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The Pseudoinverse Solution of a Linear System

• Consider a linear system of equations

Ax = b, A ∈ Rm×n, b ∈ Rm.

The system is called consistent if b ∈ range(A), otherwise,

inconsistent.

• The pseudoinverse solution A†b, where A† denotes the

Moore–Penrose pseudoinverse of A.

Ax = b rank(A) A†b

consistent = n unique solution

consistent < n unique minimum 2-norm solution

inconsistent = n unique least-squares (LS) solution

inconsistent < n unique minimum 2-norm LS solution
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Sparse (Least Squares) Solutions of a Linear System

• Sparsest solutions:

minimize ‖x‖0 s.t. Ax = b

• The basis pursuit problem:

minimize ‖x‖1 s.t. Ax = b

• The regularized basis pursuit problem

minimize
1

2
‖x‖22 + λ‖x‖1 s.t. Ax = b

• Sparse least squares solutions: replacing Ax = b with the

normal equations

A⊤Ax = A⊤b.
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Sparsity-Promoting Property of ℓ1 Norm

• Comparison of ℓ0, ℓ1, and ℓ2 norms

Figure 1.2 of [BL13]: Two-dimensional ℓ0, ℓ1, and ℓ2 balls and

the solution set {x | Φx = b}. Here c and d are constants with

c a bit less than d. Note that the set {x | ‖x‖0 = 1} coincides

with the coordinate axes.

[BL13] K. Bryan and T. Leise. Making Do with Less: An Introduction to Compressed

Sensing. SIAM Review, 55(3):547–566, 2013
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Randomized Kaczmarz (RK)

The RK algorithm for solving Ax = b [SV09]

Input: A ∈ Rm×n, b ∈ Rm, and maximum number of

iterations maxit.

Output: an approximation of the solution of Ax = b.

Initialize: x0 ∈ Rn.

for k = 1, 2, . . . , maxit do

Pick i ∈ [m] with probability ‖Ai,:‖22/‖A‖2F

Set xk = xk−1 − Ai,:x
k−1 − bi

‖Ai,:‖22
(Ai,:)

⊤

end

[SV09] T. Strohmer and R. Vershynin. A randomized Kaczmarz algorithm with expo-

nential convergence. J. Fourier Anal. Appl., 15(2):262–278, 2009.
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Geometric Interpretation and Convergence of RK

• Geometric interpretation

{x | Ai,:x = bi}

• Suppose that b ∈ range(A). The convergence result:

E
!
‖xk − x0

!‖22
"
≤ ρk‖x0 − x0

!‖22,

where ρ = 1− σ2
min(A)

‖A‖2F
, x0

! = (I−A†A)x0+A†b.

• RK fails to find least squares solutions for inconsistent case

[Needell10].

[Needell10] D. Needell. Randomized Kaczmarz solver for noisy linear systems, BIT,

50(2):395–403, 2010.
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Randomized Gauss–Seidel (RGS)

The RGS algorithm for solving minx ‖b−Ax‖2 [LL10]

Input: A ∈ Rm×n, b ∈ Rm, and maximum number of

iterations maxit.

Output: an approximation of the solution of minx ‖b−Ax‖2.
Initialize: x0 ∈ Rn.

for k = 1, 2, . . . , maxit do

Pick j ∈ [n] with probability ‖A:,j‖22/‖A‖2F

Set xk = xk−1 +
(A:,j)

⊤(b−Axk−1)

‖A:,j‖22
I:,j

end

[LL10] D. J. Leventhal and A. S. Lewis. Randomized methods for linear constraints:

convergence rates and conditioning. Math. Oper. Res., 35(3):641–654, 2010.
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Geometric Interpretation and Convergence of RGS

• Geometric interpretation

The residual rk =

#
I− A:,j(A:,j)

⊤

‖A:,j‖22

$
rk−1.

Here rk := b−Axk.

• For arbitrary A ∈ Rm×n and b ∈ Rm, the convergence result:

E
!
‖Axk −AA†b‖22

"
≤

#
1− σ2

min(A)

‖A‖2F

$k

‖A(x0 −A†b)‖22.

