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Linear systems and the pseudoinverse solution

• Ax = b, A ∈ Rm×n, b ∈ Rm.

Consistent if b ∈ range(A), otherwise, inconsistent.

• A†: the Moore–Penrose inverse of A

• A†b: the pseudoinverse solution

Ax = b rank(A) A†b

consistent = n unique solution

consistent < n unique minimum 2-norm solution

inconsistent = n unique least-squares (LS) solution

inconsistent < n unique minimum 2-norm LS solution
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Krylov subspaces and (least squares) solutions

• Ax = b, A ∈ Rn×n, b, x0 ∈ Rn, r0 := b−Ax0,

Kk(A, r0) := span{r0,Ar0, . . . ,A
k−1r0}.

• ℓ: the grade of r0 with respect to A, i.e., ℓ satisfies

dimKk(A, r0) =

󰀫
k, if k ≤ ℓ,

ℓ, if k ≥ ℓ+ 1.

• For any A ∈ Rn×n,

(i) b /∈ range(A): # LS solution in x0 +Kℓ−1(A, r0) ≤ 1;

(ii) b ∈ range(A): # solution in x0 +Kℓ(A, r0) ≤ 1.
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GMRES for singular range-symmetric systems

• GMRES: xk := argmin
x∈x0+Kk(A,r0)

󰀂b−Ax󰀂.

• For singular range-symmetric A [BW97]:

(i) b ∈ range(A): xℓ is a solution. More precisely,

xℓ = A†b+ (I−A†A)x0,

the orthogonal projection of x0 onto the solution set

{x ∈ Rn : Ax = b} = A†b+ null(A).

(ii) b /∈ range(A): xℓ−1 is a least-squares solution. Which one?

[BW97] P. N. Brown and H. F. Walker. GMRES on (nearly) singular systems. SIMAX, 1997.
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GMRES for singular (skew-)symmetric systems

• “(skew-)symmetric” ∈ “range-symmetric”

• For skew-symmetric A, i.e., A⊤ = −A, if b /∈ range(A), then

r⊤ℓ−1(xℓ−1 − x0) = 0,

which implies

xℓ−1 = A†b+ (I−A†A)x0.

• For symmetric A, if b /∈ range(A), then xℓ−1 is a least-squares solution, but

not necessarily the pseudoinverse solution A†b.

MINRES-QLP or MINRES with a minimum-norm (MN) refinement

[CPS11] S.-C. T. Choi, C. C. Paige, and M. A. Saunders. MINRES-QLP: A Krylov subspace method for indefinite or

singular symmetric systems. SISC, 2011.

[LMR25] Y. Liu, A. Milzarek, and F. Roosta. Obtaining pseudoinverse solutions with MINRES. SIMAX, 2025.
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A minimum-norm (MN) refinement for GMRES iterates

• If range(A) = range(A⊤) and b /∈ range(A), then the MN refinement vector,

󰁨xℓ−1 := xℓ−1 −
r⊤ℓ−1(xℓ−1 − x0)

r⊤ℓ−1rℓ−1

rℓ−1,

is the orthogonal projection of x0 onto the least squares solution set

{x ∈ Rn : A⊤Ax = A⊤b}, i.e.,

󰁨xℓ−1 = A†b+ (I−A†A)x0.

• x0 = 0 ⇒ 󰁨xℓ−1 = A†b.

[DFW26] D., Fan, and Wang. RSMAR: An iterative method for range-symmetric linear systems. LAA, 2026.
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RSMAR for range-symmetric systems

• RSMAR: xA
k := argmin

x∈Kk(A,b)

󰀂A(b−Ax)󰀂, (well-defined?)

• For range-symmetric A, if b ∈ range(A), then xA
ℓ = xℓ, and if b /∈ range(A),

then xA
ℓ−1 = xℓ−1. In other words, the final iterates of GMRES and RSMAR are

the same.

• RSMAR for Ax = b and GMRES for Ay = Ab:

min
x∈Kk(A,b)

󰀂A(b−Ax)󰀂 = min
y∈Kk(A,Ab)

󰀂Ab−Ay󰀂,

yk = AxA
k = argmin

y∈Kk(A,Ab)

󰀂Ab−Ay󰀂.

[MOS25] A. Montoison, D. Orban, and M. A. Saunders. MINARES: An iterative solver for symmetric linear systems.

SIMAX, 2025.
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Implementation I (inspired by simpler GMRES)

• Arnoldi process yields span{󰁥v1, 󰁥v2, . . . , 󰁥vk} = Kk(A,Ab),

󰁥β1󰁥v1 = Ab, A󰁥Vk = 󰁥Vk+1
󰁥Hk+1,k, 󰁥V⊤

k
󰁥Vk = Ik.

