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GMRES

Consider a nonsingular linear system

Ax = b, A ∈ Cn×n, b ∈ Cn.

For initial guess x0, GMRES finds an approximate solution

xk ∈ x0 +Kk(A, r0)

by minimizing the Euclidean norm of the residual

rk := b−Axk, ‖rk‖ = min
x∈x0+Kk(A,r0)

‖b−Ax‖,

where
Kk(A, r0) := span{r0,Ar0, . . . ,A

k−1r0}.
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GMRES

GMRES residual norms satisfy the minimization property

‖rk‖ = min
p(z)∈Pk,p(0)=1

‖p(A)r0‖,

where Pk denotes the set of polynomials with degree ≤ k.

The residual rk can be uniquely expressed as

rk = pk(A)r0, deg(pk) ≤ k, pk(0) = 1.

The polynomial pk(z) is called GMRES residual polynomial.
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Eigenvalues and convergence: normal case

Plugging the spectral decomposition A = WΛW∗ yields

‖rk‖ = min
p(z)∈Pk,p(0)=1

‖p(A)r0‖ = min
p(z)∈Pk,p(0)=1

‖p(Λ)W∗r0‖.

Thus residual norms are fully determined by

◮ (i) eigenvalues,

◮ (ii) components of the initial residual in the eigenvector
basis.

The previous bound leads to the well-known bound

‖rk‖
‖r0‖

≤ min
p(z)∈Pk,p(0)=1

max
λ∈Λ(A)

|p(λ)|.

The possibly worst convergence rate is decided by the eigenvalue
distribution.
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Eigenvalues and convergence: nonnormal case

With nonnormal matrices A, convergence need not be governed
by spectrum.

Theorem 1 (Greenbaum, Pták & Strakoš, SIMAX 1996)

Let
‖r0‖ = ρ0 ≥ ρ1 ≥ · · · ≥ ρn−1 > 0

be any non-increasing sequence of real positive numbers and let

{λ1,λ2, · · · ,λn}

be any set of nonzero complex numbers. Then there exists a
class of matrices A ∈ Cn×n and initial residuals r0 ∈ Cn such
that the residuals rk generated by GMRES satisfy

‖rk‖ = ρk, k = 0 : n− 1, Λ(A) = {λ1,λ2, · · · ,λn}.
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Arnoldi process for the pair {A, r0}
MGS orthogonalization for the orthonormal basis of Kk(A, r0)

Algorithm: Arnoldi process

v1 = r0/‖r0‖
for k = 1, 2, 3, . . .

w = Avk

for i = 1 to k
hik = v∗

iw
w = w − hikvi

end
hk+1,k = ‖w‖
vk+1 = w/hk+1,k

end

We call the Arnoldi process breaks down if at some step k, an
entry hk+1,k = 0 is encountered.
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Arnoldi relation
We assume that the Arnoldi process for the pair {A, r0} does
not break down before the nth iteration. Then we have

AV = VH, V ∈ Cn×n, H ∈ Cn×n,

where V∗V = I and H is irreducible upper Hessenberg:

V =
!
v1 · · · vn

"
, H =

#

$$$$%

h11 h12 · · · h1n

h21 h22
. . .

...
. . .

. . .
...

hn,n−1 hnn

&

''''(
.

For k < n, let Hk and Hk denote the upper-left k × k and
(k + 1)× k submatrices of H, respectively. We have

Hk = V∗
kAVk, Hk = V∗

k+1AVk,

where Vk =
!
v1 · · · vk

"
. We use Hn = Hn = H.
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Ritz values and harmonic Ritz values

Ritz values {λ(k)
j }kj=1: eigenvalues of Hky = λy

Harmonic Ritz values {θ(k)j }kj=1: eigenvalues of H
∗
kHky = θH∗

ky

Remark 1

• Totally, (n+ 1)n/2 Ritz values or harmonic Ritz values.

• Both {λ(n)
j }nj=1 and {θ(n)j }nj=1 are eigenvalues of A.

• The harmonic Ritz value θ
(k)
j ∕= 0 and could be ∞.

Lemma 2 (Freund,1992; Cao,1997; etc.)

The unique GMRES residual polynomial is given by

pk(z) =

k)

j=1

*
1− z

θ
(k)
j

+
.
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Ritz values and convergence

◮ In the CG method for Hermitian positive definite linear
systems, a converged Ritz value often implies an
accelerated phase of convergence of the A-norm of the
error, see, e.g., [van der Sluis & van der Vorst, 1986].

