$$

\n
$$
\tilde{\delta}_{k+1} = \alpha c_k - \gamma_{k+1}c_{k-1}s_k; \ \xi_k = -\gamma_k s_{k-2}\xi_{k-2}/\delta_k;
$$

\n
$$
\mathbf{p}_k = c_k \tilde{\mathbf{p}}_k + s_k \mathbf{w}_{k+1};
$$

\n
$$
\mathbf{x}_{k+1}^{\mathbf{L}} = \mathbf{x}_k^{\mathbf{L}} + \xi_k \mathbf{p}_k; \quad \tilde{\mathbf{p}}_{k+1} = c_k \mathbf{w}_{k+1} - s_k \tilde{\mathbf{p}}_k
$$

\nend

Numerical experiments

• Consider
$$
\mathbf{S} = \mathbf{I}_m \otimes \mathbf{S}_m(\sigma_1) + \mathbf{S}_m(\sigma_2) \otimes \mathbf{I}_m
$$
,

$$
\mathbf{S}_m(\sigma) = \begin{bmatrix} 0 & \sigma \\ -\sigma & 0 & \cdot \\ & \cdot & \cdot & \sigma \\ & & -\sigma & 0 \end{bmatrix} \in \mathbb{R}^{m \times m}.
$$

Set $m = 15$, $\alpha = 0.8$, $\sigma_1 = 0.4$, and $\sigma_2 = 0.6$.

•
$$
m = 25
$$
, $\sigma_1 = 0.4$, $\sigma_2 = 0.5$, $\sigma_3 = 0.6$

 $\mathbf{S} = \mathbf{I}_m \otimes \mathbf{I}_m \otimes \mathbf{S}_m(\sigma_1) + \mathbf{I}_m \otimes \mathbf{S}_m(\sigma_2) \otimes \mathbf{I}_m + \mathbf{S}_m(\sigma_3) \otimes \mathbf{I}_m \otimes \mathbf{I}_m$

Numerical experiments

Summary and future work

- *•* We extend the results of Greif et al. (SIMAX 2016) to singular skew-symmetric linear systems.
- We systematically study three Krylov subspace methods (called S^3CG , S^3MR , and S^3LQ) for solving shifted skew-symmetric linear systems. We provide relations among the three methods and those based on GKB and SSY.
- *•* Effects of finite precision
- Preconditioning techniques
- More general cases: I replaced by an SPD matrix

• · · ·

• K. Du, J.-J. Fan, X.-H. Sun, F. Wang, and Y.-L. Zhang. On Krylov subspace methods for skew-symmetric and shifted skew-symmetric linear systems.

Advances in Computational Mathematics (2024) 50:78

• The slides are available at <https://kuidu.github.io/talk.html>

Thanks!