Regularized Randomized Iterative Algorithms for

Factorized Linear Systems

Kui Du
kuidu@xmu.edu.cn

School of Mathematical Sciences, Xiamen University

https://kuidu.github.io


https://kuidu.github.io

Outline

@ Solutions of Linear Systems

® Randomized Iterative Algorithms

® Factorized Linear Systems

® The Proposed Algorithms

® Computed Examples

® Summary

2/36



The Pseudoinverse Solution of a Linear System

e Consider a linear system of equations
Ax=b, AcR™" beR"

The system is called consistent if b € range(A), otherwise,
imconsistent.

e The pseudoinverse solution Afb, where AT denotes the
Moore—Penrose pseudoinverse of A.

Ax=b rank(A) A'b
consistent =n unique solution
consistent <n unique minimum 2-norm solution
inconsistent =n unique least-squares (LS) solution
inconsistent <n unique minimum 2-norm LS solution
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Sparse (Least Squares) Solutions of a Linear System

® Sparsest solutions:
minimize ||x|jp s.t. Ax=Db
® The basis pursuit problem:
minimize |x|; st. Ax=Db
® The regularized basis pursuit problem
. T, e
minimize §||x||2 +AIx|li st. Ax=Db

® Sparse least squares solutions: replacing Ax = b with the
normal equations

ATAx=ATb.
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Sparsity-Promoting Property of /; Norm

e Comparison of £y, ¢1, and /5 norms

---{x: &x=b} ---{x: ®x=b}
—ix: =13 - o [— s o= 13
- {x: xlle =€) - [xlh = d)

Figure 1.2 of [BL13]: Two-dimensional ¢y, ¢1, and ¢ balls and
the solution set {x | ®x = b}. Here ¢ and d are constants with
¢ a bit less than d. Note that the set {x | ||x|[o = 1} coincides
with the coordinate axes.

[BL13] K. Bryan and T. Leise. Making Do with Less: An Introduction to Compressed
Sensing. STAM Review, 55(3):547-566, 2013

5/36



Randomized Kaczmarz (RK)

The RK algorithm for solving Ax = b [SV09]

Input: A € R™*" b € R™, and maximum number of

iterations maxit.
Output: an approximation of the solution of Ax = b.
Initialize: x° € R™.
for k=1,2,..., maxit do
Pick i € [m] with probability ||A;.||3/| A%
k-1 A@:x’“_1 —b;

(A"
A3

Set x* = x

end

[SV09] T. Strohmer and R. Vershynin. A randomized Kaczmarz algorithm with expo-
nential convergence. J. Fourier Anal. Appl., 15(2):262-278, 2009.
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Geometric Interpretation and Convergence of RK

® Geometric interpretation (Ai)"

{x| Ai:x=b;}

® Suppose that b € range(A). The convergence result:

k
EIx* - x9I3] < p*llx” - <3,

2 A
where p=1-— %Lg), x! = (I-ATA)x"+ATb.
IA[E
e RK fails to find least squares solutions for inconsistent case

[Needell10].

[Needell10] D. Needell. Randomized Kaczmarz solver for noisy linear systems, BIT,
50(2):395-403, 2010.
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Randomized Gauss—Seidel (RGS)

The RGS algorithm for solving miny ||b — Ax||s [LL10]

Input: A € R™*" b € R™, and maximum number of

iterations maxit.
Output: an approximation of the solution of miny [|b — Ax||s.
Initialize: x° € R™.
for k=1,2,..., maxit do
Pick j € [n] with probability |A.;|3/[| A%
i1, (Ay)T(b—AxM
1A 513 v

Set x* = x

end

[LL10] D. J. Leventhal and A. S. Lewis. Randomized methods for linear constraints:
convergence rates and conditioning. Math. Oper. Res., 35(3):641-654, 2010.
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Geometric Interpretation and Convergence of RGS

¢ Geometric interpretation

A (AT
The residual r* = (I — J(4J2)> rF1
||A:,j |2

Here r¥ := b — AxF.

| ARy -

rk

span{A. ;}*
e For arbitrary A € R™*" and b € R™, the convergence result:
2 A k
E[||Axt - AATb|3] < <1 - "ﬁlAn—‘('Q)> IA(x" — ATb)|3.
F
e RGS finds a least squares solution, but usually not the
minimum ¢ norm one for rank-deficient case [MNR15].

