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Block two-by-two linear systems

• Nonsymmetric saddle-point linear systems of the form:


M A⊤

B 0

 
x

y


=


0

b


,

where M ∈ Rm×m is invertible, A,B ∈ Rn×m are nonzero,

and b ∈ Rn is nonzero.

• Nonsymmetric partitioned linear systems of the form:


λI A

B µI

 
x

y


=


b

c


,

where A ∈ Rm×n, B ∈ Rn×m, and b ∈ Rm, and c ∈ Rn.

Note that λ and/or µ may be zero.
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Review papers and books

• Michele Benzi, Gene H. Golub, and Jörg Liesen

Numerical solution of saddle point problems.

Acta Numerica (2005), pp. 1137.
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Nonsymmetric saddle-point linear systems

• Nonsymmetric saddle-point linear systems of the form:

M A⊤

B 0

 
x

y


=


0

b


,

where M ∈ Rm×m is invertible.
• Monolithic methods: solving the system as a whole, for

example, GMRES

Segregated methods: exploiting the block structure,

excluding the preconditioning stage, for example, SPMR,

SPQMR, nsLSQR

R. Estrin and C. Greif. SPMR: A family of saddle-point minimum residual solvers. SISC,

Vol. 40, No. 3 (2018)

K. Du, J.-J. Fan, and F. Wang. nsLSQR: A quasi-minimum residual method for nonsym-

metric saddle-point linear systems. (2024)
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Simultaneous bidiagonalization via M-conjugacy
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Simultaneous bidiagonalization via M-conjugacy

• Simultaneous bidiagonalization via M-conjugacy:

AWk = Vk+1Ck+1,k, A⊤Vk+1 = MUk+1C
⊤
k+1,

BUk = Zk+1Fk+1,k, B⊤Zk+1 = M⊤Wk+1F
⊤
k+1,

W⊤
k MUk = V⊤

k Vk = Z⊤Zk = Ik,

where

Uk =

u1 · · · uk


, Vk =


v1 · · · vk


,

Wk =

w1 · · · wk


, Zk =


z1 · · · zk


,

Ck = bidiag(βi,αi), Ck+1,k =


Ck

βk+1e
⊤
k


,

Fk = bidiag(δi, γi), Fk+1,k =


Fk

δk+1e
⊤
k


.
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SPMR-SC

• The kth SPMR-SC iterate is xk = Ukxk, yk = Vkyk, where

xk

yk


= argmin

x∈Rk, y∈Rk




0

δ1e1


−


Ik C⊤

k

Fk+1,k 0

 
x
y


2

.

• Equivalent to USYMQR applied to the Schur complement

system:

−Sy = b, S = BM−1A⊤.

• SPMR-SC can be more numerically stable than USYMQR

when the Schur complement is ill-conditioned.

R. Estrin and C. Greif. SPMR: A family of saddle-point minimum residual solvers. SISC,

Vol. 40, No. 3 (2018)

M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gradient-type methods for

unsymmetric linear equations. SINUM, Vol. 25, Iss. 4 (1988)
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Example: an ill-conditioned Schur complement

cond(A) ≈ 105, cond(B) ≈ 105, cond(S) ≈ 108
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Simultaneous bidiagonalization via biorthogonality
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Simultaneous bidiagonalization via biorthogonality

• Simultaneous bidiagonalization via biorthogonality:

AWk = Zk+1Ck+1,k, A⊤Vk+1 = MUk+1C
⊤
k+1,

BUk = Vk+1Fk+1,k, B⊤Zk+1 = M⊤Uk+1F
⊤
k+1,

W⊤
k MUk = V⊤

k Zk = Ik,

where

Uk =

u1 · · · uk


, Vk =


v1 · · · vk


,

Wk =

w1 · · · wk


, Zk =


z1 · · · zk


,

Ck = bidiag(βi,αi), Ck+1,k =


Ck

βk+1e
⊤
k


,

Fk = bidiag(δi, γi), Fk+1,k =


Fk

δk+1e
⊤
k


.
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SPQMR-SC

• The kth SPQMR-SC iterate is xk = Ukxk, yk = Vkyk,

where
xk

yk


= argmin

x∈Rk, y∈Rk




0

δ1e1


−


Ik C⊤

k

Fk+1,k 0

 
x
y


2

.