• RGS finds a least squares solution, but usually not the

minimum ℓ2 norm one for rank-deficient case [MNR15].

[MNR15] A. Ma, D. Needell, and A. Ramdas. Convergence properties of the random-

ized extended Gauss–Seidel and Kaczmarz methods. SIAM J. Matrix Anal. Appl.,

36(4):1590–1604, 2015.
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RK and RGS

• The problem of finding the solution x0
! of the linear system

Ax = b can be posed as the following quadratic optimization

problem:

min
x∈Rn

1

2
‖x− x0‖22 s.t. Ax = b.

• The corresponding dual problem is

min
y∈Rm

1

2
‖A⊤y + x0‖22 − y⊤b,

where the primal variable x and the dual variable y are

related via the relation

x = A⊤y + x0.

• RK can be constructed by applying a randomized coordinate

descent algorithm to the dual problem. On the other hand,

the residual of RGS is just the RK iterate for A⊤r = 0.
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Randomized Extended Kaczmarz (REK)

• The normal equations A⊤Ax = A⊤b can be written as

A⊤z = 0, Ax = b− z.

• RK for A⊤z = 0 with z0 ∈ b+ range(A) yields {zk}∞0
satisfying

zk → (I−AA†)b as k → ∞.

Then Ax = b− zk → Ax = AA†b, which is consistent.

• REK [ZF13] solves A⊤Ax = A⊤b via intertwining an iterate

of RK on A⊤z = 0 with an iterate of RK on Ax = b− zk:

zk = zk−1 − (A:,j)
⊤zk−1

‖A:,j‖22
A:,j ,

xk = xk−1 − Ai,:x
k−1 − bi + zki
‖Ai,:‖22

(Ai,:)
⊤.

[ZF13] A. Zouzias and N. M. Freris. Randomized extended Kaczmarz for solving least

squares. SIAM J. Matrix Anal. Appl., 34(2):773–793, 2013.
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Convergence of REK

• The convergence result [Du19]: ∀ z0 ∈ b+ range(A) and x0

E
!
‖xk − x0

!‖22
"
≤ ρk‖x0 − x0

!‖22 +
kρk

‖A‖2F
‖z0 − (I−AA†)b‖22,

where

ρ = 1− σ2
min(A)

‖A‖2F
, x0

! = (I−A†A)x0 +A†b.

• REK works for arbitrary (consistent or inconsistent) linear

systems (no assumptions about the dimensions or rank of A).

• REK is an RK-RK approach.

[Du19] K. Du. Tight upper bounds for the convergence of the randomized extended

Kaczmarz and Gauss–Seidel algorithms. Numer. Linear Algebra Appl., 26(3):e2233,

14pp, 2019.
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Randomized Extended Gauss–Seidel (REGS)

• RGS with arbitrary z0 for min
z

‖b−Az‖2 gives zk satisfying

Azk → AA†b as k → ∞.

• REGS [MNR15] solves min
x

‖b−Ax‖2 via intertwining an

iterate of RGS on min
z

‖b−Az‖2 with an iterate of RK on

Ax = Azk: [Du19]

zk = zk−1 − (A:,j)
⊤(Azk−1 − b)

‖A:,j‖22
I:,j ,

xk = xk−1 − Ai,:(x
k−1 − zk)

‖Ai,:‖22
(Ai,:)

⊤.

• REGS and REK are related via zkREK = b−AzkREGS.

[MNR15] A. Ma, D. Needell, and A. Ramdas. Convergence properties of the random-

ized extended Gauss–Seidel and Kaczmarz methods. SIAM J. Matrix Anal. Appl.,

36(4):1590–1604, 2015.
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Convergence of REGS

• The convergence result [Du19]: ∀ z0 and x0,

E
!
‖xk − x0

!‖22
"
≤ ρk‖x0 − x0

!‖22 +
kρk

‖A‖2F
‖A(z0 −A†b)‖22,

where

ρ = 1− σ2
min(A)

‖A‖2F
, x0

! = (I−A†A)x0 +A†b.