◮ An analogue result for the GMRES method suggests a
similar phenomenon provided A is close to normal (the
involved bounds contain the condition number of the
eigenvector matrix). [van der Vorst & Vuik, 1993].

What do we know about the relation between Ritz values and
GMRES convergence for general nonnormal matrices?

Any Ritz value behavior is possible with any GMRES residual
norm history. [Duintjer Tebbens & Meurant, SIMAX, 2012].
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Harmonic Ritz values and convergence

Many deflation methods use harmonic Ritz values to accelerate
the convergence of restarted GMRES, see, e.g.,
[Morgan, SISC, 2002],
[Giraud, Gratton, Pinel, & Vasseur, SISC, 2010],
[Agullo, Giraud, & Jing, SIMAX, 2014]

What do we know about the relation between harmonic Ritz
values and GMRES convergence for general nonnormal
matrices?
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Property of harmonic Ritz values

Theorem 3

Let Θ(k) denote the k-tuple of the harmonic Ritz values:

Θ(k) = (θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
k ).

If GMRES applied to {A, r0} stagnates from step k + 1 to step
k +m (0 ≤ k < k +m ≤ n− 1), i.e.,

‖rk‖ = ‖rk+1‖ = · · · = ‖rk+m‖,

then, for i = 1 : m, the (k + i)-tuple of the harmonic Ritz values
(regardless of the order)

Θ(k+i) = (θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
k ,∞, · · · ,∞).

Proof: Follows from pk(z) = pk+1(z) = · · · = pk+m(z).
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Admissible harmonic Ritz value set

For prescribed GMRES residual norms (without loss of
generality, in the sequel, we assume ‖r0‖ = 1)

1 = ‖r0‖ ≥ ‖r1‖ ≥ · · · ≥ ‖rn−1‖ > ‖rn‖ = 0,

we call a set of tuples of nonzero complex numbers

Θ = {Θ(1), Θ(2), . . . , Θ(n)}
= {θ(1)1 ,

(θ
(2)
1 , θ

(2)
2 ),

...

(θ
(n)
1 , θ

(n)
2 , . . . , θ(n)n )}

an admissible harmonic Ritz value set if θ
(n)
j ∕= ∞ and the

tuples {Θ(i)}n−1
i=1 satisfy the property in Theorem 3.
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Krylov matrix and the companion matrix

Consider QR factorization of the Krylov matrix

K :=
!
r0 Ar0 · · · An−1r0

"
= VU−1,

where U−1 is the nonsingular upper triangular matrix
representing the change of basis. Let C be the companion
matrix associated with the characteristic polynomial of A,
denoted as

C =

,
0 −c0

In−1 −cn−1

-
,

where
cn−1 =

!
c1 c2 · · · cn−1

"T
.

The monic polynomial with coefficients cn−1, · · · , c0 has the
eigenvalues of A as roots. We have

AK = KC.
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Decompositions of H, Hk and Hk

Lemma 4 (DT & Meurant, 2016)

The matrix H can be written as H = U−1CU where C is the
companion matrix of A and U is upper triangular (uii > 0).

Lemma 5 (DT & Meurant, 2016)

For 1 ≤ k < n the matrices Hk and Hk can be written as

Hk = U−1
k C(k)Uk, Hk = U−1

k+1Ek+1

,
Uk

01×k

-
,

where Uk is the upper-left k × k submatrix of U and

C(k) = Ek +
.
0 UkU

−1
1:k,k+1

/
, Ek =

#

$$$%

0
1 0

. . .
. . .

1 0

&

'''(
.
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GMRES residual polynomial companion matrix

Remark 2 (DT & Meurant, 2016)

For 1 ≤ k < n, C(k)ek = −U1:k,k+1/uk+1,k+1.

Lemma 6 (Meurant, 2016)

For 1 ≤ k < n, assume that Hk is nonsingular. The matrix

0Hk := Hk + h2k+1,kH
−∗
k eke

T
k ,

whose eigenvalues are the harmonic Ritz values at step k, can
be written as

0Hk = U−1
k

0C(k)Uk,

Uk being upper triangular and the companion matrix

0C(k) = C(k) +
1

u2k+1,k+1e
T
1 C

(k)ek
UkU

∗
ke1e

T
k .
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GMRES residual norms and U

Theorem 7 (Relation to entries of U)

GMRES residual norms, ‖rk‖, satisfy:

‖rk‖ =

*
k+11

l=1

|u1l|2
+−1/2

.