• Equivalent to QMR applied to the Schur complement

system:

−Sy = b, S = BM−1A⊤.

• The convergence of SPMR-SC is monotonic, while the

convergence of SPQMR-SC is erratic.

R. Estrin and C. Greif. SPMR: A family of saddle-point minimum residual solvers. SISC,

Vol. 40, No. 3 (2018)

R. W. Freund and N. M. Nachtigal. QMR: A Quasi-Minimal Residual Method for Non-

Hermitian Linear-Systems. NM, Vol. 60, Iss. 3 (1991)
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Bidiagonal-Hessenberg reduction
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Bidiagonal-Hessenberg reduction

• Bidiagonal-Hessenberg reduction:

A⊤Uk = MVkC
⊤
k , U⊤

k+1Uk+1 = Ik+1,

BVk = Uk+1Hk+1,k = UkHk + βk+1uk+1e
⊤
k ,

where

Uk =

u1 · · · uk


, Vk =


v1 · · · vk


,

Ck =





α1

β2 α2

. . . . . .

βk αk




, Hk+1,k =





h11 · · · h1k

h21
. . .

...
. . . hkk

hk+1,k




.
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nsLSQR

• The kth nsLSQR iterate is xk = Vkxk, yk = Ukyk, where


xk

yk


= argmin

x∈Rk, y∈Rk




0

β1e1


−


Ik C⊤

k

Hk+1,k 0

 
x
y


2

.

• Equivalent to GMRES applied to the Schur complement

system:

−Sy = b, S = BM−1A⊤.

• nsLSQR can be more numerically stable than GMRES when

the Schur complement is ill-conditioned.

K. Du, J.-J. Fan, and F. Wang. nsLSQR: A quasi-minimum residual method for nonsym-

metric saddle-point linear systems. (2024)
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Example: an ill-conditioned Schur complement

cond(A) ≈ 7× 103, cond(B) ≈ 7× 103, cond(S) ≈ 5× 107
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Example: Flow over an obstacle (IFISS)
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Nonsymmetric partitioned linear systems

• Nonsymmetric partitioned linear systems of the form

λI A

B µI

 
x

y


=


b

c


.

Note that λ and/or µ may be zero.
• Monolithic methods: solving the system as a whole, for

example, GMRES

Segregated methods: exploiting the block structure,

excluding the preconditioning stage, for example, GPMR,

GPBiLQ, GPQMR

A. Montoison and D. Orban. GPMR: An iterative method for unsymmetric partitioned

linear systems. SIMAX, Vol. 44, No. 1 (2023)

K. Du, J.-J. Fan, and F. Wang. GPBiLQ and GPQMR: Two iterative methods for unsym-

metric partitioned linear systems. arXiv:2401.02608 (2024)
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Simultaneous orthogonal Hessenberg reduction
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Simultaneous orthogonal Hessenberg reduction

• Simultaneous orthogonal Hessenberg reduction

AUk = VkHk + hk+1,kvk+1e
⊤
k = Vk+1Hk+1,k,

BVk = UkFk + fk+1,kuk+1e
⊤
k = Uk+1Fk+1,k,

V⊤
k+1Vk+1 = U⊤

k+1Uk+1 = Ik+1,

where

Uk =

u1 u2 · · · uk


, Vk =


v1 v2 · · · vk


,

and

Hk+1,k =





h11 · · · h1k

h21
. . .

...
. . . hkk

hk+1,k




,Fk+1,k =





f11 · · · f1k

f21
. . .

...
. . . fkk

fk+1,k




.
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GPMR

• The kth GPMR iterate is

xk

yk


= argmin

x∈range(Vk), y∈range(Uk)




b

c


−


λI A

B µI

 
x

y


2

.

• Equivalent to Block-GMRES:

λI A

B µI

 
x1 x2

y1 y2


=


b 0

0 c


.

• GPMR terminates significantly earlier than GMRES on a

residual-based stopping criterion with an improvement up to

50% in terms of number of iterations.

A. Montoison and D. Orban. GPMR: An iterative method for unsymmetric partitioned

linear systems. SIMAX, Vol. 44, No. 1 (2023)
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Example: A = well1850, B = illc1850

λ = 1, µ = 0
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Randomized Numerical Linear Algebra +

• Arguably, the most exciting recent development in NLA is

the advent of new randomized algorithms that are fast,

scalable, robust, and reliable.