• REGS works for arbitrary (consistent or inconsistent) linear

systems (no assumptions about the dimensions or rank of A).

• REGS is an RGS-RK approach.

[Du19] K. Du. Tight upper bounds for the convergence of the randomized extended

Kaczmarz and Gauss–Seidel algorithms. Numer. Linear Algebra Appl., 26(3):e2233,

14pp, 2019.
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Convex Optimization Basics [Beck17]

• Subdifferential: For a function f : Rn → R, its subdifferential
at x ∈ Rn is defined as

∂f(x) := {z ∈ Rn | f(y) ≥ f(x) + 〈z,y − x〉, ∀ y ∈ Rn}.

• γ-strong convexity: A function f : Rn → R is called γ-strongly

convex for a given γ > 0 if the following inequality holds for

all x,y ∈ Rn and z ∈ ∂f(x):

f(y) ≥ f(x) + 〈z,y − x〉+ γ

2
‖y − x‖22.

As an example, the function f(x) =
1

2
‖x‖22 + λ‖x‖1 with

λ ≥ 0 is 1-strongly convex.

[Beck17] A. Beck. First-order methods in optimization , volume 25 of MOS-SIAM

Series on Optimization. SIAM, 2017.
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Convex Optimization Basics [Beck17]

• Conjugate function: The conjugate function of f : Rn → R at

x ∈ Rn is defined as

f∗(x) := sup
y∈Rn

{〈x,y〉 − f(y)}.

If f(x) is γ-strongly convex, then f∗(x) is differentiable, and

z ∈ ∂f(x) ⇔ x = ∇f∗(z).

• Bregman distance: For a convex function f : Rn → R, the
Bregman distance between x and y with respect to f and

z ∈ ∂f(x) is defined as

Df,z(x,y) := f(y)− f(x)− 〈z,y − x〉.

If f is γ-strongly convex, then it holds that

Df,z(x,y) ≥
γ

2
‖x− y‖22.
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A Linear Equality Constrained Minimization Problem

• Consider the linear equality constrained minimization problem

minimize f(x), s.t. Ax = b,

where the objective function f is γ-strongly convex and the

constraint Ax = b is consistent.

• The solution of the minimization problem is unique. The

objective function f contains regularization terms for

promoting certain structures of the underlying solutions.

• By combining the RK algorithm and the gradient of the

conjugate function f∗, one obtains the regularized randomized

Kaczmarz (RRK) algorithm [SL19][CQ21].

[SL19] F. Schöpfer and D. A. Lorenz. Linear convergence of the randomized sparse

Kaczmarz method. Math. Program., 173(1-2,Ser.A):509–536, 2019.

[CQ21] X. Chen and J. Qin. Regularized Kaczmarz algorithms for tensor recovery.

SIAM J. Imaging Sci., 14(4):1439–1471, 2021.
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Regularized Randomized Kaczmarz (RRK)

The RRK algorithm for solving minx f(x) s.t. Ax = b

Input: A ∈ Rm×n, b ∈ Rm, and maximum number of

iterations iterations maxit.

Output: an approximation of the solution of min
Ax=b

f(x).

Initialize: z0 ∈ range(A⊤) and x0 = ∇f∗(z0).

for k = 1, 2, . . . , maxit do

Pick i ∈ [m] with probability ‖Ai,:‖22/‖A‖2F

Set zk = zk−1 − γ
Ai,:x

k−1 − bi
‖Ai,:‖22

(Ai,:)
⊤

Set xk = ∇f∗(zk)

end
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Convergence of RRK [CQ21]

• Assume that the objective function f is γ-strongly convex.

Let x! be the unique solution. For all x ∈ Rn and

z ∈ ∂f(x) ∩ range(A⊤), if

Df,z(x,x!) ≤
1

ν0
‖A(x− x!)‖22,

then for all z0 ∈ range(A⊤), the sequences {xk} and {zk} in

the RRK algorithm satisfy

E
!
Df,zk(x

k,x!)
"
≤ βk

0Df,z0(x
0,x!)

with

β0 = 1− γν0
2‖B‖2F

.

