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1. Hyperplanes

Formally, given a vector w ∈ Rn with w2 = 1 and a scalar
s ∈ R, we define the hyperplane H(w, s) determined by w and s as

H(w, s) = {x ∈ R | w⊤x = s}.

Every vector x ∈ Rn can be expressed as the sum of two
orthogonal components:

x = (w⊤x)w + (x− (w⊤x)w) := tw + x⊥

If y is a point on the hyperplane H(w, s), i.e.,

y = sw + y⊥, w⊤y⊥ = 0,

then, we have

x− y22 = (t− s)w + (x⊥ − y⊥)22 = |t− s|2 + x⊥ − y⊥22.
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Define the distance of x from the hyperplane H(w, s) to be

dist(x,H(w, s)) = min{x− y2 | y ∈ H(w, s)}
= |t− s|.

The minimum is attained for

y = sw + x⊥,

that is, when y is the orthogonal projection of x onto H(w, s).

A direct consequence is that the distance between two parallel
hyperplanes H(w, s2) and H(w, s2), s1, s2 ∈ R, is

dist(H(w, s1),H(w, s2))

= {min x− y2 | x ∈ H(w, s1),y ∈ H(w, s2)}
= |s1 − s2|.
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2. Optimal separating hyperplanes

Consider the set of annotated training data,

D = {(x(1), c(1)), (x(2), c(2)), · · · , (x(p), c(p))},

where x(j) ∈ Rn and c(j) = ±1.

Assume that the classes are linear separable, that is, there is a
hyperplane H(w, s), w2 = 1, such that the points in the two
classes are on opposite sides of the hyperplane:

w⊤x(j) − s < 0 if c(j) = −1,

w⊤x(j) − s > 0 if c(j) = +1.

The distances of the hyperplane from the two classes:

h− = min{|w⊤x(j) − s| | c(j) = −1} = min{s−w⊤x(j) | c(j) = −1},
h+ = min{|w⊤x(j) − s| | c(j) = +1} = min{w⊤x(j) − s | c(j) = +1}.
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Without loss of generality, we can translate the hyperplane along
the axis defined by w until we find a value of s for which the
hyperplane is equidistant from both classes, i.e., h− = h+ = h.

After having adjusted the position of the hyperplane, we have

w⊤x(j) − s ≤ −h if c(j) = −1,

w⊤x(j) − s ≥ +h if c(j) = +1,

Define H± := H(w, s± h) = {x ∈ Rn | w⊤x = s± h}. Dividing
both sides of the equation

w⊤x = s± h

by h, we see that the condition to be satisfied by the vectors in Rn

in the hyperplanes H± can be reformulated as

1

h
w⊤x− s

h
= ±1.
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After performing the change of variables

q =
1

h
w, b =

s

h

and removing the condition that the normal vector defining a
hyperplane must have a unit 2-norm, we can define the two
hyperplanes as

H± := H±(q, b) = {x ∈ Rn | q⊤x− b = ±1},

with the only requirement that q is a nonzero vector.

The distance between H− and H+ can be expressed as

dist(H+,H−) =
2

q2
, q ∕= 0.

The parallel hyperplanes H− and H+ define a region of width 2h
separating the two classes.
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Support vectors and the separating margin.
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We have

q⊤x(j) − b ≤ −1 if c(j) = −1,

q⊤x(j) − b ≥ +1 if c(j) = +1,

or, more concisely,

c(j)(q⊤x(j) − b) ≥ 1, 1 ≤ j ≤ p.

The goal of the support vector machine algorithm is to find a
vector q defining the pair of hyperplanes H± that separate the two
classes for which the separating margin is as wide as possible. This
goal can be recast in the form of a constrained optimization
problem:

min
q,b

1

2
q22 subject to c(j)(q⊤x(j) − b) ≥ 1.
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Since, in general, there is no guarantee that the linear separability
condition is satisfied, the hyperplane selection criterion needs to be
modified to take into consideration the possibility that the linear
separability condition may not hold.

Let H±(q, b) be two parallel hyperplanes as above. Partition the
data points into two groups by assigning j ∈ J if (x(j), c(j))
satisfies

c(j)(q⊤x(j) − b) ≥ 1,

and to j ∈ J c otherwise, where J c is the set of indices between 1
and p that are not in J . Thus, the indices in J c correspond to
data points that are not on the correct side of the margin.

