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Krylov subspaces and Arnoldi process

• Krylov subspaces for A ∈ Rn×n and b ∈ Rn:

Kk(A,b) := span{b,Ab, · · · ,Ak−1b}.

• The grade of b with respect to A is ℓ that satisfies

dimKk(A,b) =

󰀫
k, if 1 ≤ k ≤ ℓ,

ℓ, if k ≥ ℓ+ 1.

• Arnoldi relation:

AWk = Wk+1Hk+1,k, Hk = W⊤
k AWk, 1 ≤ k ≤ ℓ− 1,

AWℓ = WℓHℓ, W⊤
ℓ Wℓ = Iℓ.
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Krylov subspace methods for Ax = b with x0 = 0

• GMRES and MINRES:

rk ⊥ AKk(A,b) ⇔ xk = argmin
x∈Kk(A,b)

󰀂b−Ax󰀂2.

• FOM and CG:

rk ⊥ Kk(A,b) ⇔ xk = 󰀂b󰀂2WkH
−1
k e1.

• SYMMLQ:

xk = argmin
x∈Kk(A,b)

󰀂x󰀂2 subject to b−Ax ⊥ Kk−1(A,b).

• QR, LU, and LQ factorizations

Yousef Saad. Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM, 2003.
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Golub–Kahan bidiagonalization

Algorithm: GKB for A ∈ Rn×m, b ∈ Rn

Compute β1u1 := b and α1v1 := A⊤u1.

for j = 1, 2, · · · do

βj+1uj+1 := Avj − αjuj;

αj+1vj+1 := A⊤uj+1 − βj+1vj;

end

AVj = Uj+1Bj+1,j = UjBj + βj+1uj+1e
⊤
j ,

A⊤Uj+1 = Vj+1B
⊤
j+1 = VjB

⊤
j+1,j + αj+1vj+1e

⊤
j+1,

U⊤
j Uj = V⊤

j Vj = Ij,

range(Uj) = Kj(AA⊤,b), range(Vj) = Kj(A
⊤A,A⊤b).
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CRAIG, LSQR, LSMR, LSLQ, LNLQ

• The normal equations (NE)

A⊤Ax = A⊤b

• The normal equations of the second kind (NE2)

AA⊤y = b, x = A⊤y

• CRAIG (1955, also called CGNE) “=” CG for NE2

• LSQR (1982) “=” CG for NE or MINRES for NE2

• LSMR (2011) “=” MINRES for NE

• LSLQ (2019) “=” SYMMLQ for NE

• LNLQ (2019) “=” SYMMLQ for NE2
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Saunders–Simon–Yip tridiagonalization

Algorithm: SSY for A ∈ Rn×m, b ∈ Rn, and c ∈ Rm

Set u0 = 0, v0 = 0. Compute β1u1 := b and α1v1 := c.

for k = 1, 2, · · · do

q := Avk − αkuk−1; θk := u⊤
k q;

βk+1uk+1 := q− θkuk;

αk+1vk+1 := A⊤uk − βkvk−1 − θkvk;

end

AVk = Uk+1Tk+1,k = UkTk + βk+1uk+1e
⊤
k ,

A⊤Uk = Vk+1T
⊤
k,k+1 = VkT

⊤
k + αk+1vk+1e

⊤
k ,

U⊤
k Uk = V⊤

k Vk = Ik, Tk = U⊤
k AVk.
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USYMLQ, USYMQR

• C. C. Paige and M. A. Saunders

Solution of Sparse Indefinite Systems of Linear Equations

SINUM 1975, 12(4), pp. 617–629

• M. A. Saunders, H. D. Simon and E. L. Yip

Two conjugate-gradient-type methods for unsymmetric

linear equations

SINUM 1988, 25(4), pp. 927–940

• USYMLQ and USYMQR are in the same fashion as

SYMMLQ and MINRES.

• If A⊤=−A and c=b, then SSY = Arnoldi = skew-Lanczos.
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skew-Lanczos

• A⊤ = −A (skew-symmetric), skew-Lanczos, H⊤
k = −Hk

Hk+1,k =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0 −γ2

γ2 0
. . .

. . . . . . −γk
γk 0

γk+1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸
=

󰀗
Hk

γk+1e
⊤
k

󰀘
.

Theorem

Assume that A⊤ = −A. For each j with 1 ≤ j ≤ ℓ/2, H2j is

nonsingular. If b ∈ range(A), then ℓ is even and Hℓ is

nonsingular. Otherwise, ℓ is odd and Hℓ is singular.

• one step of Golub–Kahan = two steps of skew-Lanczos
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S2CG and CRAIG for skew-symmetric systems

• CG-type solution (if any):

xk = 󰀂b󰀂2WkH
−1
k e1.

• For nonsingular skew-symmetric systems, S2CG of Greif and

Varah computes the even iterates xG
2j and returns A−1b in

exact arithmetic.