It follows that

E
!
‖xk − x!‖22

"
≤ βk

0

2

γ
Df,z0(x

0,x!).
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Special Cases of RRK: RK and RSK

• Case 1: f(x) =
1

2
‖x‖22. We have γ = 1 and

∇f∗(x) = x.

The RRK algorithm becomes the RK algorithm.

• Case 2: f(x) =
1

2
‖x‖22+λ‖x‖1 with λ > 0. We have γ = 1 and

∇f∗(x) = Sλ(x),

where Sλ(x) is the soft shrinkage function defined

component-wise as

(Sλ(x))i = max{|xi|− λ, 0}sign(xi).

The RRK algorithm becomes the randomized sparse

Kaczmarz (RSK) algorithm [SL19].

[SL19] F. Schöpfer and D. A. Lorenz. Linear convergence of the randomized sparse

Kaczmarz method. Math. Program., 173(1-2,Ser.A):509–536, 2019.
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RRK: RCD for Dual Problem [Petra15]

• The dual problem of minAx=b f(x) with b ∈ range(A) is the

unconstrained problem

min
y∈Rm

g(y) := f∗(A⊤y)− 〈y,b〉.

The gradient of g(y) is ∇g(y) = A∇f∗(A⊤y)− b.

The strong duality holds. The primal variable x and the dual

variable y are related through the relation x = ∇f∗(A⊤y).

• Randomized coordinate descent (RCD) algorithm:

yk = yk−1 − Ai,:∇f∗(A⊤yk−1)− bi
‖Ai,:‖22

I:,i

Introducing zk = A⊤yk and xk = ∇f∗(zk) yields RRK.

[Petra15] S. Petra. Randomized sparse block Kaczmarz as randomized dual block-

coordinate descent. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat., 23(3):129–149,

2015.

21/36



A Combined Optimization Problem

• Consider the combined optimization problem:

minimize f(x), s.t. x ∈ argmin
z∈Rn

‖b−Az‖2.

• The normal equations A⊤Ax = A⊤b can be written as

A⊤y = 0, Ax = b− y.

• An RK-RRK approach:

yk = yk−1 − (A:,j)
⊤yk−1

‖A:,j‖22
A:,j ,

zk = zk−1 − γ
Ai,:x

k−1 − bi + yki
‖Ai,:‖22

(Ai,:)
⊤,

xk = ∇f∗(zk),

with initial iterates

y0 ∈ b+ range(A), z0 ∈ range(A⊤), x0 = ∇f∗(z0).
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Special Cases: REK and ExSRK

• Case 1: For f(x) =
1

2
‖x‖22, by ∇f∗(x) = x, we obtain the

REK algorithm.

• Case 2: For f(x) =
1

2
‖x‖22 + λ‖x‖1 with λ > 0, by

∇f∗(x) = Sλ(x),

we obtain the extended sparse randomized Kaczmarz

(ExSRK) algorithm [SLTW22]:

yk = yk−1 − (A:,j)
⊤yk−1

‖A:,j‖22
A:,j ,

zk = zk−1 − Ai,:x
k−1 − bi + yki
‖Ai,:‖22

(Ai,:)
⊤,

xk = Sλ(z
k)

[SLTW22] F. Schöpfer, D. A. Lorenz, L. Tondji, and M. Winkler. Extended ran-

domized Kaczmarz method for sparse least squares and impulsive noise problems.

arXiv:2201.08620, 2022.
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Randomized Sparse Extended Gauss–Seidel

• RGS with arbitrary y0 for min
y

‖b−Ay‖2 gives yk satisfying

Ayk → AA†b as k → ∞.

• A randomized sparse extended Gauss–Seidel (RSEGS)

algorithm:

yk = yk−1 − (A:,j)
⊤(Ayk−1 − b)

‖A:,j‖22
I:,j ,

zk = zk−1 − Ai,:(x
k−1 − yk)

‖Ai,:‖22
(Ai,:)

⊤,

xk = Sλ(z
k).

with initial iterates

y0 ∈ Rn, z0 ∈ range(A⊤), x0 = ∇f∗(z0).
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A Factorized Linear System

• Consider the following factorized linear system

ABx = b,

where

A ∈ Rm×ℓ, B ∈ Rℓ×n, rank(A) = rank(B) = ℓ, b ∈ Rm.

