RSMAR: An iterative method for range-symmetric linear systems

Kui Du
kuidu@xmu.edu.cn

School of Mathematical Sciences, Xiamen University
https://kuidu.github.io
joint work with Jia-Jun Fan and Fang Wang

Numerical Algebra @ BNU Zhuhai on 03/30/2024

Two main references

- A. Montoison, D. Orban, and M. A. Saunders. MINARES: An iterative solver for symmetric linear systems. arXiv:2310.01757, 2023.
- Y. Liu, A. Milzarek, and F. Roosta. Obtaining pseudo-inverse solutions with MINRES. arXiv:2309.17096, 2023.

Outline

(1) The pseudoinverse solution of range-symmetric systems
(2) GMRES-type methods for singular range-symmetric systems
(3) RSMAR for range-symmetric systems
(4) Numerical experiments
(5) Summary

The pseudoinverse solution

- $\mathbf{A x}=\mathbf{b}, \quad \mathbf{A} \in \mathbb{R}^{m \times n}, \quad \mathbf{b} \in \mathbb{R}^{m}$.

Consistent if $\mathbf{b} \in \operatorname{range}(\mathbf{A})$, otherwise, inconsistent.

- \mathbf{A}^{\dagger} : the Moore-Penrose inverse of \mathbf{A}
- $\mathbf{A}^{\dagger} \mathbf{b}$: the pseudoinverse solution

$\mathbf{A} \mathbf{x}=\mathbf{b}$	$\operatorname{rank}(\mathbf{A})$	$\mathbf{A}^{\dagger} \mathbf{b}$
consistent	$=n$	unique solution
consistent	$<n$	unique minimum 2-norm solution
inconsistent	$=n$	unique least-squares (LS) solution
inconsistent	$<n$	unique minimum 2-norm LS solution

Krylov subspaces and (least squares) solutions

- $\mathbf{A x}=\mathbf{b}, \quad \mathbf{A} \in \mathbb{R}^{n \times n}, \quad \mathbf{b}, \mathbf{x}_{0} \in \mathbb{R}^{n}, \quad \mathbf{r}_{0}:=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}$,

$$
\mathcal{K}_{k}\left(\mathbf{A}, \mathbf{r}_{0}\right):=\operatorname{span}\left\{\mathbf{r}_{0}, \mathbf{A} \mathbf{r}_{0}, \ldots, \mathbf{A}^{k-1} \mathbf{r}_{0}\right\}
$$

- ℓ : the grade of \mathbf{r}_{0} with respect to \mathbf{A}, i.e., ℓ satisfies

$$
\operatorname{dim} \mathcal{K}_{k}\left(\mathbf{A}, \mathbf{r}_{0}\right)= \begin{cases}k, & \text { if } k \leq \ell \\ \ell, & \text { if } k \geq \ell+1\end{cases}
$$

- For any $\mathbf{A} \in \mathbb{R}^{n \times n}$,
(i) $\mathbf{b} \notin \operatorname{range}(\mathbf{A}): \# \mathrm{LS}$ solution in $\mathbf{x}_{0}+\mathcal{K}_{\ell-1}\left(\mathbf{A}, \mathbf{r}_{0}\right) \leq 1$;
(ii) $\mathbf{b} \in \operatorname{range}(\mathbf{A}): \#$ solution in $\mathbf{x}_{0}+\mathcal{K}_{\ell}\left(\mathbf{A}, \mathbf{r}_{0}\right) \leq 1$.

Range-symmetric systems

- range-symmetric $\mathbf{A}: \quad \operatorname{range}(\mathbf{A})=\operatorname{range}\left(\mathbf{A}^{\top}\right)$.

Fact I:

$$
\mathbf{A}=\mathbf{U}\left[\begin{array}{ll}
\mathrm{C} & 0 \\
0 & 0
\end{array}\right] \mathbf{U}^{\top} .
$$

(C is invertible and U is orthogonal.)
Fact II:

$$
\mathbf{A}^{\dagger}=\mathbf{A}^{\mathrm{D}}=\mathbf{U}\left[\begin{array}{cc}
\mathbf{C}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] \mathbf{U}^{\top} . \quad \text { (Drazin inverse) }
$$

Fact III:

$$
\begin{aligned}
\mathbf{A}^{\dagger} \mathbf{b}+\operatorname{null}(\mathbf{A}) & =\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A}^{\top} \mathbf{A} \mathbf{x}=\mathbf{A}^{\top} \mathbf{b}\right\} \\
& =\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A}^{2} \mathbf{x}=\mathbf{A} \mathbf{b}\right\} .
\end{aligned}
$$