• min
y∈Kk(A,Ab)

󰀂Ab−Ay󰀂 = min
󰁥z∈Rk

󰀂󰁥β1e1 − 󰁥Hk+1,k󰁥z󰀂 ⇒ yk = 󰁥Vk󰁥zk with

󰁥zk = argmin
󰁥z∈Rk

󰀂󰁥β1e1 − 󰁥Hk+1,k󰁥z󰀂.

• Kk(A,b) = span{b, 󰁥v1, . . . , 󰁥vk−1} and yk = AxA
k ⇒

xA
k =

󰁫
b 󰁥Vk−1

󰁬
zk,

where zk solves

A
󰁫
b 󰁥Vk−1

󰁬
z = 󰁥Vk

󰁫
󰁥β1e1 󰁥Hk,k−1

󰁬
z = 󰁥Vk󰁥zk.
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Implementation II (inspired by RRGMRES)

• Arnoldi process yields span{v1,v2, . . . ,vk} = Kk(A,b),

β1v1 = b, AVk = Vk+1Hk+1,k, V⊤
k Vk = Ik.

• The subproblem:

min
x∈Kk(A,b)

󰀂A(b−Ax)󰀂 = min
z∈Rk

󰀂β1Hk+2,k+1e1 −Hk+2,k+1Hk+1,kz󰀂.

• Two QR factorizations are required:

Hk+1,k = Qk+1

󰀗
Rk

0

󰀘
, Hk+2,k+1Qk+1

󰀗
Ik
0

󰀘
= 󰁨Qk+2

󰀥
󰁨Rk

0

󰀦
.

• xA
k = VkR

−1
k

󰁨R−1
k

󰀅
Ik 0

󰀆 󰁨Q⊤
k+2β1(h11e1 + h21e2).
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Numerical experiments

• A boundary value problem (d is a constant and f is a given function)
󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

∆u+ d
∂u

∂x
= f, in Ω := [0, 1]× [0, 1],

u(x, 0) = u(x, 1), for 0 ≤ x ≤ 1,

u(0, y) = u(1, y), for 0 ≤ y ≤ 1.

• FD discretization yields a singular range-symmetric A:

A =

󰀵

󰀹󰀹󰀹󰀹󰀷

Tm Im Im

Im
. . . . . .
. . . . . . Im

Im Im Tm

󰀶

󰀺󰀺󰀺󰀺󰀸
, Tm =

󰀵

󰀹󰀹󰀹󰀹󰀷

−4 α+ α−

α−
. . . . . .
. . . . . . α+

α+ α− −4

󰀶

󰀺󰀺󰀺󰀺󰀸
,

where m = 100, h = 1/m, α± = 1± dh/2, and d = 10.
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Numerical experiments
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Symmetric quasi-definite linear systems

• M ∈ Rm×m and N ∈ Rn×n are SPD, A ∈ Rm×n is nonzero, b ∈ Rm, and

c ∈ Rn:
󰀗
M A

A⊤ −N

󰀘 󰀗
x

y

󰀘
=

󰀗
b

c

󰀘
, H =

󰀗
M

N

󰀘
, K =

󰀗
M A

A⊤ −N

󰀘
.

• Computational optimization and computational partial differential equations,

etc.

• Symmetric, indefinite, nonsingular

• Monolithic methods: solving the system as a whole, for example, SYMMLQ,

MINRES

Segregated methods: tailored specifically to the block structure, for example,

TriCG and TriMR
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The generalized SSY tridiagonalization

• Let β1Mu1 = b and γ1Nv1 = v. After j steps of gSSY, we have

AVj = MUj+1Tj+1,j, A⊤Uj = NVj+1T
⊤
j,j+1,

U⊤
j+1MUj+1 = V⊤

j+1NVj+1 = Ij+1.

with

Tj+1,j =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

α1 γ2

β2 α2
. . .

. . . . . . γj
βj αj

βj+1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸
=

󰀗
Tj

βj+1e
⊤
j

󰀘
.

M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gradient-type methods for unsymmetric linear equations.

SINUM, Vol. 25, Iss. 4 (1988)
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TriCG

• Assume that Uj, Vj, and Tj are well defined. The jth TriCG iterate is
󰀗
xj

yj

󰀘
=

󰀗
Uj 0

0 Vj

󰀘 󰀗
Ij Tj

T⊤
j −Ij

󰀘−1 󰀗
β1e1
γ1e1

󰀘
,

which satisfies the Galerkin condition
󰀗
Uj 0

0 Vj

󰀘⊤ 󰀕󰀗
b

c

󰀘
−

󰀗
M A

A⊤ −N

󰀘 󰀗
xj

yj

󰀘󰀖
= 0.