For each index j, define the slack variable ζj ,

ζj =


1− c(j)(q⊤x(j) − b) > 0 for j ∈ J c,
0 for j ∈ J ,

or, compactly, ζj = max{1− c(j)(q⊤x(j) − b), 0}, 1 ≤ j ≤ p.
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With these auxiliary variables, searching for q and b so as to
minimize the number of data points on the wrong side of the
region defined by the hyperplanes is tantamount to looking for a
vector ζ as sparse as possible, that is, with as few nonzero entries
as possible.

The sparsity is promoted by adding to the objective function a
penalty term for the growth in the 1-norm of the vector ζ. We
have

minimize f(q, b, ζ) =
1

2
q22 + λ

p

j=1

ζj

subject to


ζj ≥ 0,

ζj ≥ 1− c(j)(q⊤x(j) − b),

where λ > 0 is a parameter determining the severity of the penalty
for increasing the 1-norm of ζ.
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3. The primal-dual approach

Given the objective function f : Rd → R and the vector valued
function defining the constraints g : Rd → Rk, we want to

minimize f(w) subject to gj(w) ≤ 0, 1 ≤ j ≤ k.

Let L : Rd × Rk → R be the Lagrange function, defined as

L(w,α) = f(w) +α⊤g(w),

where the vector α ∈ Rk
+ is the vector of Lagrange multipliers.

Let Ω ⊂ Rd denote the feasible set of points in Rd

Ω = {w ∈ Rd | gj(w) ≤ 0, 1 ≤ j ≤ k}.

Define the primal function Lp(w) as

Lp(w) = max
α

{L(w,α) | αj ≥ 0, 1 ≤ j ≤ k}.
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Observe that
αjgj(w) ≤ 0, w ∈ Ω,

with equality holding if αj = 0. If w /∈ Ω, there is at least one
index j such that gj(w) > 0, and the product αjgj(w) can be
made arbitrarily large, and therefore

Lp(w) =


f(w), w ∈ Ω,
∞, w /∈ Ω.

We define the primal problem in terms of the primal function,

(P) : minimize Lp(w).

Since Lp(w) coincides with the original objective function f(w)
for all vectors w in the feasible set and it diverges outside the
feasible set, the solution of the primal problem is the desired
constrained minimizer.
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Introduce the auxiliary dual function Ld(α) in Rk:

Ld(α) = min{L(w,α) | w ∈ Rd},

and define the corresponding dual problem

(D) : maximize Ld(α) subject to α ≥ 0.

The primal and dual problems are not identical by default,
because interchanging the order of minimization and maximization
may change the problem.

Since for every pair (w,α) ∈ Rd × Rk
+,

Ld(α) ≤ L(w,α) ≤ Lp(w),

we have that
max
α≥0

Ld(α) ≤ min
w∈Rd

Lp(w).
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Theorem 1

Assume that the functions f and gj are convex and differentiable,
1 ≤ j ≤ k, and that there exists at least one point w ∈ Rd such that
gj(w) < 0 for all j. Then there exist a vector w ∈ Ω that solves the
primal problem, and coefficients α

j ≥ 0, 1 ≤ j ≤ k, that solve the dual
problem, and

max
α≥0

Ld(α) = L(w,α) = min
w∈Rd

Lp(w).

Moreover, the vectors w and α satisfy the Karush–Kuhn–Tucker
(KKT) conditions, i.e.,

∇wL(w,α) = 0, g(w) ≤ 0, α ≥ 0,

and (the complementarity condition)

(α)⊤g(w) = 0.
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4. The SVM optimization problem

For
(q, b, ζ) ∈ Rn × R× Rp,

consider the objective function

f(q, b, ζ) =
1

2
q22 + λ

p

j=1

ζj .

Introduce the constraint functions gj and gp+j , 1 ≤ j ≤ p,

gj(q, b, ζ) = −ζj ,

gp+j(q, b, ζ) = 1− ζj − c(j)(q⊤x(j) − b).

The SVM optimization problem is

minimize f(q, b, ζ) subject to gj(q, b, ζ) ≤ 0, 1 ≤ j ≤ 2p.
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The functions f and gj are convex. The Lagrange function is

L(q, b, ζ,α) =
1

2
q22 + λ

p

j=1

ζj −
p

j=1

αjζj

−
p

j=1

αp+j(ζj + c(j)(q⊤x(j) − b)− 1)

=
1

2
q22 − q⊤




p

j=1

αp+jc
(j)x(j)



+ b

p

j=1

αp+jc
(j)

−
p

j=1

ζj(αj + αp+j − λ) +

p

j=1

αp+j ,

where the coefficients

αj ≥ 0, 1 ≤ j ≤ 2p.
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The first-order optimality condition for the minimizer requires the
gradient of L with respect to q, b, and ζ to vanish, yielding the
system of equations

∇qL = q−
p

j=1

αp+jc
(j)x(j) = 0,

∂L
∂b

=

p

j=1

αp+jc
(j) = 0,

∂L
∂ζj

= λ− αj − αp+j = 0, 1 ≤ j ≤ p.

