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The electromagnetic cavity problem
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Figure: Cavity geometry



Governing equations

» Total fields in the upper-half space and the cavity:
E= Einc + E! -I-ES,
H=H" + H" + H".

» Time-harmonic Maxwell’s equations (time dependence
e—iwt):
VxE-—iwuH =0,

V x H + iweE = 0,

where i = \/—1 is the imaginary unit, w is the angular
frequency and the physical parameters ¢ and p denote,
respectively, the permittivity (farads/meter) and the
permeability (henrys/meter) of the medium.



Boundary conditions and Radiation conditions

» At a perfectly conducting surface:
nxE=0, n-H=0.

» At an imperfectly conducting surface:

1 ik
—+n><(V><E)—1—On><(n><E):O,
Hr n

1
—n x (V x H) —ikgnn x (n x H) =0,
67-

n: the unit normal pointing into the ground,
ko = wy/Egpo > 0: the free space wave number,

1N = \/pr /€r : the normalized intrinsic impedance.
» Radiation conditions at infinity:

E® E®
V x — lk‘of X
|5 ms

lim r =0.
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The 2D cavity problem

Figure: Cross section of the geometry



The 2D model: E. polarization

The electric field is parallel to the z-axis.

e E=(0,0,FE,)
e H= (Hrva’O)
e n = (ng,ny,0)

The problem is governed by

( 1
V- <—+VEZ> + ke E, =0, in RZIUQ,

Hr
1 OF ik,
— Z_I_OEZZO, on TCUS,
pt On n

S

E
lim +/r <8 z — ik0E§> =0 at infinity.
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The 2D model: H. polarization

The magnetic field is parallel to the z-axis.
e E=(E,,E,0)
e H=(0,0,H,)
e n = (ng,ny,0)

The problem is governed by

1 OH,
+ on

lim f(

\ 7—0

)
V- <ET VH > +k3uH, =0, in R2UQ,
—ikonH, =0, on T'CuUs,

—ikoH S) =0 at infinity.



The 2D model: unified form

» The E, and H, polarizations can be written in the unified

form

1

V. <—Vu) + k‘gbu =0, in R%r U,
a

1

—8—u—ipu:0, on I'“uUs,

a on

) ouw . .
lim /7 —ikgu® ) =0 at infinity.
r—o00 or

e Total field u(x,y) = E, or H,, u = u’ + u* + u®
e a(z,y), b(x,y): complex scalar functions of position
a(z,y) =1 and b(z,y) =1 in RZ,
Re(a) > ap > 0, Im(a) > 0, Re(b) > by > 0, and Im(d) > 0,
e p e Cis a constant with Re(p) > 0 or p = 0.



The 2D scattering problem

The 2D scattering problem reads: for a given incident plane
wave u', determine the scattered field u° in the cavity and the
upper half-plane.

» The incident field u’ is given by

ut = eiko(:c cos f—ysin 9)’

where 0 < 6 < 7 is the angle of incidence with respect to
the positive x-axis.
» The total field
u=u'+u" +u
where u" is the reflected field due to the infinite impedance
ground plane, u° is the unknown scattered field



The reflected and scattered fields
» Note that u® + u" satisfies

A +u') + k3w +u') =0, in RZ,

o ) r )
7@8;’; w) _ ip(u* +u") =0, on {y=0}
The reflected field " by the infinite impedance ground
plane, '
ut = _L()Slneeiko(m cos O+ysin0)
p + kosin 6 ’
» The scattered field u® satisfies
Au® + k2 = 0, in Ri,
S
O s — 0, on TC,
on

w=u—g=u—(u'+u"), on T.



Half-plane impedance Green’s function

Let x = (z,y) € R? be the fixed source point, xo = (z0,yo)

The impedance Green’s function G, (x,xq) satisfies
AxoGp(x,%0) + k3Gp(x,%x0) = —6(x — xp), in RZ,
0G (%, %)

8”()(0) - lpGP(x7 XO) = 07 on {yO = 0}
We have
i(xo—x)§
Gplx,xo) = = [ VIR g

47‘1’ /é‘ k2
- i/“ i+ VE K Ry €
4m —ooip—\/§2—k: VE — K2

The complex square root is characterized, for &, kg € R, by
52 - k2) if 5 > kOv
G [ VR
—iV/kg — €, if [¢] < ko

- de.