• Equivalent to preconditioned block-CG:
󰀗
M A

A⊤ −N

󰀘 󰀗
x1 x2

y1 y2

󰀘
=

󰀗
b 0

0 c

󰀘
.

A. Montoison and D. Orban. TriCG and TriMR: Two iterative methods for symmetric quasi-definite systems. SISC,

Vol. 43, Iss. 4 (2021)
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Elliptic singular value decomposition (ESVD)

• Given SPD M and N, ESVD of A is

A = MPΣQ⊤N,

where Σ = diag(σ1, . . . , σp), σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, p = min(m,n), and P

and Q satisfy

P⊤MP = Im, Q⊤NQ = In.

• Eigenvalues of a two-sided preconditioned matrix (let r = rank(A)):

λ
󰀓
H− 1

2KH− 1
2

󰀔
=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

±
󰁳

σ2
i + 1, i = 1, . . . , r,

1, (m− r) times,

−1, (n− r) times.

M. Arioli. Generalized Golub–Kahan bidiagonalization and stopping criteria. SIMAX, Vol. 34, Iss. 2 (2013)
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A gSSY process with deflated restarting

• gSSY-DR(p, k):
AV(i)

p = MU(i)
p T(i)

p + β
(i)
p+1Mu

(i)
p+1e

⊤
p ,

A⊤U(i)
p = NV(i)

p (T(i)
p )⊤ + γ

(i)
p+1Nv

(i)
p+1e

⊤
p .

For i = 2, 3, . . . ,

T(i)
p =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

α
(i)
1 γ

(i)
2

. . .
...

. . . γ
(i)
k+1

β
(i)
2 . . . β

(i)
k+1 α

(i)
k+1 γ

(i)
k+2

β
(i)
k+2 α

(i)
k+2

. . .
. . . . . . γ

(i)
p

β
(i)
p α

(i)
p

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.
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TriCG with deflated restarting

• The recurrences in the first cycle are the same as that of TriCG. Now consider

cycle i ≥ 2. The jth (k + 1 ≤ j ≤ p) TriCG-DR(p, k) iterate is
󰀥
x
(i)
j

y
(i)
j

󰀦
=

󰀥
U

(i)
j 0

0 V
(i)
j

󰀦󰀥
Ij T

(i)
j

(T
(i)
j )⊤ −Ij

󰀦−1 󰀥
β
(i)
1 ek+1

γ
(i)
1 ek+1

󰀦
,

which satisfies the Galerkin condition.

• Using an LDL⊤ decomposition and the same strategy in TriCG, short

recurrences can be obtained to compute x
(i)
j and y

(i)
j for k + 1 ≤ j ≤ p.

• If the desired k approximate elliptic singular triplets are sufficiently accurate, we

stop restarting. In other words, the last cycle is implemented completely until a

sufficiently accurate approximate solution is found or the maximum number of

iterations is reached. Some reorthogonalization is necessary.
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TriCG vs. TriCG-DR(p, k)

M = I, N = I, A is from the SuiteSparse Matrix Collection.

Table: The information of square matrices from the SuiteSparse Matrix Collection,

runtime of TriCG and TriCG-DR, and values of parameters p and k of TriCG-DR.

Matrix Size Nnz
TriCG TriCG-DR

Time(s) Time(s) p k

gupta3 16783 9323427 17.55 7.61 240 120

g7jac060sc 17730 183325 16.82 10.10 60 20

rajat27 20640 97353 24.70 6.42 100 40

TSOPF RS b300 c2 28338 2943887 30.48 17.64 120 40
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Numerical experiments
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Block two-by-two nonsymmetric linear systems

• Block two-by-two nonsymmetric linear systems of the form
󰀗
M A

B N

󰀘 󰀗
x

y

󰀘
=

󰀗
b

c

󰀘
, M ∈ Rm×m, N ∈ Rn×n.

• Monolithic methods: solving the system as a whole.

For example: GMRES, Bi-CG, QMR, Bi-CGSTAB, CMRH ...

Segregated methods: tailored specifically to the block structure. For example:

GPMR, GPBiLQ, GPQMR ...
• We consider a simple case: A ∕= B⊤, λ ∈ R, µ ∈ R,

󰀗
λI A

B µI

󰀘 󰀗
x

y

󰀘
=

󰀗
b

c

󰀘
.

A. Montoison and D. Orban. GPMR: An iterative method for unsymmetric partitioned linear systems. SIMAX, Vol.

44, No. 1 (2023)
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Simultaneous orthogonal Hessenberg reduction for (A,B)

• Simultaneous orthogonal Hessenberg reduction

AUk = Vk+1Hk+1,k, BVk = Uk+1Fk+1,k,

V⊤
k+1Vk+1 = U⊤

k+1Uk+1 = Ik+1,

where

Hk+1,k =

󰀵

󰀹󰀹󰀹󰀹󰀷

h11 · · · h1k

h21
. . .

