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Linear systems, Krylov subspace methods, and deflation

® Linear systems of equations
Ax =D, A e R™™, b e R™
e Krylov subspace methods

CG, MINRES; GMRES, CMRH, Bi-CG, QMR, Bi-CGSTAB

® Acceleration techniques

preconditioning, randomization, inexact or mixed-precision, inner-product free
(orthogonalization-free), deflation ...

® When solving linear systems, deflation refers to reducing the influence of some
eigenvalues that tend to slow convergence. Deflation can be implemented

(1) by adding approximate eigenvectors to a subspace, or
(2) by building a preconditioner from eigenvectors.
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Some solvers incorporating augmentation-based deflation

® Nonsymmetric linear systems: Arnoldi + augmentation + restart
FOM-IR, GMRES-IR (Morgan, SIMAX, 2000), FOM-DR, GMRES-DR
(Morgan, SISC, 2002)

A'V’I(’)"L;/) = V7(’:L)+1H(Z)

m—+1,m>

i=1,2,...

® Symmetric linear systems: Lanczos + augmentation + restart
Lanczos-DR, MINRES-DR (Abdel-Rehim et al., SISC, 2010)

AVH = vO 10 i=1,2,...

m+1,m>

® Symmetric saddle point linear systems: Golub—Kahan + augmentation + restart
Augmented LSQR (Baglama, Reichel, and Richmond, NA, 2013)
Augmented CRAIG (Dumitrasc, Kruse, and Ride, SIMAX, 2024)

AV = USL)HB(“ ATUSBH = Vg)i)—i-l(Biz?—i-l)T? i=1,2,...

m+1,m>
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Nonsymmetric positive definite linear systems

® The symmetric and skew-symmetric splitting
1 T 1 -
f& ::I{'+'S7 II = 5(1\.+-}X ), S = 5(f\-—-f& ).

Assume that the symmetric part H of A is SPD.

e Stationary iterative methods
HSS (Bai, Golub, and Ng, SIMAX, 2003) ...

e Krylov subspace methods based on the skew-symmetric Lanczos process
CGW (Concus and Golub, 1976, Widlund, 1978) : Galerkin condition
Rapoport’s method (Rapoport, 1978): MR condition
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Nonsymmetric positive definite linear systems

® Skew-symmetric Lanczos

0 -7
2 0 T
SU,, = HUp 11 Trpim;,  Tovim = e TYm| T [’YerleyTn] .
Ym 0
| Ym+1

* Note that A\(H™'S) = {£01i, £o0i, ..., £0, /21, 0} with r = rank(H'S) and
o1 ZO’QZ...ZO’T/2>O.
Ixs; = A bllw _, (VIFoi-1Y
[xo = A~'blla = \/1+07+1

CGW convergence:

b — AX;lr-

01 ’
<2 —F/—
b — Axo|g— (x/l + 0%+ 1)

Rapoport convergence:
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Skew-symmetric Lanczos with deflated restarting

e S?Lan-DR(m, 2k) ' ‘
SU%) = HU%)HT?(??HM

For example, m =8, k=2,1=2,3,...,

0 x X
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CGW vs. S?’Lan-DR(m, 2k)

105 gupta3
an-DR(240,80)
®
=
2 00
21
] 0
S
£
£
o
=z
10°
0 2000 4000 6000 8000
Number of matrix-vector products
100 rajat27
Lan-DR(100,20)
3 CPU
D 48.80
2 2338
(-]
g 10°
£
o
=z
10°
[} 2 4 6 8 10
Number of matri: tor prod x10%

Norm of residual

Norm of residual

10°
aw
CPU
o 39.76
10 2242
10°
0 1 2 3 4 5 6 7
Number of matrix-vector products » 194
105 TSOPF_RS_b300_c2

-
o
©

10

g7jac060sc

1.5 2 25

Number of matrix-vector products 1%

8/20



Rapoport with deflated restarting

® Rapoport-DR(m, 2k) , 4
sul) =uul, T

For example, m =8, k=2,1=2,3,...,
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Rapoport vs. Rapoport-DR(m, 2k)

10°

mouse_gene

——Rapoport
—— Rapoport-DR(200,80)

o CPU
10 63.66
o 32.97
=
10%
10-1o
400 800
Iteration j
mycielskian15
10° Y
Rapoport
(]
10 CPU
o 115.58
= 69.72
10°
10710
0 1000 2000 3000 4000 5000

