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QOutline

® Linear systems, the pseudoinverse solution, and Krylov subspaces
® Range-symmetric linear systems (range(A) = range(A "))
© Symmetric quasi-definite linear systems

@ Block two-by-two nonsymmetric linear systems

@ Summary
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Linear systems and the pseudoinverse solution

e Ax=b, AcR™"

b ¢ R™.

Consistent if b € range(A), otherwise, inconsistent.

e AT: the Moore—Penrose inverse of A

® A'b: the pseudoinverse solution

Ax=b | rank(A) A'b

consistent =n unique solution
consistent <n unique minimum 2-norm solution
inconsistent =n unique least-squares (LS) solution
inconsistent <n unique minimum 2-norm LS solution
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Krylov subspaces and (least squares) solutions

e Ax=b, AcR"™™ b, xg€R", ry:=b— Ax,,

Kr(A, ) == span{ry, Arg, ..., A" ry}.

® /. the grade of ry with respect to A, i.e., ¢ satisfies

k, ifk<e,

dim/C (A, 1y) =
(4, x0) {a k> 041

® For any A € R™*",
(i) b ¢ range(A): # LS solution in xo + Kp_1(A, 1) < 1;
(ii) b € range(A): # solution in x¢ + (A, 1) < 1.
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GMRES for singular range-symmetric systems

e GMRES: X = argmin ||b— Ax|.
xGxo-i-/Ck(A,l‘o)

® For singular range-symmetric A [BW97]:
(i) b € range(A): x; is a solution. More precisely,

x; = A'b + (I — ATA)x,
the orthogonal projection of x, onto the solution set
{x €eR": Ax = b} = A'b + null(A).
(ii) b ¢ range(A): x,_1 is a least-squares solution. Which one?

[BW97] P. N. Brown and H. F. Walker. GMRES on (nearly) singular systems. SIMAX, 1997.
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GMRES for singular (skew-)symmetric systems

e “(skew-)symmetric’ € “range-symmetric”
® For skew-symmetric A, i.e., AT = —A, if b ¢ range(A), then

I‘Zil(Xg,l - XO) =0,
which implies
x,-1 = ATb + (I - ATA)x,.

e For symmetric A, if b ¢ range(A), then x,_; is a least-squares solution, but
not necessarily the pseudoinverse solution Afb.
MINRES-QLP or MINRES with a minimum-norm (MN) refinement

[CPS11] S.-C. T. Choi, C. C. Paige, and M. A. Saunders. MINRES-QLP: A Krylov subspace method for indefinite or
singular symmetric systems. SISC, 2011.

[LMR25] Y. Liu, A. Milzarek, and F. Roosta. Obtaining pseudoinverse solutions with MINRES. SIMAX, 2025.
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A minimum-norm (MN) refinement for GMRES iterates

® If range(A) = range(A ") and b ¢ range(A), then the MN refinement vector

1“2_1(X271 —Xo)

=
ry 1Te—1

Xp—1 = Xp-1 — ryq,

is the orthogonal projection of x, onto the least squares solution set
{xeR":ATAx=ATb}, ie,

X1 = A'b + (I ATA)x,.

* x0=0 = X, = A'b.

[DFW26] D., Fan, and Wang. RSMAR: An iterative method for range-symmetric linear systems. LAA, 2026.
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RSMAR for range-symmetric systems

* RSMAR: x3 := argmin ||A(b — Ax)|, (well-defined?)
XEICk(A,b)

® For range-symmetric A, if b € range(A), then x2* = x,, and if b ¢ range(A),
then x?_l = Xy_;. In other words, the final iterates of GMRES and RSMAR are
the same.

¢ RSMAR for Ax = b and GMRES for Ay = Ab:

A(b— Ax)|| = i Ab— A
_min A AX| = i Ab- Ay,
ye = Axi = argmin ||Ab — Ay].
yGKk>(A7Ab)

[MOS25] A. Montoison, D. Orban, and M. A. Saunders. MINARES: An iterative solver for symmetric linear systems.

SIMAX, 2025.
8/30



Implementation | (inspired by simpler GMRES)

e Arnoldi process yields span{vy, vy, ..., Vi } = Kr(A, Ab),
B\lvl = Ab7 A{/k = i\/vk+l]:/_:\[]C+1,k7 i\[];r{\/vk = Ik

. i Ab — Ay|| = min ||fie; — Hev 142l = yi = ViZ) with
ye’gﬁgl’Ab)H YH g&{%”ﬂlel k+1,kzl| Yk kZg WI

zj, = argmin || 51e; — PAIHUCEH.
ZERF

* Ki(A,b) =span{b,V,,...,V4_1} and y;, = Ax} =
Xy = [b \ 1} Zy,
where z;, solves
A [b \Afk_l} 7=V, [3161 I/_\Ik,k—l} z = V7.
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Implementation Il (inspired by RRGMRES)

e Arnoldi process yields span{vy, va,..., vy} = Kr(A,b),
Bivi=b, AV, = Vk+1Hk+1,k7 V]IVk =I.