• Intelligent solvers.

M. Dereziński, Michael W. Mahoney. Recent and Upcoming Developments in Randomized

Numerical Linear Algebra for Machine Learning. arXiv:2406.11151 (2024)

A. Kireeva and J. A. Tropp. Randomized matrix computations: Themes and variations.

arXiv:2402.17873 (2024)

J. A. Tropp and R. J. Webber. Randomized algorithms for low-rank matrix approximation:

Design, analysis, and applications. arXiv:2306.12418 (2023)

R. Murray et al. Randomized Numerical Linear Algebra : A perspective on the field with

an eye to software, arXiv:2302.11474 (2023)

Haifeng Zou, Xiaowen Xu, Chen-Song Zhang. A Survey on Intelligent Iterative Methods

for Solving Sparse Linear Algebraic Equations. arXiv:2310.06630 (2023)
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Randomized Gram–Schmidt process

W = QR, ΘW = ΘQR, (ΘQ)⊤(ΘQ) = Im, cond(Q) is small

O. Balabanov and L. Grigori. Randomized Gram–Schmidt process with application to GM-

RES. SISC, Vol. 44, No. 3 (2022)
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Randomized GMRES (rGMRES) for Ax = b

• (ΘQm)
⊤(ΘQm) = Im and Qm is nonorthogonal.

• rGMRES: xm = Qmym, where ym solves

min
y

Hm+1,my − r11e12.

• rGMRES2 ≤ rrGMRES2 ≤ const · rGMRES2 whp.
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Sketched GMRES (sGMRES) for Ax = b

• Columns of B form a basis of the Krylov subspace Kj(A,b).
• GMRES: xB = By, where Arnoldi process is used for B

and y solves the overdetermined least-squares problem

min
y

ABy − b2.

• sGMRES uses “skecth-and-solve” and is faster: x = By,
where B can be a nonorthogonal basis (for example, using

k-truncated Arnoldi) and y solves the sketched problem

min
y

S(ABy − b)2.

• rGMRES2 ≤ rsGMRES2 ≤ const · rGMRES2 whp.

Y. Nakatsukasa and J. A. Tropp. Fast and accurate randomized algorithms for linear systems

and eigenvalue problems. SIMAX, Vol. 45, No. 2 (2024)
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sGMRES + k-truncated Arnoldi
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rGMRES vs sGMRES

• rGMRES uses sketching to reduce the orthogonalization cost.

• sGMRES uses “sketch-and-solve” to reduce computational

cost, is asymptotically faster, and has more flexibility.

O. Balabanov and L. Grigori. Randomized Gram–Schmidt process with application to GM-

RES. SISC, Vol. 44, No. 3 (2022)

Y. Jang, L. Grigori, E. Martin, and C. Content. Randomized flexible GMRES with deflated

restarting. Numer. Algorithms (2024)

Y. Nakatsukasa and J. A. Tropp. Fast and accurate randomized algorithms for linear systems

and eigenvalue problems. SIMAX, Vol. 45, No. 2 (2024)

S. Güttel and I. Simunec. A sketch-and-select Arnoldi process. SISC, Vol. 46, No. 4 (2024)

L. Burke, S. Güttel, and K. Soodhalter. GMRES with randomized sketching and deflated

restarting. arXiv:2311.14206 (2023)

D. Palitta, M. Schweitzer, and V. Simoncini. Sketched and truncated polynomial Krylov

subspace methods Matrix Sylvester equations. Math. Comp., (2024)
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Summary

• We have presented nsLSQR for nonsymmetric saddle-point

linear systems.

• nsLSQR is mathematically equivalent to GMRES applied to

the corresponding Schur complement system, but may be

numerically superior.

• nsLSQR usually is faster than SPMR-SC and SPQMR-SC in

terms of the number of iterations, and if the iteration cost is

dominated by the M-solve rather than reorthogonalization,

then nsLSQR should be the preferred method.

• The ideas of rGMRES and sGMRES can be used for GPMR

and nsLSQR.

• Intelligent iterative methods for block two-by-two linear

systems?
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Thanks!


