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Symmetric quasi-definite (SQD) linear systems

• M ∈ Rm×m and N ∈ Rn×n are SPD, A ∈ Rm×n is nonzero,

b ∈ Rm, and c ∈ Rn:
󰀗
M A

A⊤ −N

󰀘 󰀗
x

y

󰀘
=

󰀗
b

c

󰀘
.

• Computational optimization and computational partial

differential equations, etc.

• Symmetric, indefinite, nonsingular

• Monolithic methods: solving the system as a whole, for

example, SYMMLQ, MINRES

Segregated methods: exploiting the block structure,

excluding the preconditioning stage, for example, TriCG,

TriMR
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Review papers and books

• Michele Benzi, Gene H. Golub, and Jörg Liesen

Numerical solution of saddle point problems.

Acta Numerica (2005), pp. 1–137.
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The generalized SSY tridiagonalization

M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gradient-type methods for

unsymmetric linear equations. SINUM, Vol. 25, Iss. 4 (1988)
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The generalized SSY tridiagonalization

• The generalized Saunders–Simon–Yip tridiagonalization:

AVk = MUk+1Tk+1,k = MUkTk + βk+1Muk+1e
⊤
k ,

A⊤Uk = NVk+1T
⊤
k,k+1 = NVkT

⊤
k + γk+1Nvk+1e

⊤
k ,

U⊤
k+1MUk+1 = V⊤

k+1NVk+1 = Ik+1,

where

Uk =
󰀅
u1 u2 · · · uk

󰀆
, Vk =

󰀅
v1 v2 · · · vk

󰀆
,

Tk = tridiag(βi,αi, γi+1),

and

Tk+1,k =

󰀗
Tk

βk+1e
⊤
k

󰀘
, Tk,k+1 =

󰀅
Tk γk+1ek

󰀆
.

6/30



TriCG

• Assume that no breakdowns occur for the first k steps, i.e.,

Uk, Vk, and Tk are well defined. The kth TriCG iterate is
󰀗
xk

yk

󰀘
=

󰀗
Uk 0

0 Vk

󰀘 󰀗
Ik Tk

T⊤
k −Ik

󰀘−1 󰀗
β1e1
γ1e1

󰀘
,

which satisfies the Galerkin condition
󰀗
Uk 0

0 Vk

󰀘⊤ 󰀕󰀗
b

c

󰀘
−

󰀗
M A

A⊤ −N

󰀘 󰀗
xk

yk

󰀘󰀖
= 0.

• Equivalent to preconditioned Block-CG:
󰀗
M A

A⊤ −N

󰀘 󰀗
x1 x2

y1 y2

󰀘
=

󰀗
b 0

0 c

󰀘
.

A. Montoison and D. Orban. TriCG and TriMR: Two iterative methods for symmetric

quasi-definite systems. SISC, Vol. 43, Iss. 4 (2021)

7/30



Example: M = I, N = I, A = lp osa 07
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TriMR

• The kth TriMR iterate is
󰀗
xk

yk

󰀘
= argmin

x∈range(Uk), y∈range(Vk)

󰀐󰀐󰀐󰀐

󰀗
b

c

󰀘
−

󰀗
M A

A⊤ −N

󰀘 󰀗
x

y

󰀘󰀐󰀐󰀐󰀐
H−1

,

where

H =

󰀗
M 0

0 N

󰀘
.

• Equivalent to preconditioned Block-MINRES:

󰀗
M A

A⊤ −N

󰀘 󰀗
x1 x2

y1 y2

󰀘
=

󰀗
b 0

0 c

󰀘
.

