
Lecture 7: Constrained optimization

School of Mathematical Sciences, Xiamen University

Data Analysis & Matrix Comp. Lecture 7 Xiamen University 1 / 16



1. Convex optimization

A convex optimization problem (or a convex problem)

min
x∈C

f(x),

where C is a convex set and f is a convex function.

Convex optimization problems in functional form

min f(x)
s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) = 0, j = 1, 2, . . . , p,

where f, g1, g2, . . . , gm : Rn → R are convex functions and
h1, h2, . . . , hp : Rn → R are affine functions. The convex set C is

C =

󰀣
m󰁟

i=1

Lev(gi, 0)

󰀤
󰁟

󰀳

󰁃
p󰁟

j=1

{x : hj(x) = 0}

󰀴

󰁄 .
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Theorem 1 (local = grobal in convex optimization)

Let f : C → R be a (strictly) convex function defined on the convex set
C. Let x󰂏 ∈ C be a local minimizer of f over C. Then x󰂏 is a (strict)
global minimizer of f over C.

Theorem 2

Let f : C → R be a convex function defined over the convex set C ⊆ Rn.
Then the set of optimal solutions of the problem min{f(x) : x ∈ C},
which we denote by X󰂏, is convex. If, in addition, f is strictly convex
over C, then there exists at most one optimal solution.

CVX: a Matlab-based convex modeling framework
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https://cvxr.com


2. Optimization over a convex set

Let f be a continuously differentiable function over a closed
convex set C. Then x󰂏 ∈ C is called a stationary point of

(P) min f(x) s.t. x ∈ C,

if ∇f(x󰂏)
⊤(x− x󰂏) ≥ 0 for any x ∈ C.

Theorem 3 (stationarity as a necessary optimality condition)

Let f be a continuously differentiable function over a closed convex set
C, and let x󰂏 be a local minimizer of (P). Then x󰂏 is a stationary point
of (P).

Theorem 4

Let f be a continuously differentiable convex function over a closed
convex set C ⊆ Rn. Then x󰂏 ∈ C is a stationary point of (P) if and only
if x󰂏 is an optimal solution of (P).
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2.1 The gradient projection method

The projection
πC(x) = argmin

y∈C
󰀂y − x󰀂22.

Theorem 5

Let C be a nonempty closed convex set. Then for any v,w ∈ Rn,

󰀂πC(v)− πC(v)󰀂22 ≤ (πC(v)− πC(w))⊤(v −w),

󰀂πC(v)− πC(v)󰀂2 ≤ 󰀂v −w󰀂2.

Theorem 6

Let f be a continuously differentiable function defined on the nonempty
closed convex set C, and let s > 0. Then x󰂏 ∈ C is a stationary point of
(P) if and only if

x󰂏 = πC(x󰂏 − s∇f(x󰂏)).
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The gradient projection method

xk+1 = πC(xk − tk∇f(xk)),

where tk > 0 is obtained by using a line search procedure.

Lemma 7

Suppose that f ∈ C1,1
L (C), where C is a nonempty closed convex set.

Then for any x ∈ C and t ∈ (0, 2/L) the following inequality holds:

f(x)− f(πC(x− t∇f(x))) ≥ (1/t− L/2)󰀂x− πC(x− t∇f(x))󰀂22

Define the gradient mapping GM (x) = M [x− πC(x−∇f(x)/M)]

Lemma 8

Let f be a continuously differentiable function defined on a nonempty
closed convex set C. Suppose that L1 ≥ L2 > 0. Then for any x ∈ Rn,

󰀂GL1(x)󰀂2 ≥ 󰀂GL2(x)󰀂2, 󰀂GL1(x)󰀂2/L1 ≤ 󰀂GL2(x)󰀂2/L2.
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constant stepsize:

tk = t ∈
󰀕
0,

2

L

󰀖
.

backtracking: s > 0, α ∈ (0, 1), β ∈ (0, 1).