Proposition

Assume that A is a singular skew-symmetric matrix, and that

b ∈ range(A). Let xG
j and xCRAIG

j be the jth iterates of S2CG

and CRAIG for Ax = b, respectively. For each 1 ≤ j ≤ ℓ/2, we

have xG
2j = xCRAIG

j . Moreover, S2CG returns A†b.
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S2MR and LSQR for skew-symmetric systems

• Greif and Varah (2009) proposed S2MR for a nonsingular

skew-symmetric system. Greif et al. (2016) showed that

xM
2j = xM

2j+1 = xLSQR
j .

Proposition

Assume that A is a singular skew-symmetric matrix. Let xM
j and

xLSQR
j be the jth iterates of S2MR and LSQR for Ax = b,

respectively. For each j with xLSQR
j ∕= A†b, i.e., LSQR does not

converge at the jth iteration, we have xM
2j = xM

2j+1 = xLSQR
j .

Whether Ax = b is consistent or not, S2MR always returns the

pseudoinverse solution A†b.
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Numerical experiments

• A singular consistent skew-symmetric system Sx = b with

S =

󰀵
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Numerical experiments

• A singular inconsistent skew-symmetric system Sx = b with

S =

󰀵
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The convergence for A†b when A⊤ = −A

Summary of the convergence of different methods for A†b of all

types of skew-symmetric linear systems. Y means the algorithm is

convergent and N means not.

Method
singular

consistent

singular

inconsistent
nonsingular

S2CG Y N Y

S2MR Y Y Y

CRAIG Y N Y

LSQR Y Y Y

LSMR Y Y Y

LSLQ Y Y Y

LNLQ Y N Y
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Shifted skew-symmetric systems

• Assume that A = αI+ S with α ∕= 0 and S⊤ = −S.

• Arnoldi relation:

W⊤
ℓ Wℓ = Iℓ, SWℓ = WℓHℓ, Hℓ = W⊤

ℓ SWℓ.

AWℓ = αWℓ +WℓHℓ = WℓTℓ, Tℓ := αIℓ +Hℓ.

Proposition

GKB applied to A = αI+ S and b must stop in ℓ0 = ⌈ℓ/2⌉ steps

with αℓ0 > 0 and βℓ0+1 = 0. For each j with 1 ≤ j ≤ ℓ0 − 1, we

have αj > γ2j and βj+1 = γ2j+1γ2j/αj < γ2j+1.

• S3LQ, S3CG, S3MR via LQ, LU, and QR factorizations.

16/30



S3CG (a special case of CGW)

Algorithm: S3CG for shifted skew-symmetric systems

Set xG
0 = 0, rG0 = b and pG

0 = rG0 ;

for k = 1, 2, . . . , do until convergence:

αG
k =

(rGk−1)
⊤rGk−1

(pG
k−1)

⊤ApG
k−1

;

xG
k = xG

k−1 + αG
k p

G
k−1;

rGk = rGk−1 − αG
k ApG

k−1;

βG
k = − (rGk )

⊤rGk
(rGk−1)

⊤rGk−1

;

pG
k = rGk + βG

k p
G
k−1;

end
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S3CG: properties

Proposition

Let S3CG be applied to a shifted skew-symmetric matrix problem

Ax = b. In exact arithmetic, as long as the algorithm has not

yet converged (i.e., rGk−1 ∕= 0), it proceeds without breaking

down, and we have the following identities of subspaces:

Kk(A,b) = span{xG
1 ,x

G
2 , · · · ,xG

k }
= span{pG

0 ,p
G
1 , · · · ,pG

k−1}
= span{rG0 , rG1 , · · · , rGk−1}.

The residuals are mutually orthogonal, (rGi )
⊤rGk = 0 for i ∕= k,

and the search directions are “semiconjugate”, (pG
i )

⊤ApG
k = 0

for i < k.
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S3CG: optimality and convergence

• S3CG has the optimality properties

󰀂xG
2k −A−1b󰀂2 = min

x∈A⊤K2k(A,b)
󰀂x−A−1b󰀂2,

and

󰀂xG
2k+1 −A−1b󰀂2 = min

x∈b/α+A⊤K2k+1(A,b)
󰀂x−A−1b󰀂2.

• Let β = 󰀂S󰀂2. Then

󰀂xG
2k −A−1b󰀂2
󰀂A−1b󰀂2

≤ 2

󰀣󰁳
1 + |β/α|2 − 1󰁳
1 + |β/α|2 + 1

󰀤k

.

The same bound holds for 󰀂xG
2k+1−A−1b󰀂2/󰀂xG

1 −A−1b󰀂2.
The bound indicates that a “fast” convergence of S3CG can

be expected when |β/α| > 0 is “small”.
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S3CG: relation to CRAIG

Lemma

Let A = αI+ S be a shifted skew-symmetric matrix. The

subspaces A⊤Kk(S
2,b) and A⊤Kk(S

2,Sb) are orthogonal, and

the solution A−1b is orthogonal to A⊤Kk(S
2,Sb).