A. Montoison and D. Orban. TriCG and TriMR: Two iterative methods for symmetric

quasi-definite systems. SISC, Vol. 43, Iss. 4 (2021)
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Example: M = I, N = I, A = lp osa 07
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The subproblem of TriMR

Let

Wk =

󰀗
Uk 0

0 Vk

󰀘
Π2k, Π2k =

󰀅
e1 ek+1 · · · ek e2k

󰀆
,

and

Sk+1,k = Π⊤
2k+2

󰀵

󰀹󰀹󰀹󰀷

󰀗
Ik
0

󰀘
Tk+1,k

T⊤
k,k+1 −

󰀗
Ik
0

󰀘

󰀶

󰀺󰀺󰀺󰀸
Π2k =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

Θ1 Ψ2

Ψ⊤
2 Θ2

. . .
. . . . . . Ψk

. . . Θk

Ψk+1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸
,

where

Θk =

󰀗
1 αk

αk −1

󰀘
and Ψk =

󰀗
0 γk
βk 0

󰀘
.
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The subproblem of TriMR

We have 󰀗
M A

A⊤ −N

󰀘
Wk = HWk+1Sk+1,k.

Then the kth TriMR iterate can be determined by
󰀗
xk

yk

󰀘
= Wkzk

where zk ∈ R2k solves

min
z∈R2k

󰀂Sk+1,kz− (β1e1 + γ1e2)󰀂.

The vector zk can be determined via the QR factorization

Sk+1,k = Qk

󰀗
Rk

0

󰀘
,
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The subproblem of TriMR

where

Qk ∈ R(2k+2)×(2k+2)

is a product of reflections, and

Rk =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

δ1 σ1 η1 λ1 µ1

. . . . . . . . . . . . . . .
. . . . . . . . . . . . µ2k−4

. . . . . . . . . λ2k−3

. . . . . . η2k−2

. . . σ2k−1

δ2k

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

∈ R(2k)×(2k).
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The subproblem of TriMR

Theorem (Rk has only three nonzero diagonals)

The upper triangular matrix Rk of the QR factorization has the

following form:

Rk =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

δ1 0 η1 0 µ1

. . . . . . . . . . . . . . .
. . . . . . . . . . . . µ2k−4

. . . . . . . . . 0
. . . . . . η2k−2

. . . 0

δ2k

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.
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Breakdowns of gSSY

• gSSY must break down in ℓ ≤ min(m,n) steps in exact

arithmetic, and either βℓ+1 = 0 or βℓ+1 ∕= 0 and γℓ+1 = 0.
• βℓ+1 = γℓ+1 = 0 ensures a lucky breakdown.
• When βℓ+1 and γℓ+1 are not simultaneous zero, unlucky

breakdowns may occur.
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Unlucky breakdowns of gSSY

Example (The case that βℓ+1 = 0 and γℓ+1 ∕= 0)

The solution to the SQD linear system with

M = N = I3, A =

󰀵

󰀷
−1 2 0

1 −1 1

0 0 −1

󰀶

󰀸 , b = c =

󰀵

󰀷
1

0

0

󰀶

󰀸 ,

is
󰀅
1 2 1 −3 0 1

󰀆⊤
/4. gSSY breaks down at step ℓ = 2

with βℓ+1 = 0, and we have γℓ+1 = 1 ∕= 0 and

Uℓ = Vℓ =
󰀅
e1 e2

󰀆
. Obviously,

󰀅
1 2 1 −3 0 1

󰀆⊤
/∈ range

󰀕󰀗
Uℓ 0

0 Vℓ

󰀘󰀖
.
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Unlucky breakdowns of gSSY

Example (The case that βℓ+1 ∕= 0 and γℓ+1 = 0)

The solution to the SQD linear system with

M = N = I3, A =

󰀵

󰀷
−1 1 0

3 −1 0

0 1 −1

󰀶

󰀸 , b = c =

󰀵

󰀷
1

0

0

󰀶

󰀸 ,

is
󰀅
11 8 −1 −2 2 1

󰀆⊤
/15. gSSY breaks down at step

ℓ = 2 with βℓ+1 = 1 ∕= 0 and γℓ+1 = 0, and we have Uℓ+1 = I3,

Vℓ =
󰀅
e1 e2

󰀆
. Obviously,

󰀅
11 8 −1 −2 2 1

󰀆⊤
/∈ range

󰀕󰀗
Uℓ+1 0

0 Vℓ

󰀘󰀖
.
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Improved generalized SSY tridiagonalization
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Breakdowns of igSSY

• Assume that gSSY breaks down at step ℓ, i.e., βℓ+1 = 0 or

γℓ+1 = 0.