[MNR15] A. Ma, D. Needell, and A. Ramdas. Convergence properties of the random-
ized extended Gauss—Seidel and Kaczmarz methods. SIAM J. Matrix Anal. Appl.,
36(4):1590-1604, 2015.
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RK and RGS

® The problem of finding the solution x? of the linear system
Ax = Db can be posed as the following quadratic optimization
problem:

mm—Hx x|3 st. Ax=h.
x€R™ 2

® The corresponding dual problem is

Join 2 LATy +x3 -y b,

where the primal variable x and the dual variable y are
related via the relation
x=A"y+x°

¢ RK can be constructed by applying a randomized coordinate
descent algorithm to the dual problem. On the other hand,
the residual of RGS is just the RK iterate for A'r =0
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Randomized Extended Kaczmarz (REK)

® The normal equations AT Ax = ATb can be written as
ATz:O, Ax=b —z.

® RK for ATz = 0 with z° € b + range(A) yields {z*}°
satisfying
z8 — (I-AADb as k — oco.
Then Ax = b — z¥ — Ax = AATb, which is consistent.

® REK [ZF13] solves AT Ax = ATb via intertwining an iterate
of RK on A"z = 0 with an iterate of RK on Ax = b — z*:

A T, k-1
gk — g1 _ (A.j) = .

1A 4113
k k—1 . A%Xk_l - bZ + sz

x" =x (A"
1A 113

[ZF13] A. Zouzias and N. M. Freris. Randomized extended Kaczmarz for solving least

squares. SIAM J. Matrix Anal. Appl., 34(2):773-793, 2013. /
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Convergence of REK

® The convergence result [Dul9]: V z° € b + range(A) and x°

kpF
E [|lx* — x0] < p¥llx” = x03 + 12 — (1— AAT)b3,
TATE
where
0-12nin(A) 0

x) = (I-ATA)x" + ATb.

¢ REK works for arbitrary (consistent or inconsistent) linear
systems (no assumptions about the dimensions or rank of A).

¢ REK is an RK-RK approach.

[Dul9] K. Du. Tight upper bounds for the convergence of the randomized extended
Kaczmarz and Gauss—Seidel algorithms. Numer. Linear Algebra Appl., 26(3):e2233,
14pp, 2019.
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Randomized Extended Gauss—Seidel (REGS)
® RGS with arbitrary z° for min ||b — Az, gives z* satisfying

AzF 5 AATD as k — oo.

e REGS [MNRI15] solves min ||b — Ax||y via intertwining an
X
iterate of RGS on min ||b — Az||2 with an iterate of RK on
z
Ax = AzF: [Du19)
A.;)T(AZF1—b
gk — g1 _ (A.;) (Az . )I;J,

||A:,j 2

A, (xF1—ZF
et A )

. (AL;)T.
1Al

e REGS and REK are related via z’f{EK =b - Az’f{EGS.

[MNR15] A. Ma, D. Needell, and A. Ramdas. Convergence properties of the random-
ized extended Gauss—Seidel and Kaczmarz methods. SIAM J. Matrix Anal. Appl.,
36(4):1590-1604, 2015.
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Convergence of REGS

® The convergence result [Dul9]: V z° and x°,

k k
E [ix* = x0I] < o¥llx” = x03 + i A — ATb)[3,
[ATE
where
2
(A
p:1—"mm(2), xV=(I-ATA)x" + ATb.
AT

e REGS works for arbitrary (consistent or inconsistent) linear
systems (no assumptions about the dimensions or rank of A).

e REGS is an RGS-RK approach.

[Dul9] K. Du. Tight upper bounds for the convergence of the randomized extended
Kaczmarz and Gauss—Seidel algorithms. Numer. Linear Algebra Appl., 26(3):e2233,
14pp, 2019.
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Convex Optimization Basics [Beck17]

¢ Subdifferential: For a function f:R"™ — R, its subdifferential
at x € R" is defined as

0f(x) = {z € B | f(y) > f(x) + (.y - x), VyecR'}

® ~-strong convexity: A function f: R™ — R is called 7-strongly
convex for a given « > 0 if the following inequality holds for
all x,y € R" and z € 9f(x):

) = f0) + 2.y =) + 2y — I3

1
As an example, the function f(x) = §||XH% + Allx||1 with

A > 0 is 1-strongly convex.