Theorem

Let A = αI+ S be a shifted skew-symmetric matrix. Let xG
k and

xCRAIG
k be the kth iterates of S3CG and CRAIG for Ax = b,

respectively. Then we have

xG
2k = xCRAIG

k .
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S3MR (see Jiang 2007)

• The kth iterate: xM
k = argmin

x∈Kk(A,b)

󰀂b−Ax󰀂2.

• S3MR does not stagnate, i.e., 󰀂rMk 󰀂2 is strictly decreasing.

󰀂rMk 󰀂2
󰀂b󰀂2

≤ 2

󰀣
|β/α|󰁳

1 + |β/α|2 + 1

󰀤k

.

Proposition

Let A = αI+ S and α ∕= 0. For each k with 1 ≤ k ≤ ℓ0 − 1, it

holds that

󰀂b−AxM
2k󰀂2 ≤ 󰀂b−AxLSQR

k 󰀂2.

Moreover, we have xM
ℓ = xLSQR

ℓ0
= A−1b.

• Numerical experiments: 󰀂b−AxM
2k󰀂2 < 󰀂b−AxLSQR

k 󰀂2.
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S3MR

Algorithm: S3MR for shifted skew-symmetric systems

Set xM
0 = 0, 󰁨δ1 = α, c0 = 1, w0 = 0, γ1w1 = b, and 󰁨ψ1 = γ1;

for k = 1, 2, . . . , do until convergence:

γk+1wk+1 := Swk + γkwk−1;

δk =
󰁴

󰁨δ2k + γ2
k+1, ck = 󰁨δk/δk, sk = γk+1/δk;

󰁨δk+1 = αck + γk+1ck−1sk, ψk = ck 󰁨ψk, 󰁨ψk+1 = −sk 󰁨ψk;

if k ≤ 2 then

pk = wk/δk;

else

pk = (wk + γksk−2pk−2)/δk;

end

xM
k = xM

k−1 + ψkpk;

end
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S3LQ

• The kth iterate:

xL
k := argmin

x∈Kk(A,b)

󰀂x󰀂2 subject to b−Ax ⊥ Kk−1(A,b).

Theorem

For k > 1, we have xL
k = argmin

x∈A⊤Kk−1(A,b)

󰀂x−A−1b󰀂2.

Theorem

Let xL
k and xG

k be the iterates generated at iteration k of S3LQ

and S3CG, respectively. As long as the algorithms have not yet

converged, we have xL
2j = xL

2j+1 = xG
2j for j ≥ 1.

23/30



S3LQ

Algorithm: S3LQ for shifted skew-symmetric systems

Set xL
1 = 0, 󰁨δ1 = α, s−1 = 1, ξ−1 = −1, s0 = 0,

ξ0 = 0, c0 = 1, γ1 = 󰀂b󰀂2;
Set w0 = 0, w1 = b/γ1, and 󰁨p1 = w1;

for k = 1, 2, . . . , do until convergence:

γk+1wk+1 := Swk + γkwk−1;

δk =
󰁴

󰁨δ2k + γ2
k+1, ck =

󰁨δk/δk, sk = −γk+1/δk;

󰁨δk+1 = αck − γk+1ck−1sk; ξk = −γksk−2ξk−2/δk;

pk = ck󰁨pk + skwk+1;

xL
k+1 = xL

k + ξkpk; 󰁨pk+1 = ckwk+1 − sk󰁨pk

end
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Numerical experiments

• Consider S = Im ⊗ Sm(σ1) + Sm(σ2)⊗ Im,

Sm(σ) =

󰀵
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Numerical experiments

• m = 25, σ1 = 0.4, σ2 = 0.5, σ3 = 0.6

S = Im⊗Im⊗Sm(σ1)+Im⊗Sm(σ2)⊗Im+Sm(σ3)⊗Im⊗Im
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Numerical experiments
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Summary and future work

• We extend the results of Greif et al. (SIMAX 2016) to

singular skew-symmetric linear systems.

• We systematically study three Krylov subspace methods

(called S3CG, S3MR, and S3LQ) for solving shifted

skew-symmetric linear systems. We provide relations among

the three methods and those based on GKB and SSY.

• Effects of finite precision

• Preconditioning techniques

• More general cases: I replaced by an SPD matrix

• · · ·
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Our paper and slides

• K. Du, J.-J. Fan, X.-H. Sun, F. Wang, and Y.-L. Zhang.

On Krylov subspace methods for skew-symmetric and shifted

skew-symmetric linear systems.

Advances in Computational Mathematics (2024) 50:78

• The slides are available at

https://kuidu.github.io/talk.html
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