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Linear systems, Krylov subspace methods, and deflation

• Linear systems of equations

Ax = b, A ∈ Rm×m, b ∈ Rm

• Krylov subspace methods

CG, MINRES; GMRES, CMRH, Bi-CG, QMR, Bi-CGSTAB . . .

• Acceleration techniques

preconditioning, randomization, inexact or mixed-precision, inner-product free

(orthogonalization-free), deflation . . .

• When solving linear systems, deflation refers to reducing the influence of some

eigenvalues that tend to slow convergence. Deflation can be implemented

(1) by adding approximate eigenvectors to a subspace, or

(2) by building a preconditioner from eigenvectors.
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Some solvers incorporating augmentation-based deflation

• Nonsymmetric linear systems: Arnoldi + augmentation + restart

FOM-IR, GMRES-IR (Morgan, SIMAX, 2000), FOM-DR, GMRES-DR

(Morgan, SISC, 2002)

AV(i)
m = V

(i)
m+1H

(i)
m+1,m, i = 1, 2, . . .

• Symmetric linear systems: Lanczos + augmentation + restart

Lanczos-DR, MINRES-DR (Abdel-Rehim et al., SISC, 2010)

AV(i)
m = V

(i)
m+1T

(i)
m+1,m, i = 1, 2, . . .

• Symmetric saddle point linear systems: Golub–Kahan + augmentation + restart

Augmented LSQR (Baglama, Reichel, and Richmond, NA, 2013)

Augmented CRAIG (Dumitrasc, Kruse, and Rüde, SIMAX, 2024)

AV(i)
m = U

(i)
m+1B

(i)
m+1,m, A⊤U

(i)
m+1 = V

(i)
m+1(B

(i)
m+1)

⊤, i = 1, 2, . . .
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Nonsymmetric positive definite linear systems

• The symmetric and skew-symmetric splitting

A = H+ S, H :=
1

2
(A+A⊤), S :=

1

2
(A−A⊤).

Assume that the symmetric part H of A is SPD.

• Stationary iterative methods

HSS (Bai, Golub, and Ng, SIMAX, 2003) ...

• Krylov subspace methods based on the skew-symmetric Lanczos process

CGW (Concus and Golub, 1976, Widlund, 1978) : Galerkin condition

Rapoport’s method (Rapoport, 1978): MR condition
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Nonsymmetric positive definite linear systems

• Skew-symmetric Lanczos

SUm = HUm+1Tm+1,m, Tm+1,m =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0 −γ2

γ2 0
. . .

. . . . . . −γm
γm 0

γm+1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸
=

󰀗
Tm

γm+1e
⊤
m

󰀘
.

• Note that λ(H−1S) = {±σ1i,±σ2i, . . . ,±σr/2i, 0} with r = rank(H−1S) and

σ1 ≥ σ2 ≥ . . . ≥ σr/2 > 0.

CGW convergence:
󰀂x2j −A−1b󰀂H
󰀂x0 −A−1b󰀂H

≤ 2

󰀣󰁳
1 + σ2

1 − 1󰁳
1 + σ2

1 + 1

󰀤j

Rapoport convergence:
󰀂b−Axj󰀂H−1

󰀂b−Ax0󰀂H−1

≤ 2

󰀣
σ1󰁳

1 + σ2
1 + 1

󰀤j
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Skew-symmetric Lanczos with deflated restarting

• S2Lan-DR(m, 2k)

SU(i)
m = HU

(i)
m+1T

(i)
m+1,m

For example, m = 8, k = 2, i = 2, 3, . . . ,

T
(i)
m+1,m =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0 × ×
× 0 ×

0 × ×
× 0 ×

× × × × 0 ×
× 0 ×

× 0 ×
× 0

×

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

, T(i)
m = −(T(i)

m )⊤.
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CGW vs. S2Lan-DR(m, 2k)
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Rapoport with deflated restarting

• Rapoport-DR(m, 2k)

SU(i)
m = HU

(i)
m+1T

(i)
m+1,m

For example, m = 8, k = 2, i = 2, 3, . . . ,

T
(i)
m+1,m =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0 × × × ×
× 0 × × ×
× × 0 × ×
× × × 0 ×
× × × × 0 ×

× 0 ×
× 0 ×

× 0

×

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

, T(i)
m = −(T(i)

m )⊤.
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Rapoport vs. Rapoport-DR(m, 2k)
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Symmetric quasi-definite linear systems

• M ∈ Rm×m and N ∈ Rn×n are SPD, A ∈ Rm×n is nonzero, b ∈ Rm, and

c ∈ Rn:
󰀗
M A

A⊤ −N

󰀘 󰀗
x

y

󰀘
=

󰀗
b

c

󰀘
, H =

󰀗
M

N

󰀘
, K =

󰀗
M A

A⊤ −N

󰀘
.