GMRES for singular range-symmetric systems

- GMRES: $\quad \mathbf{x}_{k}:=\underset{\mathbf{x} \in \mathbf{x}_{0}+\mathcal{K}_{k}\left(\mathbf{A}, \mathbf{r}_{0}\right)}{\operatorname{argmin}}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|$.
- For singular range-symmetric \mathbf{A} [BW97]:
(i) $\mathbf{b} \in \operatorname{range}(\mathbf{A}): \mathbf{x}_{\ell}=$ solution. More precisely,

$$
\mathbf{x}_{\ell}=\mathbf{A}^{\dagger} \mathbf{b}+\left(\mathbf{I}-\mathbf{A}^{\dagger} \mathbf{A}\right) \mathbf{x}_{0}
$$

the orthogonal projection of \mathbf{x}_{0} onto the solution set

$$
\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A} \mathbf{x}=\mathbf{b}\right\}=\mathbf{A}^{\dagger} \mathbf{b}+\operatorname{null}(\mathbf{A})
$$

(ii) $\mathbf{b} \notin \operatorname{range}(\mathbf{A}): \mathbf{x}_{\ell-1}=$ LS solution. Which one?
[BW97] P. N. Brown and H. F. Walker. GMRES on (nearly) singular systems. SIMAX, 1997.

GMRES for singular (skew-)symmetric systems

- "(skew-)symmetric" \in "range-symmetric"
- For symmetric \mathbf{A}, if $\mathbf{b} \notin \operatorname{range}(\mathbf{A})$, then $\mathbf{x}_{\ell-1}=\mathrm{LS}$ solution, but not necessarily $\mathbf{A}^{\dagger} \mathbf{b}$ [CPS11]. MINRES-QLP or MINRES with a lifting strategy.
- For skew-symmetric \mathbf{A}, i.e., $\mathbf{A}^{\top}=-\mathbf{A}$, if $\mathbf{b} \notin \operatorname{range}(\mathbf{A})$, then

$$
\mathbf{r}_{\ell-1}^{\top}\left(\mathbf{x}_{\ell-1}-\mathbf{x}_{0}\right)=0,
$$

which implies

$$
\mathbf{x}_{\ell-1}=\mathbf{A}^{\dagger} \mathbf{b}+\left(\mathbf{I}-\mathbf{A}^{\dagger} \mathbf{A}\right) \mathbf{x}_{0} .
$$

[CPS11] S.-C. T. Choi, C. C. Paige, and M. A. Saunders. MINRES-QLP: A Krylov subspace method for indefinite or singular symmetric systems. SISC, 2011.

A lifting strategy [LMR23]

- If range $(\mathbf{A})=\operatorname{range}\left(\mathbf{A}^{\top}\right)$ and $\mathbf{b} \notin \operatorname{range}(\mathbf{A})$, then the lifted vector,

$$
\widetilde{\mathbf{x}}_{\ell-1}:=\mathbf{x}_{\ell-1}-\frac{\mathbf{r}_{\ell-1}^{\top}\left(\mathbf{x}_{\ell-1}-\mathbf{x}_{0}\right)}{\mathbf{r}_{\ell-1}^{\top} \mathbf{r}_{\ell-1}} \mathbf{r}_{\ell-1}
$$

is the orthogonal projection of \mathbf{x}_{0} onto the least squares solution set $\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A}^{\top} \mathbf{A} \mathbf{x}=\mathbf{A}^{\top} \mathbf{b}\right\}$, i.e.,

$$
\widetilde{\mathbf{x}}_{\ell-1}=\mathbf{A}^{\dagger} \mathbf{b}+\left(\mathbf{I}-\mathbf{A}^{\dagger} \mathbf{A}\right) \mathbf{x}_{0} .
$$

- $\mathbf{x}_{0}=\mathbf{0} \Rightarrow \widetilde{\mathbf{x}}_{\ell-1}=\mathbf{A}^{\dagger} \mathbf{b}$.
[LMR23] Y. Liu, A. Milzarek, and F. Roosta. Obtaining pseudo-inverse solutions with MINRES. arXiv:2309.17096, 2023.

Summary of GMRES-type methods

- Let \mathbf{A} be range-symmetric. For simplicity, we set $\mathbf{x}_{0}=\mathbf{0}$.