Therefore, the Lagrange function at the maximizer of the dual
problem simplifies to

L = −1

2



p

j=1

αp+jc
(j)x(j)



2

2

+

p

j=1

αp+j .
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After performing the change of variables y(j) = c(j)x(j) and
βj = αp+j , we have

L = −1

2



p

j=1

βjy
(j)



2

2

+

p

j=1

βj = −1

2
β⊤Gβ + 1⊤β,

where G ∈ Rp×p is the matrix with entries

Gjk = (y(j))⊤y(k).

In other words, to solve the SVM optimization problem it suffices
to find a vector β that solves the following reduced dual problem:

maximize


−1

2
β⊤Gβ + 1⊤β


subject to






0 ≤ βj ≤ λ,
p

j=1

βjc
(j) = 0.
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By the complementarity condition, we have

p

i=1

αjζj +

p

j=1

βj(c
(j)(q⊤x(j) − b) + ζj − 1) = 0.

If αj > 0, then ζj = 0, and if βj > 0, then

c(j)(q⊤x(j) − b) + ζj − 1 = 0.

From αj + βj = λ, we have that

0 < βj < λ ⇒


ζj = 0,

c(j)(q⊤x(j) − b) + ζj − 1 = 0.

Therefore, we conclude that

0 < βj < λ ⇒ c(j)(q⊤x(j) − b) = 1,

which implies that x(j) must belong to one of H±(q, b).
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If βj = 0, then αj = λ > 0, and thus ζj = 0. It follows from

1− ζj − c(j)(q⊤x(j) − b) ≤ 0

that
c(j)(q⊤x(j) − b) ≥ 1.

Similarly, βj = λ implies αj = 0 and

c(j)(q⊤x(j) − b) = 1− ζj , ζj ≥ 0.

In summary,

βj = 0 ⇒ ζj = 0, c(j)(q⊤x(j) − b) ≥ 1,

0 <βj < λ ⇒ ζj = 0, c(j)(q⊤x(j) − b) = 1,

βj = λ ⇒ αj = 0, c(j)(q⊤x(j) − b) = 1− ζj ≤ 1.
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c(j)(q⊤x(j) − b) > 1 means that x(j) is on the correct side of the
separating hyperplanes, c(j)(q⊤x(j) − b) = 1 means that x(j) is a
support vector, and c(j)(q⊤x(j) − b) < 1 means that x(j) is on the
wrong side.

If βj satisfies 0 < βj < λ, we have

b = q⊤x(j) − c(j).

To make the determination of b more robust, one may compute the
average of the estimates of b corresponding to all support vectors:

b =
1

m

m

ℓ=1

(q⊤x(jℓ) − c(jℓ)),

where j1, · · · , jm are the indices of the support vectors.
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Basic support vector machine (SVM) algorithm

1. Given a data set {x(1), · · · ,x(p)} with binary annotation,

c(j) = ±1, and λ > 0.

2. Set y(j) = c(j)x(j) and compute Gjk = (y(j))⊤y(k).

3. Find the vector β that solves the reduced dual problem.

4. Determine the vector q according to the formula

q =

p

j=1

βjy
(j).

5. Identify the support vectors with the indices j1, · · · , jm
for which 0 < βj < λ. Compute b using

b =
1

m

m

ℓ=1

(q⊤x(jℓ) − c(jℓ)).

6. An unlabeled vector x ∈ Rn is assigned class label c = ±1

where c = sign(q⊤x− b).
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5. Solving the reduced dual problem

We update a pair of coordinates in each step. Without loss of
generality, let the coordinates be β1 and β2.

Denote by βc
j the current values of βj and write the updated

values of β1 and β2 as

β+
1 = βc

1 + t, β+
2 = βc

2 + s.

To satisfy the constraint, we require

c(1)(βc
1 + t) + c(2)(βc

2 + s) +

p

j=3

c(j)βc
j = 0,

which implies that
c(1)t+ c(2)s = 0,

or
s = −σt with σ = c(1)/c(2).
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Let v =

1 −σ 0 · · · 0

⊤
. The objective function to be

maximized can be expressed as a function of t of the form

f(t) = −1

2
(tv + βc)⊤G(tv + βc) + 1⊤(tv + βc)

= −1

2
t2(v⊤Gv) + tv⊤(1−Gβc) + f(0).