...
. . . hkk

hk+1,k

󰀶

󰀺󰀺󰀺󰀺󰀸
, Fk+1,k =

󰀵

󰀹󰀹󰀹󰀹󰀷

f11 · · · f1k

f21
. . .

...
. . . fkk

fk+1,k

󰀶

󰀺󰀺󰀺󰀺󰀸
.

A. Montoison and D. Orban. GPMR: An iterative method for unsymmetric partitioned linear systems. SIMAX, Vol.

44, No. 1 (2023)
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GPMR

• The kth GPMR iterate is
󰀗
xk

yk

󰀘
= argmin

x∈range(Vk), y∈range(Uk)

󰀐󰀐󰀐󰀐

󰀗
b

c

󰀘
−

󰀗
λI A

B µI

󰀘 󰀗
x

y

󰀘󰀐󰀐󰀐󰀐 .

• Equivalent to Block-GMRES:
󰀗
λI A

B µI

󰀘 󰀗
x1 x2

y1 y2

󰀘
=

󰀗
b 0

0 c

󰀘
.

• GPMR terminates significantly earlier than GMRES on a residual-based

stopping criterion with an improvement up to 50% in terms of number of

iterations.

A. Montoison and D. Orban. GPMR: An iterative method for unsymmetric partitioned linear systems. SIMAX, Vol.

44, No. 1 (2023)
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Simultaneous Hessenberg reduction with pivoting for (A,B)

• Simultaneous Hessenberg reduction with pivoting

ALk = Dk+1
󰁨Hk+1,k, BDk = Lk+1

󰁨Fk+1,k,

where

󰁨Hk+1,k =

󰀵

󰀹󰀹󰀹󰀹󰀷

󰁨h11 · · · 󰁨h1k

󰁨h21
. . .

...
. . . 󰁨hkk

󰁨hk+1,k

󰀶

󰀺󰀺󰀺󰀺󰀸
, 󰁨Fk+1,k =

󰀵

󰀹󰀹󰀹󰀹󰀷

󰁨f11 · · · 󰁨f1k
󰁨f21

. . .
...

. . . 󰁨fkk
󰁨fk+1,k

󰀶

󰀺󰀺󰀺󰀺󰀸
.

We have

range(Dk) = range(Vk), range(Lk) = range(Uk).
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GP-CMRH

• The kth GP-CMRH iterate is
󰀗
xk

yk

󰀘
= argmin

x∈range(Dk), y∈range(Lk)

󰀐󰀐󰀐󰀐󰀐

󰀗
Dk+1

Lk+1

󰀘† 󰀕󰀗
b

c

󰀘
−

󰀗
λI A

B µI

󰀘 󰀗
x

y

󰀘󰀖󰀐󰀐󰀐󰀐󰀐 .

Theorem

Let rGP-CMRH
k and rGPMR

k be the kth residuals of GP-CMRH and GPMR,

respectively. Let Wk+1 =

󰀗
Dk+1

Lk+1

󰀘
. Then,

󰀂rGPMR
k 󰀂 ≤ 󰀂rGP-CMRH

k 󰀂 ≤ κ(Wk+1)󰀂rGPMR
k 󰀂,

where κ(Wk+1) = 󰀂Wk+1󰀂󰀂W†
k+1󰀂 is the condition number of Wk+1.
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Numerical experiments
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Numerical experiments
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Summary

• We have proposed RSMAR for solving range-symmetric linear systems. On

singular inconsistent range-symmetric systems, RSMAR outperforms GMRES,

and thus should be the preferred method in finite precision arithmetic.

• We have proposed TriCG with deflated restarting for solving symmetric

quasi-definite linear systems. TriCG-DR significantly outperforms TriCG when

the off-diagonal block has a significant number of outlying elliptic singular

values.

• We have proposed an inner product free iterative method called GP-CMRH for

solving block two-by-two nonsymmetric linear systems. Our numerical

experiments demonstrate that GP-CMRH and GPMR exhibit comparable

convergence behavior (with GP-CMRH requiring slightly more iterations), yet

GP-CMRH consumes less computational time in most cases.
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• Kui Du, Jia-Jun Fan, and Fang Wang

RSMAR: An iterative method for range-symmetric linear systems

Linear Algebra and its Applications, 729 (2026), 49–66.

• Kui Du and Jia-Jun Fan

TriCG with deflated restarting for symmetric quasi-definite linear systems.
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• Kui Du and Jia-Jun Fan

GP-CMRH: An inner product free iterative method for block two-by-two

nonsymmetric linear systems.
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Thank you for your attention!