Method	Minimization property at step k		
GMRES	$\mathbf{x}_{k}:=\operatorname{argmin}_{\mathbf{x} \in \mathcal{K}_{k}(\mathbf{A}, \mathbf{b})}\\|\mathbf{b}-\mathbf{A} \mathbf{x}\\|$		
RRGMRES	$\mathbf{x}_{k}^{\mathrm{R}}:=\operatorname{argmin}_{\mathbf{x} \in \mathcal{K}_{k}(\mathbf{A}, \mathbf{A} \mathbf{b})}\\|\mathbf{b}-\mathbf{A} \mathbf{x}\\|$		
DGMRES	$\mathbf{x}_{k}^{\mathrm{D}}:=\operatorname{argmin}_{\mathbf{x} \in \mathcal{K}_{k}(\mathbf{A}, \mathbf{A} \mathbf{b})}\\|\mathbf{A}(\mathbf{b}-\mathbf{A} \mathbf{x})\\|$		
RSMAR	$\mathbf{x}_{k}^{\mathrm{A}}:=\operatorname{argmin}_{\mathbf{x} \in \mathcal{K}_{k}(\mathbf{A}, \mathbf{b})}\\|\mathbf{A}(\mathbf{b}-\mathbf{A} \mathbf{x})\\|$		

Consistent: $\mathbf{x}_{\ell}=\mathbf{x}_{\ell}^{\mathrm{R}}=\mathbf{x}_{\ell}^{\mathrm{D}}=\mathbf{A}^{\dagger} \mathbf{b}, \quad \mathbf{x}_{\ell}^{\mathrm{A}}=? ? ?$
Inconsistent: $\widetilde{\mathbf{x}}_{\ell-1}=\mathbf{x}_{\ell-1}^{\mathrm{R}}=\mathbf{x}_{\ell-1}^{\mathrm{D}}=\mathbf{A}^{\dagger} \mathbf{b}, \quad \mathbf{x}_{\ell-1}^{\mathrm{A}}=? ? ?$
[MOS23] A. Montoison, D. Orban, and M. A. Saunders. MINARES: An iterative solver for symmetric linear systems. arXiv:2310.01757, 2023.

RSMAR for range-symmetric systems

- RSMAR: $\mathbf{x}_{k}^{\mathrm{A}}:=\underset{\mathbf{x} \in \mathcal{K}_{k}(\mathbf{A}, \mathbf{b})}{\operatorname{argmin}}\|\mathbf{A}(\mathbf{b}-\mathbf{A x})\|$, (well-defined?)
- For range-symmetric \mathbf{A}, if $\mathbf{b} \in \operatorname{range}(\mathbf{A})$, then $\mathbf{x}_{\ell}^{\mathrm{A}}=\mathbf{x}_{\ell}$, and if $\mathbf{b} \notin \operatorname{range}(\mathbf{A})$, then $\mathbf{x}_{\ell-1}^{\mathrm{A}}=\mathbf{x}_{\ell-1}$. In other words, the final iterates of GMRES and RSMAR are the same.
- For inconsistent systems, $\left\|\mathbf{r}_{\ell-1}\right\| \neq 0$, but $\left\|\mathbf{A r}_{\ell-1}\right\|=0$.
- RSMAR for $\mathbf{A x}=\mathbf{b}$ " $=$ " GMRES for $\mathbf{A y}=\mathbf{A b}, \mathbf{y}=\mathbf{A x}$:

$$
\begin{gathered}
\min _{\mathbf{x} \in \mathcal{K}_{k}(\mathbf{A}, \mathbf{b})}\|\mathbf{A}(\mathbf{b}-\mathbf{A} \mathbf{x})\|=\min _{\mathbf{y} \in \mathcal{K}_{k}(\mathbf{A}, \mathbf{A b})}\|\mathbf{A b}-\mathbf{A y}\|, \\
\mathbf{y}_{k}=\mathbf{A x} \mathbf{x}_{k}^{\mathrm{A}}=\underset{\mathbf{y} \in \mathcal{K}_{k}(\mathbf{A}, \mathbf{A b})}{\operatorname{argmin}}\|\mathbf{A b}-\mathbf{A y}\| .
\end{gathered}
$$

Implementation I (inspired by simpler GMRES)