® The subproblem:

min ||A(b — Ax)|| = mm |51 Hir2k+1€1 — Higo k1 Hi1 £2]).

x€KL(A,b)

e Two QR factorizations are required:

R I ~ R
Hitir = Qrn [Ok] o Higoi1Qrtr Lﬂ = Q42 lok] -

° XkA = V]{;lelﬁ,;l [Ik’ O} QZ+2ﬁ1(h1]el + h2162>.
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Numerical experiments

® A boundary value problem (d is a constant and f is a given function)
ou

Au—l—d% = f, in  Q:=10,1] x [0,1],

u(z,0) = u(x,1), for 0<z<1,
u(0,y) =u(l,y), for 0<y<IL.

e FD discretization yields a singular range-symmetric A:

Tm Im Im —4 QL Q_

A — Im , Tm — - ,
In1 e e oy
L, L, Tn ay a_ —4

where m = 100, h = 1/m, ax. =1+ dh/2, and d = 10.
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Numerical experiments
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Symmetric quasi-definite linear systems

e M e R™™ and N € R™*" are SPD, A € R™*" is nonzero, b € R™, and
c e R™

M Al |x b M M A
= H = K= .
P 1 MR Y RS P
e Computational optimization and computational partial differential equations,
etc.

e Symmetric, indefinite, nonsingular

® Monolithic methods: solving the system as a whole, for example, SYMMLQ),
MINRES

Segregated methods: tailored specifically to the block structure, for example,
TriCG and TriMR
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The generalized SSY tridiagonalization

® Let f/1Mu; = b and y1Nv; = v. After j steps of gSSY, we have
AV; =MU; T, .,;, ATU; =NV, T,
U MU;;; =V NV, =L,

1
with ~ ~
a2
Ba g . T.
= . _ j
B aj
I Bj+1]

M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gradient-type methods for unsymmetric linear equations.
SINUM, Vol. 25, Iss. 4 (1988)
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TriCG

® Assume that Uj, V;, and T, are well defined. The jth TriCG iterate is

Y 0 V] IT] -I]

which satisfies the Galerkin condition

2o I

CG:

® Equivalent to preconditioned block

SRR

AT —N_ y1 y2

-1

|

X

Yil

)

[5191]
€]’

A. Montoison and D. Orban. TriCG and TriMR: Two iterative methods for symmetric quasi-definite systems. SISC,

Vol. 43, Iss. 4 (2021)
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Elliptic singular value decomposition (ESVD)

e Given SPD M and N, ESVD of A is
A =MPXQ'N,

where 3 = diag(oy,...,0,), 01 > 09> -+ >0, >0, p=min(m,n), and P

and Q satisfy
P'MP=1,, Q'NQ=IL,.

e Eigenvalues of a two-sided preconditioned matrix (let » = rank(A)):
+\o?+1, i=1,...,m
A (H_%KH_%> =<1, (m r) times,
-1, (n —r) times.

M. Arioli. Generalized Golub—Kahan bidiagonalization and stopping criteria. SIMAX, Vol. 34, Iss. 2 (2013)
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A gSSY process with deflated restarting

e gSSY-DR(p, k):

i) __ 7 % (U
AV](D) o MU;E))T( - ﬁp—irl p+1ep ’
ATUD = NVO(TO)T 440 Nyl el
Fori:=2,3,...,
ay’ 7
i (@) (’). 71%:1—1 (@)
TI(JZ) =B o Brii Qg Ve
Bria al(cZJ)rZ
- : 71(714)
B o
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TriCG with deflated restarting

® The recurrences in the first cycle are the same as that of TriCG. Now consider
cycle i > 2. The jth (k+1 < j < p) TriCG-DR(p, k) iterate is

. . N1 —1 .
<1 (u? o I TV (8 er
Lo volladr 0] e

which satisfies the Galerkin condition.
® Using an LDLT decomposition and the same strategy in TriCG, short

recurrences can be obtained to compute x§-i) and yj(-i) fork+1<j<np.

® |f the desired k approximate elliptic singular triplets are sufficiently accurate, we
stop restarting. In other words, the last cycle is implemented completely until a
sufficiently accurate approximate solution is found or the maximum number of
iterations is reached. Some reorthogonalization is necessary.
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TriCG vs. TriCG-DR(p, k)

M =1, N =1, A is from the SuiteSparse Matrix Collection.

Table: The information of square matrices from the SuiteSparse Matrix Collection,
runtime of TriCG and TriCG-DR, and values of parameters p and k of TriCG-DR.