[Beck17] A. Beck. First-order methods in optimization , volume 25 of MOS-SIAM
Series on Optimization. STAM, 2017.
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Convex Optimization Basics [Beck17]

¢ Conjugate function: The conjugate function of f: R® — R at
x € R" is defined as

fr(x) = sup {{x,y) = f(¥)}-

yEeR”?

If f(x) is y-strongly convex, then f*(x) is differentiable, and
zecdf(x) & x=Vf(z).

® Bregman distance: For a convex function f : R” — R, the
Bregman distance between x and y with respect to f and
z € 0f(x) is defined as

Dyu(x,y) == f(y) — f(x) = (z,y — x).

If f is «-strongly convex, then it holds that
Y
Dya(x,y) > 5% = yll3.
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A Linear Equality Constrained Minimization Problem

e Consider the linear equality constrained minimization problem
minimize f(x), s.t. Ax=b,

where the objective function f is v-strongly convex and the
constraint Ax = b is consistent.

® The solution of the minimization problem is unique. The
objective function f contains regularization terms for
promoting certain structures of the underlying solutions.

® By combining the RK algorithm and the gradient of the
conjugate function f*, one obtains the regularized randomized
Kaczmarz (RRK) algorithm [SL19][CQ21].

[SL19] F. Schopfer and D. A. Lorenz. Linear convergence of the randomized sparse
Kaczmarz method. Math. Program., 173(1-2,Ser.A):509-536, 2019.

[CQ21] X. Chen and J. Qin. Regularized Kaczmarz algorithms for tensor recovery.
SIAM J. Imaging Sci., 14(4):1439-1471, 2021.
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Regularized Randomized Kaczmarz (RRK)

The RRK algorithm for solving miny f(x) s.t. Ax =b

Input: A € R™*" b € R™, and maximum number of

iterations iterations maxit.

Output: an approximation of the solution of Iinin f(x).

x=b
Initialize: z° € range(A ") and x* = V f*(2°).
for k=1,2,..., maxit do
Pick i € [m] with probability ||A;.||3/|| Al
A; xFt by,

Set zF = zF"1 — 4 (A"

A3
Set x¥ = V f*(z")

end
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Convergence of RRK [CQ21]

e Assume that the objective function f is y-strongly convex.
Let x, be the unique solution. For all x € R" and
z € Of(x) Nrange(A "), if

1
Dyalx,3x0) < 2|l Al — x0)|I3,
then for all z° € range(A "), the sequences {x*} and {z"} in
the RRK algorithm satisfy
E | Dy (xF, %) | < 5Dy ,0(x,x,)
with

7Y
2B

Bo =
It follows that
2

E [Ihe — ] < 87 Dyao <", ).
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Special Cases of RRK: RK and RSK

e Case 1: f(x) = %HxH% We have v =1 and
Vi(x) =x.
The RRK algorithm becomes the RK algorithm.
e Case 2: f(x) = %HXH% + Al|x|]; with A > 0. We have v = 1 and
V(%) = Sx(x),

where S)(x) is the soft shrinkage function defined
component-wise as

(Sx(x))i = max{|z;| — A\, 0}sign(z;).

The RRK algorithm becomes the randomized sparse
Kaczmarz (RSK) algorithm [SL19].

[SL19] F. Schopfer and D. A. Lorenz. Linear convergence of the randomized sparse
Kaczmarz method. Math. Program., 173(1-2,Ser.A):509-536, 2019.
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RRK: RCD for Dual Problem [Petral5]

¢ The dual problem of minax—p f(x) with b € range(A) is the
unconstrained problem

Juin g(y) = f*(A'y) = (y,b).

The gradient of g(y) is Vg(y) = AVf*(ATy) — b.
The strong duality holds. The primal variable x and the dual
variable y are related through the relation x = Vf*(ATy).
¢ Randomized coordinate descent (RCD) algorithm:
v =yl A V(ATy) - biI:Z'
A [l3 ’

Introducing z*¥ = ATy* and x* = V f*(z*) yields RRK.