- Arnoldi process yields span $\left\{\widehat{\mathbf{v}}_{1}, \widehat{\mathbf{v}}_{2}, \ldots, \widehat{\mathbf{v}}_{k}\right\}=\mathcal{K}_{k}(\mathbf{A}, \mathbf{A b})$,

$$
\widehat{\beta}_{1} \widehat{\mathbf{v}}_{1}=\mathbf{A b}, \quad \mathbf{A} \widehat{\mathbf{V}}_{k}=\widehat{\mathbf{V}}_{k+1} \widehat{\mathbf{H}}_{k+1, k}, \quad \widehat{\mathbf{V}}_{k}^{\top} \widehat{\mathbf{V}}_{k}=\mathbf{I}_{k}
$$

- $\min _{\mathbf{y} \in \mathcal{K}_{k}(\mathbf{A}, \mathbf{A b})}\|\mathbf{A b}-\mathbf{A y}\|=\min _{\widehat{\mathbf{z}} \in \mathbb{R}^{k}}\left\|\widehat{\beta}_{1} \mathbf{e}_{1}-\widehat{\mathbf{H}}_{k+1, k} \widehat{\mathbf{z}}\right\| \Rightarrow$
$\mathbf{y}_{k}=\widehat{\mathbf{V}}_{k} \widehat{\mathbf{z}}_{k}$ with $\widehat{\mathbf{z}}_{k}=\underset{\widehat{\mathbf{z}} \in \mathbb{R}_{k}}{\operatorname{argmin}}\left\|\widehat{\beta}_{1} \mathbf{e}_{1}-\widehat{\mathbf{H}}_{k+1, k} \widehat{\mathbf{Z}}\right\|$.
- $\mathcal{K}_{k}(\mathbf{A}, \mathbf{b})=\operatorname{span}\left\{\mathbf{b}, \widehat{\mathbf{v}}_{1}, \ldots, \widehat{\mathbf{v}}_{k-1}\right\}$ and $\mathbf{y}_{k}=\mathbf{A x} \mathrm{x}_{k}^{\mathrm{A}} \Rightarrow$

$$
\mathbf{x}_{k}^{\mathrm{A}}=\left[\begin{array}{ll}
\mathbf{b} & \widehat{\mathbf{V}}_{k-1}
\end{array}\right] \mathbf{z}_{k},
$$

where \mathbf{z}_{k} solves

$$
\mathbf{A}\left[\begin{array}{ll}
\mathbf{b} & \widehat{\mathbf{V}}_{k-1}
\end{array}\right] \mathbf{z}=\widehat{\mathbf{V}}_{k}\left[\begin{array}{ll}
\widehat{\beta}_{1} \mathbf{e}_{1} & \widehat{\mathbf{H}}_{k, k-1}
\end{array}\right] \mathbf{z}=\widehat{\mathbf{V}}_{k} \widehat{\mathbf{Z}}_{k} .
$$

Implementation II (inspired by RRGMRES)

- Arnoldi process yields $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}=\mathcal{K}_{k}(\mathbf{A}, \mathbf{b})$,

$$
\beta_{1} \mathbf{v}_{1}=\mathbf{b}, \quad \mathbf{A} \mathbf{V}_{k}=\mathbf{V}_{k+1} \mathbf{H}_{k+1, k}, \quad \mathbf{V}_{k}^{\top} \mathbf{V}_{k}=\mathbf{I}_{k}
$$

- The subproblem:

$$
\begin{aligned}
\min _{\mathbf{x} \in \mathcal{K}_{k}(\mathbf{A}, \mathbf{b})} & \|\mathbf{A}(\mathbf{b}-\mathbf{A} \mathbf{x})\| \\
& =\min _{\mathbf{z} \in \mathbb{R}^{k}}\left\|\beta_{1} \mathbf{H}_{k+2, k+1} \mathbf{e}_{1}-\mathbf{H}_{k+2, k+1} \mathbf{H}_{k+1, k} \mathbf{z}\right\| .
\end{aligned}
$$

- Two QR factorizations are required:

$$
\mathbf{H}_{k+1, k}=\mathbf{Q}_{k+1}\left[\begin{array}{c}
\mathbf{R}_{k} \\
\mathbf{0}
\end{array}\right], \quad \mathbf{H}_{k+2, k+1} \mathbf{Q}_{k+1}\left[\begin{array}{c}
\mathbf{I}_{k} \\
\mathbf{0}
\end{array}\right]=\widetilde{\mathbf{Q}}_{k+2}\left[\begin{array}{c}
\widetilde{\mathbf{R}}_{k} \\
\mathbf{0}
\end{array}\right]
$$

- $\mathbf{x}_{k}^{\mathrm{A}}=\mathbf{V}_{k} \mathbf{R}_{k}^{-1} \widetilde{\mathbf{R}}_{k}^{-1}\left[\begin{array}{ll}\mathbf{I}_{k} & 0\end{array}\right] \widetilde{\mathbf{Q}}_{k+2}^{\top} \beta_{1}\left(h_{11} \mathbf{e}_{1}+h_{21} \mathbf{e}_{2}\right)$.