The bound constraints require that

0 ≤ βc
1 + t ≤ λ, 0 ≤ βc

2 − σt ≤ λ.

This implies that t must satisfy tmin ≤ t ≤ tmax, with

tmin =


max{−βc

1,−βc
2} if σ = −1,

max{−βc
1,β

c
2 − λ} if σ = 1,

tmax =


min{λ− βc

1,λ− βc
2} if σ = −1,

min{λ− βc
1,β

c
2} if σ = 1.
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If v⊤Gv > 0, then let

t =
v⊤(1−Gβc)

v⊤Gv
.

The maximum of f(t) is attained at

t+ =






tmin if t < tmin,
t if tmin ≤ t ≤ tmax

tmax if tmax < t.

If v⊤Gv = 0, then f(t) is linear, and the maximum is attained at
one of the end points of the interval, that is

t+ =


tmin if v⊤(1−Gβc) < 0,
tmax if v⊤(1−Gβc) > 0.

If v⊤Gv = 0 and v⊤(1−Gβc) = 0, then f(t) is constant, and
there is no need to update t.
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Sequential minimal optimization (SMO) algorithm

1. Given: maximum number of iteration maxit, tolerance τ

c(j) = ±1, and λ > 0.

2. Initialize: β(0) = 0, δ = ∞, and ℓ = 0.

3. while ℓ < maxit and δ > τ

Set βc = β(ℓ).

for j = 1 : p

Select randomly k ∕= j, 1 ≤ k ≤ p.

Find the optimal values for β+
j and β+

k .

Update βc
j = β+

j and βc
k = β+

k .

end for

Set β(ℓ+1) = βc.

Compute δ =
β(ℓ+1) − β(ℓ)2

β(ℓ)2
, and set ℓ = ℓ+ 1.

end while
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6. Generalization using kernel functions

Definition: The function K : Rn × Rn → R is a symmetric positive
definite kernel function if for all x,y ∈ Rn,

K(x,y) = K(y,x),

and for all m > 1 and x(1), · · · ,x(m) ∈ Rn, the matrix K ∈ Rm×m

with entries

Kij = K(x(i),x(j)), 1 ≤ i, j ≤ m,

is positive semidefinite.

Examples: K(x,y) = x⊤y; K(x,y) = (λ+ x⊤y)m, λ > 0;

Gaussian kernel K(x,y) = exp


− 1

2σ2
x− y22


, σ > 0;

Laplace kernel K(x,y) = exp


− 1

λ
x− y2


, λ > 0.
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Mercer’s Theorem:

Let K : Rn × Rn → R be a symmetric positive definite kernel
function. Then there are feature functions ϕℓ : Rn → R such that
K can be expressed as

K(x,y) =

∞

ℓ=1

ϕℓ(x)ϕℓ(y).

Let ϕ(·) =

ϕ1(·) · · · ϕℓ(·) · · ·

⊤
.

(1) Extend x(j) to a higher-dimensional space via z(j) = ϕ(x(j))

(2) Apply the SVM algorithm to the data set {z(j), c(j)} to find a
separating hyperplane H(q, b)

(3) Classify a vector x ∈ Rn by checking on which side of H(q, b)
the vector z = ϕ(x) lies.

The idea of kernel SVM: We do not explicitly form ϕ, and use the
corresponding symmetric positive definite kernel function K(x,y).
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Kernel support vector machine (kSVM) algorithm

1. Given a data set {x(1), · · · ,x(p)} with binary annotation,

c(j) = ±1, an SPD kernel function K(x,y) and λ > 0.

2. Compute the matrix G with entries Gjk = c(j)c(k)K(x(j),x(k)).

3. Find the vector β ∈ Rp that solves the reduced dual problem.

4. Define the vector q implicitly via the inner product

q⊤ϕ(x) =




p

j=1

βjc
(j)ϕ(x(j))




⊤

ϕ(x) =

p

j=1

βjc
(j)K(x(j),x).

5. Identify the support vectors with the indices j1, · · · , jm
for which 0 < βj < λ. Compute b using

b =
1

m

m

ℓ=1

(q⊤ϕ(x(jℓ))− c(jℓ)).

6. An unlabeled vector x ∈ Rn is assigned class label c = ±1

where c = sign(q⊤ϕ(x)− b).
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