• Assume that igSSY breaks down at step L ≥ ℓ. Five cases

occur (see lines 15, 19, 20, 25, and 26): for k = ℓ, . . . , L,

Case I: βℓ+1 = γℓ+1 = 0;

Case II: αL+1 = 0, βk+1 = 0, γk+1 ∕= 0;

Case III: αL+1 ∕= 0, βk+1 = 0, γk+1 ∕= 0, γL+2 = 0;

Case IV: αL+1 = 0, βk+1 ∕= 0, γk+1 = 0;

Case V: αL+1 ∕= 0, βk+1 ∕= 0, γk+1 = 0, βL+2 = 0.

All are lucky breakdowns.

The solution of the SQD linear system belongs to the final

subspace generated by igSSY.
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Elliptic singular value decomposition (ESVD)

• Given SPD M and N, ESVD of A is

A = MPΣQ⊤N,

where Σ = diag(σ1, . . . , σp), σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0,

p = min(m,n), and P and Q satisfy

P⊤MP = Im, Q⊤NQ = In.

Theorem

Assume that igSSY breaks down at step L. If d is the number of

distinct elliptic singular values of A and r is the rank of A, then

we have L ≤ min(2d, r).

M. Arioli. Generalized Golub–Kahan bidiagonalization and stopping criteria. SIMAX, Vol.

34, Iss. 2 (2013)
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Improved TriCG and TriMR

• Improved TriCG and TriMR solve SQD linear systems in the

same fashion as TriCG and TriMR, but are based on igSSY

instead of gSSY.

The kth iTriCG iterate is
󰀗
xk

yk

󰀘
=

󰀗
Uk 0

0 Vk

󰀘 󰀗
Ik Tk

T⊤
k −Ik

󰀘−1 󰀗
β1e1
γ1e1

󰀘
.

The kth iTriMR iterate is
󰀗
xk

yk

󰀘
= argmin

x∈range(Uk), y∈range(Vk)

󰀐󰀐󰀐󰀐

󰀗
b

c

󰀘
−

󰀗
M A

A⊤ −N

󰀘 󰀗
x

y

󰀘󰀐󰀐󰀐󰀐
H−1

,

where H = blkdiag(M,N).

• The first ℓ iterates of iTriCG and iTriMR coincide with the

first ℓ iterates of TriCG and TriMR, respectively.
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Numerical experiments

• Examples without unlucky breakdowns

The channel domain problem from IFISS (version 3.6)

• Examples with unlucky breakdowns

Set M = Im and N = In, and A to be lp czprob or

lp osa 07 from the SuiteSparse Matrix Collection.

Vectors b and c are generated as follows.

Case I: [P,S,Q] = svd(A);

b = P(:,1:2)*ones(2,1); c = ones(n,1);

In exact arithmetic, we have β5 = 0 and γ5 ∕= 0.

Case II: [P,S,Q] = svd(A);

b = ones(m,1); c = Q(:,1:2)*ones(2,1);

In exact arithmetic, we have β5 ∕= 0 and γ5 = 0.
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Example: channel domain, Q1–P0 approximation
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Example: channel domain, Q1–Q1 approximation
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Example: lp czprob, unlucky breakdown case I
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Example: lp czprob, unlucky breakdown case II
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Example: lp osa 07, unlucky breakdown case I
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Example: lp osa 07, unlucky breakdown case II
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Summary

• We proved that the upper triangular factor of the QR

factorization used in TriMR only has three nonzero

diagonals, and based on this fact we provided simplified short

recurrences for TriMR, which reduce the work per iteration.

• We proposed an improved gSSY tridiagonalization process,

which avoids unlucky breakdowns of the gSSY

tridiagonalization process.

• We introduced two new iterative methods named iTriCG and

iTriMR for solving SQD linear systems in the same fashion

as TriCG and TriMR.

• iTriCG and iTriMR perform significantly better than TriCG

and TriMR when unlucky breakdowns occur.
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Thanks!