First, set tk = s. Then, while

f(xk)− f(πC(xk − tk∇f(xk))) < αtk󰀂G1/tk(xk)󰀂22,

set tk ← βtk. In other words, tk = sβik , where ik is the smallest
nonnegative integer satisfying (the sufficient decrease condition)

f(xk)− f(πC(xk − sβik∇f(xk))) ≥ αsβik󰀂G1/(sβik )(xk)󰀂22.

If f ∈ C1,1
L (C), then the backtracking procedure ends when tk is

smaller than or equal to 2(1−α)/L. The chosen stepsize tk satisfies

tk ≥ min

󰀝
s,

2(1− α)β

L

󰀞
.
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Theorem 9 (convergence of the gradient projection method)

Let f ∈ C1,1
L (C) and C be a nonempty closed convex set. Let {xk} be the

sequence generated by the gradient projection method for solving (P)
with either a constant stepsize t ∈ (0, 2/L) or with a stepsize chosen by
the backtracking procedure with parameters s > 0, α ∈ (0, 1), β ∈ (0, 1).
Assume that f is bounded below. Then we have the following:

(a) The sequence {f(xk)} is nonincreasing. In addition, for any
k > 0, f(xk+1) < f(xk) unless xk is a stationary point of (P).

(b) Gd(xk) → 0 as k → ∞, and

min
k=0,1,...,n

󰀂Gd(xk)󰀂2 ≤

󰁶
f(x0)− f󰂏
M(n+ 1)

,

where f󰂏 = lim
k→∞

f(xk), and

d =

󰀫
1/t,

1/s,
M =

󰀫
t(1− tL/2), constant stepsize,

αmin {s, 2(1− α)β/L} backtracking.
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Theorem 10

Let f ∈ C1,1
L (C) be convex and C be a nonempty closed convex set. Let

{xk} be the sequence generated by the gradient projection method for
solving (P) with a constant stepsize t ∈ (0, 1/L]. Assume that the set of
optimal solutions, denoted by X󰂏, is nonempty, and let f󰂏 be the
optimal value of (P). Then we have the following:

(a) for any k ≥ 0 and x󰂏 ∈ X󰂏,

2t(f(xk+1)− f(x󰂏)) ≤ 󰀂xk − x󰂏󰀂22 − 󰀂xk+1 − x󰂏󰀂22,

which implies

󰀂xk+1 − x󰂏󰀂2 ≤ 󰀂xk − x󰂏󰀂2, (Fejér monotonicity)

(b) for any n ≥ 0,

f(xn)− f󰂏 ≤
󰀂x0 − x󰂏󰀂22

2tn
,

(c) the sequence {xk} converges to an optimal solution.
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3. Karush–Kuhn–Tucker conditions

Theorem 11 (KKT conditions for constrained problems)

Let x󰂏 be a local minimizer of

min f(x), s.t. gi(x) ≤ 0, hj(x) = 0, i = 1 : m, j = 1 : p,

where f , gi, hj are continuously differentiable functions over Rn.
Suppose that the gradients of the active constraints and the equality
constraints

{∇gi(x󰂏) : i ∈ I(x󰂏)} ∪ {∇hj(x󰂏) : j = 1 : p}

are linearly independent (where I(x󰂏) = {i : gi(x󰂏) = 0}). Then there
exist multipliers λi ≥ 0 and µj ∈ R such that λigi(x󰂏) = 0, i = 1 : m,

∇f(x󰂏) +

m󰁛

i=1

λi∇gi(x󰂏) +

p󰁛

j=1

µj∇hj(x󰂏) = 0.
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https://zhuanlan.zhihu.com/p/38163970


Theorem 12 (sufficiency of KKT conditions for convex problems)

Let x󰂏 be a local minimizer of

min f(x), s.t. gi(x) ≤ 0, hj(x) = 0, i = 1 : m, j = 1 : p,

where f , gi are continuously differentiable convex functions over Rn

and hj are affine functions. Suppose that there exist multipliers λi ≥ 0
and µj ∈ R such that

λigi(x󰂏) = 0, i = 1 : m,

∇f(x󰂏) +

m󰁛

i=1

λi∇gi(x󰂏) +

p󰁛

j=1

µj∇hj(x󰂏) = 0.