Matrix Size Nnz TricG TricG-DR

Time(s) | Time(s) p| k

gupta3d | 16783 | 9323427 17.55 7.61 | 240 | 120
g7jac060sc | 17730 | 183325 16.82 10.10 | 60 | 20
rajat27 | 20640 97353 24.70 6.42 | 100 | 40
TSOPF_RS_b300_c2 | 28338 | 2943887 30.48 17.64 | 120 | 40
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Numerical experiments
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Block two-by-two nonsymmetric linear systems

® Block two-by-two nonsymmetric linear systems of the form
M Al [x b
— M Rmxm N R’N/Xn.
o N ][] e s
® Monolithic methods: solving the system as a whole.
For example: GMRES, Bi-CG, QMR, Bi-CGSTAB, CMRH ...
Segregated methods: tailored specifically to the block structure. For example:

GPMR, GPBILQ, GPQMR ...
® We consider a simple case: A # BT, A € R, pu € R,

Al A |x b
B ul |y c|’
A. Montoison and D. Orban. GPMR: An iterative method for unsymmetric partitioned linear systems. SIMAX, Vol.

44, No. 1 (2023)
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Simultaneous orthogonal Hessenberg reduction for (A, B)

® Simultaneous orthogonal Hessenberg reduction
AU, =V Hip,, BVe=UpFrgg,

T T
Vi1 Vi = Ug Uk = Ly,

where
hip - Dk fin
h21 ; f21
Hi = _ , Frie=
' Pk
Poges1

flk

ik

fk+1,k

A. Montoison and D. Orban. GPMR: An iterative method for unsymmetric partitioned linear systems. SIMAX, Vol.

44, No. 1 (2023)
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GPMR

® The kth GPMR iterate is

Xk .
= argmin
Yk x€range(Vy), ycrange(Uy)

bl [AI Al |x
C B ulf |y
e Equivalent to Block-GMRES:

M OAl[x! %] [b O
B uIf |y' y?| |0 c]|°

® GPMR terminates significantly earlier than GMRES on a residual-based
stopping criterion with an improvement up to 50% in terms of number of

iterations.

A. Montoison and D. Orban. GPMR: An iterative method for unsymmetric partitioned linear systems. SIMAX, Vol.

44, No. 1 (2023)
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Simultaneous Hessenberg reduction with pivoting for (A, B)

® Simultaneous Hessenberg reduction with pivoting

AL, =Dy Hy 1, BDy =Ly Frg,

where
hip - Dk fir e fik
~ 521 ' : = le ' :
Hi = ~ , Frir= _ ~
Rk - fkk
Ptk Jr+1k
We have

range(Dy) = range(Vy), range(Ly) = range(Uy).
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GP-CMRH

® The kth GP-CMRH iterate is

Xk .
= argmin
Yk xerange(Dy), y€range(Ly)

(R )

Let rSPOMRE gpd pOPMR be the kth residuals of GP-CMRH and GPMR,

D11 ] . Then
Ly '

respectively. Let Wy, = {

M < e < (W) MR

where k(Wy1) = ||[Wgei1|| HW,LLIH is the condition number of Wy .
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Numerical experiments

Table 1: Numbers of iterations (Iter), runtimes (Time), and relative residual norms (Rel) of GPMR, GP-CMRH, GMRES, and CMRH on twenty-two
matrices from the SuitSparse Matrix Collection. “Nnz” denotes the number of nonzero elements in each sparse matrix. Bold-faced values in the

runtime column highlight the shortest time taken among the four methods.

Name Size Noz GPMR GP-CMRH GMRES CMRH
Iter | Time Rel Iter | Time Rel Iter | Time Rel Iter | Time Rel