• The factorized linear system can be written as two individual

subsystems

Ay = b (possibly inconsistent)

and

Bx = y. (always consistent)

• Is it feasible to solve each subsystem separately?
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RIAs for Factorized Linear Systems

• Motivated by REK and REGS, interlaced randomized

algorithms are proposed for solving factorized linear systems.

• The approach: ALG1-ALG2, where ALG1 is the algorithm

used to solve subsystem Ay = b and ALG2 is the algorithm

used to solve subsystem Bx = y. For example,

(1) The RK-RK algorithm [MNR18]

(2) The REK-RK algorithm [MNR18]

(3) The RGS-RK algorithm [ZWZ22]

All find the minimum ℓ2 norm (least squares) solution.

• How to find sparse solutions?

[MNR18] A. Ma, D. Needell, and A. Ramdas. Iterative methods for solving factorized

linear systems. SIAM J. Matrix Anal. Appl., 39(1):104–122, 2018.

[ZWZ22] J. Zhao, X. Wang, and J. Zhang. A randomised iterative method for solving

factorised linear systems. Linear Multilinear Algebra, to appear, 2022.
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A Combined Optimization Problem

• Consider the combined optimization problem:

minimize f(x), s.t. x ∈ argmin
z∈Rn

‖b−ABz‖2.

• We consider the ALG1-ALG2 approach. Specifically, we

interlace the RK algorithm or the RGS algorithm for the

subsystem

Ay = b

with the RRK algorithm for the linear equality constrained

minimization problem

minimize f(x), s.t. Bx = y.

• The proposed algorithms become the RK-RK algorithm and

the RGS-RK algorithm if f(x) =
1

2
‖x‖22.
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The RK-RRK algorithm: b ∈ range(AB)

The RK-RRK algorithm for solving minABx=b f(x)

Input: A ∈ Rm×ℓ, B ∈ Rℓ×n, b ∈ Rm, and maximum number of

iterations maxit.

Output: an approximation of the solution of min
ABx=b

f(x).

Initialize: y0 = 0, z0 ∈ range(B⊤), and x0 = ∇f∗(z0).

for k = 1, 2, . . . , maxit do

Pick j ∈ [m] with probability ‖Aj,:‖22/‖A‖2F

Set yk = yk−1 − Aj,:y
k−1 − bj

‖Aj,:‖22
(Aj,:)

⊤

Pick i ∈ [ℓ] with probability ‖Bi,:‖22/‖B‖2F

Set zk = zk−1 − γ
Bi,:x

k−1 − yki
‖Bi,:‖22

(Bi,:)
⊤

Set xk = ∇f∗(zk)

end
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RK-RSK and ExSRK

• The RK-RRK algorithm becomes the RK-RSK algorithm if

f(x) =
1

2
‖x‖22 + λ‖x‖1.

• The iterates of the ExSRK algorithm [SLTW22] for Cx = b

are

yk = yk−1 − (C:,j)
⊤yk−1

‖C:,j‖22
C:,j ,

zk = zk−1 − Ci,:x
k−1 − bi + yki
‖Ci,:‖22

(Ci,:)
⊤,

xk = Sλ(z
k),

with initial iterates y0 = b, z0 ∈ range(C⊤), and x0 = Sλ(z
0).

[SLTW22] F. Schöpfer, D. A. Lorenz, L. Tondji, and M. Winkler. Extended ran-

domized Kaczmarz method for sparse least squares and impulsive noise problems.

arXiv:2201.08620, 2022.
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RK-RSK and ExSRK

• Note that the normal equations

C⊤Cx = C⊤b

can be viewed as the factorized linear system

%A%Bx = %b

with
%A = C⊤, %B = C, %b = C⊤b.