Half-plane Dirichlet/Neumann Green’s function

We have the following remark for the impedance Green’s
function:

» Dirichlet boundary condition: p = co

i

7 16V (ol = xol) = HY (olx — %))

Goo (X) XO) =

» Neumann boundary condition: p =0

Golx,x0) = 5 [HS" (Kolx = xol) + H{" (kolx — %ol)] -

i
4



Interior problem: Dirichlet case p = oo

By the Green’s function method, we have

1
V- (—Vu) +k2bu =0, in Q,
a

u=0, on S,
0
5 =T +g. on I,
where
@

1
- ]é ‘x_t|H§1)(k:0\x—t|)u(t,0)dt.



Interior problem: Dirichlet case p = oo
Let
U:={weH(@Q):w=0o0nS and wlr € H362(F)}.
The variational formulation: Find u € U such that
A(u,w) = G(w), Yw e U

where
A(u,w) :/ (lVU-W— k:gbuﬁ> dzdy — / T (v)wdx
Q\a r

and
G(w) :/g@dx.
G

The variational problem has a unique solution u € U.



Interior problem: p # oo

By the Green’s function method, we have

V- <1vu) + k2bu = 0, in
a
18—u—ipu—O, on S,
aon
u(x) = g(x)
10u .
— | Gp(x,%0) | —5—(x0) +ipu(xo) ) ds(xq), on T,
\ r ady
where

1 00 ei(ro—x)§
21 J o ip — /€2 — K2

L cos (o — 2)8)
0

™

Gp(x,%x9) = d¢
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Interior problem: p # oo
Find (u,w) € HY(Q) x HY2(T") such that
Blu,wiv, ) =1(v,9), ¥ (v,9) € H'(Q) x H2(D),
where l(v, p) = [ gpdz and
B(u,w;v, ) :/ (qu -Vo — k:gbm)) dzdy — / puvds
o \a S
—/vadx—l—/FGp(w+pu) gpdaH—/wpda:,

r
where the operator G, : H-Y2(T) - H1/2(F) is defined by

G, w(z) : \/_/ £)eede,
where
_ 1 2oy L [T e
MO = s WO = g [ A



Interior problem: p # oo

Theorem 1 (Existence and uniqueness)

Suppose that kg > 0, p is a complex constant with either
Re(p) >0 or p=0,

and a,b € L*>®(Q) are complex scalar functions such that

Re(a) > ap >0, Im(a) >0, Re(b)>by>0, Im(b)>0.

Then, there exists a unique solution
(u,w) € HY(Q) x H-Y(T)

for the variational problem.



Radar cross section

The physical parameter of interest is the RCS defined by
S ] in 19 2
s) = lim 27rr|u (rcosd,rsind)|

r—00 |u?|?

where ¢ is the observation angle with respect to the positive
z-axis. When the incident and observation directions are the
same (0 = 9), we have the backscatter RCS

Backscatter RCS(¥) = 10log,, o(¥) dB.

By the impedance boundary condition, the field continuity
conditions, and the far field behavior of the impedance Green’
function G, we can evaluate o(¢) as

o(9) = kiOqu)F,

where P(1) is the far-field coefficient given by

1 kopsind 10u . i 9
P(Y) = = Il ikoz cos? 4.
() 2p+kosin19/p<a8y+1pu>e v
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Numerical simulation

We report computational results for a rectangular cavity with 1
meter wide and 0.25 meter deep (L = 1.0 and D = 0.25). Our
focus is on the efficiency of the proposed model and the finite
difference method for RCS calculation. Two different cases (see
Figure 3) are considered.

Figure: The empty cavity (left) and the filled cavity (right).



The empty cavity
a(x,y) =b(z,y) =11in Q.
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The filled cavity

4+i, 02<2<08, —025<y<—0.20,
a(z,y) =

1, otherwise,
b(z,y) = 1.
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Figure: Aperture field (left) at normal incidence 6 = 7/2 and
backscatter RCS (right) for the filled cavity with ko = 47 and p = k.
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Future work

Well-posedness

High accuracy methods for the (hyper)singular integrals
The adaptive method
Fast algorithm/Preconditioning + Deflation



Thank you!