Corollary 8

For 1 ≤ k < n,

|u1,k+1| =

2
1

‖rk‖2
− 1

‖rk−1‖2
.
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Construction of the desired U

Given {ρk}n−1
k=0 and an admissible harmonic Ritz value set Θ:

Step k = 0: Let u11 = 1.

Step 1 ≤ k < n: (i) If ρk < ρk−1, let {θ(k)j }kj=1 be the roots of

the polynomial zk + βk−1z
k−1 + · · ·+ β1z + β0. Let

u1,k+1 =
β0
|β0|

3
1/ρ2k − 1/ρ2k−1,

uk+1,k+1 =
1

|β0|ρ2k
3

1/ρ2k − 1/ρ2k−1

,

uj,k+1 = βj−1uk+1,k+1 −
eTj UkU

∗
ke1

u1,k+1
, j = 2, . . . , k.

(ii) If ρk = ρk−1, let u1,k+1 = 0, uk+1,k+1 be arbitrarily chosen
positive real number, and uj,k+1 for j = 2 : k, be arbitrarily
chosen complex numbers.
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Construction of the desired pair {A, r0}

Theorem 9

Given {ρk}n−1
k=0 and an admissible harmonic Ritz value set Θ.

Let H = U−1CU where U is chosen by the previous procedure
and C is the companion matrix with prescribed eigenvalues.
GMRES applied to {H, e1} generates the residual rk with
‖rk‖ = ρk, and all the prescribed harmonic Ritz values.

General {A, r0} can be constructed via the invariance under
unitary similarity transformations.

Theorem 10 (Trefethen & Bau, 1997; etc.)

Let GMRES be applied to a matrix A ∈ Cn×n and a vector r0.
If A is changed to PAP∗ for some unitary matrix P, and r0 is
changed to Pr0, then the residuals {rk} change to {Prk}.
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QR factorization: H = QR

The matrix Q is unitary irreducible upper Hessenberg.

Lemma 11 (Entries of Q)

Rows 2 through n of the unitary irreducible upper Hessenberg
matrix Q are uniquely determined (up to complex signs) by the
first row of Q. Specifically, for i = 1 : n− 1 and j = i+ 1 : n

qi+1,i = αi

3
1−

4i
l=1 |q1l|23

1−
4i−1

l=1 |q1l|2
,

qi+1,j = −αi
q1iq1j3

1−
4i−1

l=1 |q1l|2
3

1−
4i

l=1 |q1l|2
,

where
|α1| = |α2| = · · · = |αn−1| = 1.
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GMRES residual norms and Q:

Lemma 12 (Relation to entries of Q)

GMRES residual norms, ‖rk‖, satisfy:

‖rk‖ =

*
n1

l=k+1

|q1l|2
+1/2

, ‖rk‖ = |qk+1,k|‖rk−1‖.

Corollary 13

The entries of the first row of Q, q1k, satisfy

|q1k| =
5

‖rk−1‖2 − ‖rk‖2.

Remark 3

By Lemma 11 and Corollary 13, given GMRES residual norms
implies entries of Q are uniquely determined up to complex
signs.
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Parameterized inverse eigenvalue problems

By H = QR, we can rewrite the eigenvalue problem Hky = λy
as

QkRky = λy,

where Qk and Rk denote the upper-left k × k submatrices of Q
and R, respectively. By H = QR, we have

Hk = Q
k
Rk,

where Q
k
denotes the upper-left (k + 1)× k submatrix of Q.

Therefore, we can rewrite the generalized eigenvalue problem
H∗

kHky = θH∗
ky as

Rky = θQ∗
ky.

Remark 4

Given the matrix Q, we can determine Rk column by column
according to the prescribed Ritz values or harmonic Ritz values.
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Conclusion and future work
Conclusion: Any admissible harmonic Ritz value set is
possible for GMRES.

For assessing the quality of a preconditioner M when GMRES
is applied to

M−1Ax = M−1b, M−1A non-normal,

the spectrum of M−1A alone is not enough for convergence
analysis.

◮ Clustering of eigenvalues does not suffice to guarantee fast
convergence for nonnormal case.

◮ Not either need eigenvalues, Ritz values, and harmonic
Ritz values close to zero hamper convergence.

Future work: Attempt to find theoretical reasons for the fact
that deflation methods work in spite of these results. Design
efficient preconditioners, etc.
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