We observe that the iterates xk, yk, and zk of the ExSRK

algorithm for

Cx = b

are equal to %xk, b− %yk, and %zk, respectively, where %xk, %yk,

and %zk are the iterates of the RK-RSK algorithm for

%A%Bx = %b.
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The RGS-RRK algorithm

The RGS-RRK algorithm for solving minx∈argminz ‖b−ABz‖2
f(x)

Input: A ∈ Rm×ℓ, B ∈ Rℓ×n, b ∈ Rm, and maximum number of

iterations maxit.

Output: an approximation of the solution of min
x∈argminz ‖b−ABz‖2

f(x).

Initialize: y0 = 0, r0 = b, z0 ∈ range(B⊤), and x0 = ∇f∗(z0).

for k = 1, 2, . . . , maxit do

Pick j ∈ [ℓ] with probability ‖A:,j‖22/‖A‖2F
Compute dk = (A:,j)

⊤rk−1/‖A:,j‖22
Set ykj = yk−1

j + dk, y
k
l = yk−1

l for l ∕= j

Set rk = rk−1 − dkA:,j

Pick i ∈ [ℓ] with probability ‖Bi,:‖22/‖B‖2F
Set zk = zk−1 − γ

Bi,:x
k−1 − yki

‖Bi,:‖22
(Bi,:)

⊤

Set xk = ∇f∗(zk)

end
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Example 1

• A=randn(m,l), B=randn(l,n).

• x! is an s sparse vector with normally distributed non-zero

entries, whose support is randomly generated.

• b = ABx! for b ∈ range(AB).

• b = %b+ %b⊥ for b /∈ range(AB) with %b = ABx! and

%b⊥ = Nv‖%b‖2/‖Nv‖2 ∈ null(B⊤A⊤) = null(A⊤),

where the columns of N form an orthonormal basis of

null(A⊤) and v is a Gaussian vector generated by

v=randn(m-l,1).

• For the proposed algorithms, we use λ = 1, y0 = 0, z0 = 0,

and the maximum number of iterations maxit=20m.

• m=10000, l=2500, n=5000, s=20.
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Example 1: Results

• Comparison of RK-RK and RK-RSK

0 0.5 1 1.5 2
105

10-10

10-5

100

0 0.5 1 1.5 2
105

10-10

10-5

100

0 1000 2000 3000 4000 5000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

• Comparison of RGS-RK and RGS-RSK

0 0.5 1 1.5 2
105

10-10

10-5

100

0 0.5 1 1.5 2
105

10-10

10-5

100

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1000 2000 3000 4000 5000

33/36



Example 2

• Let X ∈ Rm×n denote the wine quality data matrix (a sample

of m = 1599 red wines with n = 11 physio-chemical properties

of each wine) obtained from the UCI Machine Learning

Repository [uci].

• The matrices A and B are obtained as follows:

[A,B]=nnmf(X,5). We compute C = AB in MATLAB.

• The condition number of A, B, and C are 23.5, 4.4, and 45.4,

respectively.

• Let x! ∈ R11 be a 3-sparse vector with support {1, 6, 11}. The
three nonzero entries of x! are set to be 1.

• For the proposed algorithms, we use λ = 1, y0 = 0, z0 = 0,

and the maximum number of iterations maxit=10m.

[uci] D. Dua and C. Graff. UCI machine learning repository, 2017. http://archive.

ics.uci.edu/ml.
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Example 2: Results

• Comparison of RSK and RK-RSK
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Summary

• Two new regularized randomized iterative algorithms using

the ALG1-ALG2 approach are proposed to find (least squares)

solutions with certain structures of factorized linear systems.

• Computed examples are given to illustrate that the new

algorithms can find sparse (least squares) solutions of

ABx = b and can be better than the existing randomized

iterative algorithms for the corresponding full linear system

Cx = b with C = AB.

• Existing acceleration strategies for RK and RGS can be

integrated into our algorithms easily and the corresponding

convergence analysis is straightforward.

• The extension to a factorized linear system with rank-deficient

A and B will be the future work.
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