[Petral5] S. Petra. Randomized sparse block Kaczmarz as randomized dual block-
coordinate descent. An. Stiing. Univ. “Ovidius” Constanta Ser. Mat., 23(3):129-149,
2015.
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A Combined Optimization Problem

¢ (Consider the combined optimization problem:

minimize f(x), s.t. x € argmin|b — Az|s.
zeR"

® The normal equations AT Ax = ATb can be written as
ATy =0, Ax=b-y.
e An RK-RRK approach:

T k-1

k k-1 (A)'y

y =¥y — ———A.,
1A 13 ’
A xFL— b oy

k k—1 2, ? 7 T

Z =z - (A'7) b
A3 '

xF = Vf*(zh),

with initial iterates

y? € b+range(A), z° erange(AT), x°=vVf*(z").
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Special Cases: REK and ExSRK

1
e Case 1: For f(x) = §Hx||%, by V f*(x) = x, we obtain the
REK algorithm.
1
e Case 2: For f(x) = §HXH% + Al|x|l1 with A > 0, by
Vfi(x) = Sax),
we obtain the extended sparse randomized Kaczmarz

(ExSRK) algorithm [SLTW22]:
k o1 (A Ty

yh =yt - e AL,
A3
A xFE by gk
k k—1 2, 7 7 T
Z =7 - (Av) )
A3 '
xk = §)(z")

[SLTW22] F. Schépfer, D. A. Lorenz, L. Tondji, and M. Winkler. Eztended ran-
domized Kaczmarz method for sparse least squares and impulsive noise problems.

arXiv:2201.08620, 2022.
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Randomized Sparse Extended Gauss—Seidel
® RGS with arbitrary y" for min ||b — Ay||s gives y* satisfying
y

Ay* 5 AATb as k — oo

e A randomized sparse extended Gauss—Seidel (RSEGS)

algorithm:
gk = yhl (A.) T (AyF! - b)I. ,
1A ;13 "
Ai(x"1 —y")
k k—1 2, T
v = A e

Xk = SA(Zk).
with initial iterates
y? eR", 2z erange(AT), x°=Vf*(2").
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A Factorized Linear System

® Consider the following factorized linear system
ABx = b,
where
A cR™ BeR™, rank(A)=rank(B) =/, beR™

® The factorized linear system can be written as two individual
subsystems

Ay =b (possibly inconsistent)

and
Bx =y. (always consistent)

e [s it feasible to solve each subsystem separately?
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RIAs for Factorized Linear Systems

e Motivated by REK and REGS, interlaced randomized
algorithms are proposed for solving factorized linear systems.

® The approach: ALG1-ALG2, where ALG1 is the algorithm
used to solve subsystem Ay = b and ALG2 is the algorithm
used to solve subsystem Bx = y. For example,

(1) The RK-RK algorithm [MNR18]

(2) The REK-RK algorithm [MNR18]

(3) The RGS-RK algorithm [ZWZ22]

All find the minimum ¢ norm (least squares) solution.

® How to find sparse solutions?

[MNR18] A. Ma, D. Needell, and A. Ramdas. [terative methods for solving factorized
linear systems. SIAM J. Matrix Anal. Appl., 39(1):104-122, 2018.

[ZW7Z22] J. Zhao, X. Wang, and J. Zhang. A randomised iterative method for solving
factorised linear systems. Linear Multilinear Algebra, to appear, 2022.
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A Combined Optimization Problem

® Consider the combined optimization problem:
minimize f(x), s.t. x € argmin ||b — ABz||s.
zER"

e We consider the ALG1-ALG2 approach. Specifically, we
interlace the RK algorithm or the RGS algorithm for the
subsystem

Ay =Db

with the RRK algorithm for the linear equality constrained
minimization problem

minimize f(x), s.t. Bx=y.

® The proposed algorithms become the RK-RK algorithm and
1
the RGS-RK algorithm if f(x) = QHXH%
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The RK-RRK algorithm: b € range(AB)

The RK-RRK algorithm for solving minagx=p f(x)

Input: A € R™*‘ B € R*", b € R™, and maximum number of
iterations maxit.