besstk17 10974 | 428650 | 121 | 0.39 | 3.66e-11 | 121 | 0.28 | 8.5le-11 | 213 | 1.57 | 8.17e-11 | 216 | 0.72 | 8.64e-11
bcsstk25 15439 252241 62 0.18 | 5.54e-11 | 63 | 0.15 | 8.63e-11 | 100 | 0.47 | 8.13e-11 | 116 | 0.37 | 8.41e-11
powersim 15838 64424 85 0.26 | 8.40e-11 | 86 | 0.20 | 9.28e-11 | 137 | 1.17 | 5.64e-11 | 139 | 0.42 | 3.91e-11
raefsky3 21200 | 1488768 | 37 | 0.68 | 9.56e-11 | 40 | 0.69 | 8.86e-11 | 63 1.24 | 8.59e-11 | 67 | 1.15 | 9.28e-11
sme3Db 29067 | 2081063 | 65 242 | 6.60e-11 | 66 | 2.23 | 7.30e-11 | 97 | 4.65 | 6.30e-11 | 98 | 3.27 | 9.40e-11
c-53 30235 355139 92 1.38 | 6.73e-11 | 93 | 1.21 | 8.85e-11 | 151 | 3.29 | 9.34e-11 | 154 | 2.17 | 3.08e-11
sme3Dc 42930 | 3148656 | 97 572 | 6.12e-11 | 98 | 5.36 | 7.67e-11 | 161 | 11.05 | 7.39¢e-11 | 163 | 8.75 | 6.85e-11
bcsstk39 46772 | 2060662 | 205 | 5.72 | 7.54e-11 | 209 | 3.25 | 7.33e-11 | 381 | 23.32 | 9.73e-11 | 392 | 5.39 | 9.50e-11
rmal0 46835 | 2329092 | 41 1.43 | 6.39e-11 | 42 | 1.33 | 6.34e-11 | 49 1.69 | 7.02e-11 | 51 | 1.53 | 5.08e-11
copter2 55476 759952 | 211 | 19.86 | 7.38e-11 | 214 | 16.11 | 9.18e-11 | 367 | 50.06 | 7.04e-11 | 371 | 27.06 | 6.81e-11
Goodwin 071 56021 | 1797934 | 70 2.77 | 8.93e-11 | 72 | 2.39 | 7.56e-11 | 88 4.24 | 8.20e-11 | 91 | 2.94 | 9.34e-11
water_tank 60740 | 2035281 | 324 | 46.00 | 8.07e-11 | 338 | 35.09 | 7.20e-11 | 430 | 75.59 | 9.73e-11 | 464 | 51.15 | 8.34e-11
venkat50 62424 | 1717777 | 34 1.06 | 5.23e-11 | 35 | 0.97 | 6.24e-11 | 46 1.66 | 7.99e-11 | 48 | 1.29 | 4.17e-11
poisson3Db 85623 | 2374949 | 50 | 7.57 | 6.94e-11 | 51 7.64 | 8.84e-11 | 57 | 8.76 | 6.66e-11 | 59 | 9.00 | 5.97e-11
ifiss mat 96307 | 3599932 | 33 | 2.27 | 8.76e-11 | 35 | 2.32 | 3.38e-11 | 42 3.03 | 7.08¢-11 | 43 | 2.73 | 9.70e-11
hcircuit 105676 | 513072 46 0.80 | 9.69¢-11 | 46 | 0.38 | 7.84e-11 | 58 144 | 4.99-11 | 58 | 0.49 | 8.66e-11
PRO2R 161070 | 8185136 | 61 | 25.13 | 8.31e-11 | 64 | 26.39 | 5.15e-11 | 100 | 42.66 | 8.91e-11 | 105 | 46.23 | 4.92e-11
cont-300 180895 | 988195 | 105 | 24.34 | 7.55e-11 | 107 | 21.57 | 9.34e-11 | 147 | 39.66 | 8.68e-11 | 151 | 32.55 | 9.49e-11
thermomech dK | 204316 | 2846228 | 108 | 14.06 | 9.26e-11 | 110 | 8.59 | 9.20e-11 | 164 | 27.30 | 8.81e-11 | 167 | 13.53 | 4.48e-11
pwtk 217918 | 11524432 | 190 | 28.61 | 8.36e-11 | 197 | 13.83 | 8.64e-11 | 283 | 56.32 | 9.94e-11 | 292 | 21.83 | 7.55e-11
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Numerical experiments
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Summary

® \We have proposed RSMAR for solving range-symmetric linear systems. On
singular inconsistent range-symmetric systems, RSMAR outperforms GMRES,
and thus should be the preferred method in finite precision arithmetic.

® We have proposed TriCG with deflated restarting for solving symmetric
quasi-definite linear systems. TriCG-DR significantly outperforms TriCG when
the off-diagonal block has a significant number of outlying elliptic singular
values.

® We have proposed an inner product free iterative method called GP-CMRH for
solving block two-by-two nonsymmetric linear systems. Our numerical
experiments demonstrate that GP-CMRH and GPMR exhibit comparable
convergence behavior (with GP-CMRH requiring slightly more iterations), yet
GP-CMRH consumes less computational time in most cases.
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Our recent related work

e Kui Du, Jia-Jun Fan, and Fang Wang
RSMAR: An iterative method for range-symmetric linear systems
Linear Algebra and its Applications, 729 (2026), 49-66.

® Kui Du and Jia-Jun Fan
TriCG with deflated restarting for symmetric quasi-definite linear systems.

In preparation, 2025.

® Kui Du and Jia-Jun Fan

GP-CMRH: An inner product free iterative method for block two-by-two
nonsymmetric linear systems.

arXiv:2509.11272, 2025.
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Thank you for your attention!