MINARES for symmetric systems [MOS23]

- GMRES for symmetric systems " \Leftrightarrow " MINRES
- RSMAR for symmetric systems " \Leftrightarrow " MINARES
- The MINARES implementation in [MOS23] is based on the Arnoldi relation $\mathbf{A V}=\mathbf{V}_{k+1} \mathbf{H}_{k+1, k}$, and thus can be viewed as a short recurrence variant of RSMAR-II.
- We derive a new implementation for MINARES, which is based on $\mathbf{A} \widehat{\mathbf{V}}_{k}=\widehat{\mathbf{V}}_{k+1} \widehat{\mathbf{H}}_{k+1, k}$ and can be viewed as a short recurrence variant of RSMAR-I.

[^0]
Numerical experiments

- A boundary value problem

$$
\left\{\begin{array}{l}
\Delta u+d \frac{\partial u}{\partial x}=f, \quad \text { in } \quad \Omega:=[0,1] \times[0,1], \\
u(x, 0)=u(x, 1), \quad \text { for } \quad 0 \leq x \leq 1, \\
u(0, y)=u(1, y), \quad \text { for } \quad 0 \leq y \leq 1,
\end{array}\right.
$$

where d is a constant and f is a given function. [BW97]

- FD discretization yields a singular range-symmetric \mathbf{A} :

$$
\mathbf{A}=\left[\begin{array}{cccc}
\mathbf{T}_{m} & \mathbf{I}_{m} & & \mathbf{I}_{m} \\
\mathbf{I}_{m} & \ddots & \ddots & \\
& \ddots & \ddots & \mathbf{I}_{m} \\
\mathbf{I}_{m} & & \mathbf{I}_{m} & \mathbf{T}_{m}
\end{array}\right], \quad \mathbf{T}_{m}=\left[\begin{array}{cccc}
-4 & \alpha_{+} & & \alpha_{-} \\
\alpha_{-} & \ddots & \ddots & \\
& \ddots & \ddots & \alpha_{+} \\
\alpha_{+} & & \alpha_{-} & -4
\end{array}\right],
$$

where $m=100, h=1 / m, \alpha_{ \pm}=1 \pm d h / 2$, and $d=10$.

Example: a consistent range-symmetric system

Example: an inconsistent range-symmetric system

Example: a consistent symmetric system

Example: an inconsistent symmetric system

Summary

- RSMAR enriches the family of Krylov subspace methods for range-symmetric systems.
- For range-symmetric systems, the final iterates of RSMAR and GMRES are the same.
- For range-symmetric $\mathbf{A}, \mathbf{x}_{0}=\mathbf{0}$,
(i) $\mathbf{b} \in \operatorname{range}(\mathbf{A})$: the final iterate of RSMAR is $\mathbf{A}^{\dagger} \mathbf{b}$, and (ii) $\mathbf{b} \notin \operatorname{range}(\mathbf{A})$: the final iterate of RSMAR is a least squares solution and a lifting strategy can be used to obtain $\mathbf{A}^{\dagger} \mathbf{b}$.

Summary

- On singular inconsistent range-symmetric systems, RSMAR outperforms GMRES, RRGMRES, and DGMRES, and thus should be the preferred method in finite precision arithmetic.
- RSMAR-II is better than RSMAR-I in finite precision arithmetic.
- Possible research directions:
(1) preconditioning
(2) stopping criteria
(3) performance for linear discrete ill-posed problems

Our manuscript, slides, and MATLAB codes

- K. Du, J.-J. Fan, and F. Wang.

Obtaining the pseudoinverse solution of singular range-symmetric linear systems with GMRES-type methods. arXiv:2401.11788, 2024.

- The slides are available at https://kuidu.github.io/talk.html
- The MATLAB codes are available at https://kuidu.github.io/code.html

[^0]: [MOS23] A. Montoison, D. Orban, and M. A. Saunders. MINARES: An iterative solver for symmetric linear systems. arXiv:2310.01757, 2023.