Output: an approximation of the solution of Arélin f(x).

x=b

Initialize: y° = 0, z° € range(B "), and x* = Vf*(2°).
for k=1,2,..., maxit do

Pick j € [m] with probability ||A;.|3/[|A|%

) ALyl —b, -
Set y* = y*—1 — W(AJ)
Pick i € [¢] with probability ||B;.||3/|B||Z
1 B, xF! —yr

Set zF = zF—1 — y——"(B; :)T
IB.:[I3 ’

Set x¥ = V f*(z¥)

end
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RK-RSK and ExSRK

¢ The RK-RRK algorithm becomes the RK-RSK algorithm if
1
F0x) = glIl3 + Al

¢ The iterates of the ExSRK algorithm [SLTW22] for Cx = b

are
Tok—1
k k—1 (C:,j) y
yi=y" - ——1—5—C
1C.;ll5 ”
C;.xF=1 — b, + ¥
k k—1 2, 7 7 T
z° =1z — Ci.)',
ol o)
Xk:‘s’)\(zk)a

with initial iterates y° = b, z € range(C"), and x° = S, (z°).

[SLTW22] F. Schépfer, D. A. Lorenz, L. Tondji, and M. Winkler. Extended ran-
domized Kaczmarz method for sparse least squares and impulsive noise problems.
arXiv:2201.08620, 2022.
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RK-RSK and ExSRK

® Note that the normal equations
Cc'cx=C'b
can be viewed as the factorized linear system
ABx=b
with
A=C', B=C, b=Cb.
We observe that the iterates x*, y*, and z* of the ExSRK

algorithm for
Cx=Db

are equal to X*, b — §*, and Z*, respectively, where X*, 3%,
and z* are the iterates of the RK-RSK algorithm for

ABx = b.
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The RGS-RRK algorithm

The RGS-RRK algorithm for solving minyeargmin, |[b—ABz|| f(X)

Input: A € R™* B € R*", b € R™, and maximum number of

iterations maxit.

Output: an approximation of the solution of min X).
x€argmin, ||b—ABz| 2

Initialize: y° = 0, r” = b, z° € range(B "), and x° = V*(2°).
for k=1,2,..., maxit do

Pick j € [¢] with probability ||A. ;||3/[|A|%

Compute di = (A.;) "t 1/|]|A,j]I3

Set yf = y‘f_l +dy, yF = yl"'_l for I #j

Set r* =rF71 — diA.

Pick i € [¢(] with probability ||B;.||3/||B||%

B;.xF~1 — gk

Set zF = zF-1 — /== (B, )"
T BLp B

Set x* = Vf*(z¥)

end
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Example 1

® A=randn(m,1), B=randn(1,n).

® x, is an s sparse vector with normally distributed non-zero
entries, whose support is randomly generated.

* b = ABx, for b € range(AB).
* b=b+b, for b ¢ range(AB) with b = ABx, and

b, = Nv|bl2/|Nv|2 € null(BTAT) = null(A "),

where the columns of N form an orthonormal basis of
null(A ") and v is a Gaussian vector generated by
v=randn(m-1,1).

e For the proposed algorithms, we use A =1, y° =0, z° = 0,
and the maximum number of iterations maxit=20m.

® m=10000, 1=2500, n=5000, s=20.
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Example 1: Results

e Comparison of RK-RK and RK-RSK
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Example 2

® Let X € R™*™ denote the wine quality data matrix (a sample
of m = 1599 red wines with n = 11 physio-chemical properties
of each wine) obtained from the UCI Machine Learning
Repository [uci].

® The matrices A and B are obtained as follows:
[A,B]=nnmf (X,5). We compute C = AB in MATLAB.

® The condition number of A, B, and C are 23.5, 4.4, and 45.4,
respectively.

® Let x, € R be a 3-sparse vector with support {1,6,11}. The
three nonzero entries of x, are set to be 1.

® For the proposed algorithms, we use A =1, y? =0, z° = 0,
and the maximum number of iterations maxit=10m.

[uci] D. Dua and C. Graff. UCI machine learning repository, 2017. http://archive.
ics.uci.edu/ml.
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Example 2: Results

e Comparison of RSK and RK-RSK
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Summary

® Two new regularized randomized iterative algorithms using
the ALG1-ALG2 approach are proposed to find (least squares)
solutions with certain structures of factorized linear systems.

¢ Computed examples are given to illustrate that the new
algorithms can find sparse (least squares) solutions of
ABx = b and can be better than the existing randomized
iterative algorithms for the corresponding full linear system
Cx = b with C = AB.

¢ Existing acceleration strategies for RK and RGS can be
integrated into our algorithms easily and the corresponding
convergence analysis is straightforward.

® The extension to a factorized linear system with rank-deficient
A and B will be the future work.

36/36