• Symmetric, indefinite, nonsingular

• Monolithic methods: solving the system as a whole, for example, SYMMLQ,

MINRES

Segregated methods: tailored specifically to the block structure, for example,

TriCG: generalized Saunders–Simon–Yip tridiagonalization+Galerkin condition,

mathematically equivalent to preconditioned block-CG

TriMR: generalized Saunders–Simon–Yip tridiagonalization + MR conditon,

mathematically equivalent to preconditioned block-MINRES

(Montoison and Orban, SISC, 2021)
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The generalized SSY tridiagonalization

• Let β1Mu1 = b and γ1Nv1 = c. After j steps of gSSY, we have

AVj = MUj+1Tj+1,j, A⊤Uj = NVj+1T
⊤
j,j+1,

U⊤
j+1MUj+1 = V⊤

j+1NVj+1 = Ij+1.

with

Tj+1,j =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

α1 γ2

β2 α2
. . .

. . . . . . γj
βj αj

βj+1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸
=

󰀗
Tj

βj+1e
⊤
j

󰀘
.

M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gradient-type methods for unsymmetric linear equations.

SINUM, Vol. 25, Iss. 4 (1988)
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TriCG

• Assume that no breakdowns occur for the first j steps, i.e., Uj, Vj, and Tj are

well defined. The jth TriCG iterate is
󰀗
xj

yj

󰀘
=

󰀗
Uj 0

0 Vj

󰀘 󰀗
Ij Tj

T⊤
j −Ij

󰀘−1 󰀗
β1e1
γ1e1

󰀘
,

which satisfies the Galerkin condition
󰀗
Uj 0

0 Vj

󰀘⊤ 󰀕󰀗
b

c

󰀘
−

󰀗
M A

A⊤ −N

󰀘 󰀗
xj

yj

󰀘󰀖
= 0.

• Equivalent to preconditioned block-CG:
󰀗
M A

A⊤ −N

󰀘 󰀗
x1 x2

y1 y2

󰀘
=

󰀗
b 0

0 c

󰀘
.

A. Montoison and D. Orban. TriCG and TriMR: Two iterative methods for symmetric quasi-definite systems. SISC,

Vol. 43, Iss. 4 (2021)
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Elliptic singular value decomposition (ESVD)

• Given SPD M and N, ESVD of A is

A = MPΣQ⊤N,

where Σ = diag(σ1, . . . , σp), σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, p = min(m,n), and P

and Q satisfy

P⊤MP = Im, Q⊤NQ = In.

• Eigenvalues of a two-sided preconditioned matrix (let r = rank(A)):

λ
󰀓
H− 1

2KH− 1
2

󰀔
=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

±
󰁳

σ2
i + 1, i = 1, . . . , r,

1, (m− r) times,

−1, (n− r) times.

M. Arioli. Generalized Golub–Kahan bidiagonalization and stopping criteria. SIMAX, Vol. 34, Iss. 2 (2013)
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A gSSY process with deflated restarting

• gSSY-DR(p, k):

AV(i)
p = MU(i)

p T(i)
p + β

(i)
p+1Mu

(i)
p+1e

⊤
p ,

A⊤U(i)
p = NV(i)

p (T(i)
p )⊤ + γ

(i)
p+1Nv

(i)
p+1e

⊤
p .

For i = 2, 3, . . . ,

T(i)
p =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

α
(i)
1 γ

(i)
2

. . .
...

. . . γ
(i)
k+1

β
(i)
2 . . . β

(i)
k+1 α

(i)
k+1 γ

(i)
k+2

β
(i)
k+2 α

(i)
k+2

. . .
. . . . . . γ

(i)
p

β
(i)
p α

(i)
p

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.
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TriCG with deflated restarting

• The recurrences in the first cycle are the same as that of TriCG. Now consider

cycle i ≥ 2. The jth (k + 1 ≤ j ≤ p) TriCG-DR(p, k) iterate is

󰀥
x
(i)
j

y
(i)
j

󰀦
=

󰀥
U

(i)
j 0

0 V
(i)
j

󰀦󰀥
Ij T

(i)
j

(T
(i)
j )⊤ −Ij

󰀦−1 󰀥
β
(i)
1 ek+1

γ
(i)
1 ek+1

󰀦
,

which satisfies the Galerkin condition

󰀥
U

(i)
j 0

0 V
(i)
j

󰀦⊤ 󰀣󰀗
b

c

󰀘
−

󰀗
M A

A⊤ −N

󰀘 󰀥
x
(i)
j

y
(i)
j

󰀦󰀤
= 0.

• Using an LDL⊤ decomposition and the same strategy in TriCG, short

recurrences can be obtained to compute x
(i)
j and y

(i)
j for k + 1 ≤ j ≤ p.
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TriCG vs. TriCG-DR
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Summary

• We have developed deflation techniques for nonsymmetric positive definite

linear systems and symmetric quasi-definite linear systems.

• We have proposed S2Lan-DR and Rapopart-DR for solving nonsymmetric

positive definite linear systems, and TriCG-DR for solving symmetric

quasi-definite linear systems. The new methods have faster convergence and

demonstrate a significant advantage in computational time.

• S2Lan-DR and gSSY-DR can be used to compute partial spectral information.

And the computed spectral information can be used to help solve linear

systems with sequential multiple right-hand sides.
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