Iteration j

mip1
10° P
Rapoport
Rapoport-DR(150,40)
o CPU
10 147.01
=] 107.47
=
10
10-|0
2000 4000 6000 8000
Tteration j
atterni
10° P
R(120,50)
0
10 CPU
= 21.86
= 10.79
10
10""
400 1000

Iteratlon J

10/20



Symmetric quasi-definite linear systems

o M c R™™ and N € R™*™ are SPD, A € R™*" is nonzero, b € R™, and
ceR™

P 1R R A

® Symmetric, indefinite, nonsingular

® Monolithic methods: solving the system as a whole, for example, SYMMLQ),
MINRES
Segregated methods: tailored specifically to the block structure, for example,
TriCG: generalized Saunders—=Simon—-Yip tridiagonalization + Galerkin condition,
mathematically equivalent to preconditioned block-CG
TriMR: generalized Saunders—Simon-Yip tridiagonalization + MR conditon,
mathematically equivalent to preconditioned block-MINRES
(Montoison and Orban, SISC, 2021)
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The generalized SSY tridiagonalization

® Let f/1Mu; = b and 11Nv; = c. After j steps of gSSY, we have

AV, =MU; 1 Tj1;, A'U; =NV, T

Jyj+1

[J'T MUj+1 - V;r+1NVj+1 = IjJrl.

j+1
with ~ ~
a2
Ba ay . T.
- : : _ j
L NS
Bi  aj
! Bj+1]

M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gradient-type methods for unsymmetric linear equations.
SINUM, Vol. 25, Iss. 4 (1988)
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TriCG

® Assume that no breakdowns occur for the first j steps, i.e., U;, V;, and T; are

well defined. The jth TriCG iterate is

-1
b =le vl o) Ll
Y 0 Vj T;r —Ij Y1€1 ’
which satisfies the Galerkin condition
T

Uj 0 b- . M A Xj_ .
0 V; c] |AT -N|l|y;l/)
e Equivalent to preconditioned block-CG:
M Al [xt x?
AT —N_ yl y2

b 0]
0 c|

A. Montoison and D. Orban. TriCG and TriMR: Two iterative methods for symmetric quasi-definite systems. SISC,

Vol. 43, Iss. 4 (2021)
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Elliptic singular value decomposition (ESVD)

e Given SPD M and N, ESVD of A is
A =MPXQ'N,

where 3 = diag(oy,...,0,), 01 > 03> --- >0, >0, p=min(m,n), and P
and Q satisfy
P'MP=1,, Q'NQ=1I,.

e Eigenvalues of a two-sided preconditioned matrix (let » = rank(A)):

+y/o2+1, i=1,...,r
A(HGKH ) =1, (m ) times,
-1, (n —r) times.

M. Arioli. Generalized Golub—Kahan bidiagonalization and stopping criteria. SIMAX, Vol. 34, Iss. 2 (2013)
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A gSSY process with deflated restarting

* gSSY-DR(p, k):

AV =
ATUY
Fori:=23,...,
o

MU(l T Q) QlMuﬁlep,
= NVO(TO)T 4+~ Nvl) el

p
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TriCG with deflated restarting

® The recurrences in the first cycle are the same as that of TriCG. Now consider
cycle i > 2. The jth (k+1 < j <p) TriCG-DR(p, k) iterate is

. . —1 .
<] o) o ew
Y~Z) 0 Vf) 7§l)ek+1 ’
which satisfies the Galerkin condition
. T .
ul’ o [b] - {M A} <"1\ _y
o VvV c] AT -NJ |yl '

® Using an LDLT decomposition and the same strategy in TriCG, short
recurrences can be obtained to compute xy) and y]@ fork+1<j5<p.
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. .
TriCG vs. TriCG-DR
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Summary

® We have developed deflation techniques for nonsymmetric positive definite
linear systems and symmetric quasi-definite linear systems.

® We have proposed S%Lan-DR and Rapopart-DR for solving nonsymmetric
positive definite linear systems, and TriCG-DR for solving symmetric
quasi-definite linear systems. The new methods have faster convergence and
demonstrate a significant advantage in computational time.

® S2Lan-DR and gSSY-DR can be used to compute partial spectral information.
And the computed spectral information can be used to help solve linear
systems with sequential multiple right-hand sides.
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