Then x󰂏 is an optimal solution.
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Theorem 13 (necessity of KKT conditions under Slater’s condition)

Let x󰂏 be a local minimizer of min f(x) such that

gi(x) ≤ 0, hj(x) ≤ 0, sk(x) = 0, i = 1 : m, j = 1 : p, k = 1 : q,

where f , gi are continuously differentiable convex functions over Rn,
and hj, sk are affine functions. Suppose that there exist 󰁥x such that

gi(󰁥x) < 0, hj(󰁥x) ≤ 0, sk(󰁥x) = 0, i = 1 : m, j = 1 : p, k = 1 : q.

Then there exist multipliers λi ≥ 0, ηj ≥ 0, and µj ∈ R such that

λigi(x󰂏) = 0, i = 1 : m, ηjhj(x󰂏) = 0, j = 1 : p,

∇f(x󰂏) +

m󰁛

i=1

λi∇gi(x󰂏) +

p󰁛

j=1

ηj∇hj(x󰂏) +

q󰁛

k=1

µk∇sk(x󰂏) = 0.

Then x󰂏 is an optimal solution.
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4. Duality

The primal problem: Consider the general model

f󰂏 =min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) = 0, j = 1, 2, . . . , p,

x ∈ X ,

where f , gi, hj are functions defined on the set X ⊆ Rn.

The Lagrangian: x ∈ X , λ ∈ Rm
+ , µ ∈ Rp,

L(x,λ,µ) = f(x) +

m󰁛

i=1

λigi(x) +

p󰁛

j=1

µjhj(x).

The dual objective function q : Rm
+ × Rp → R ∪ {−∞},

q(λ,µ) = min
x∈X

L(x,λ,µ).
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The dual problem:

q󰂏 =max q(λ,µ)

s.t. (λ,µ) ∈ dom(q),

where dom(q) = {(λ,µ) ∈ Rm
+ × Rp : q(λ,µ) > −∞}.

Theorem 14 (convexity of the dual problem)

The domain dom(q) of the dual objective function is a convex set, and
q is a concave (i.e., −q is convex) function over dom(q).

Theorem 15 (weak duality theorem)

It holds that
q󰂏 ≤ f󰂏,

where q󰂏 and f󰂏 are the optimal dual and primal values, respectively.
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4.1 Strong duality in the convex case

Theorem 16 (convex problems with inequality constraints)

Consider the optimization problem

f󰂏 = min f(x) s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m, x ∈ X ,

where X is a convex set and f , gi, are convex functions over X .
Suppose that there exists 󰁥x ∈ X for which gi(󰁥x) < 0 and the optimal
value of the primal problem is finite. Then the optimal value of the
dual problem

q󰂏 = max{q(λ) : λ ∈ dom(q)},

where q(λ) = min
x∈X

L(x,λ) is attained, and the optimal values of the

primal and dual problems are the same:

f󰂏 = g󰂏.
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Theorem 17

Consider the optimization problem

f󰂏 = min f(x) s.t. gi(x) ≤ 0, hj(x) ≤ 0, sk(x) = 0, x ∈ X ,

where X is a convex set and f , gi, i = 1 : m, are convex functions over
X . The functions hj, sk, j = 1 : p, k = 1 : q, are affine functions.
Suppose that there exists 󰁥x ∈ int(X ) for which gi(󰁥x) < 0, hj(󰁥x) ≤ 0,
sk(󰁥x) = 0. Then if the optimization problem has a finite optimal value,
the optimal value of the dual problem

q󰂏 = max{q(λ,η,µ) : (λ,η,µ) ∈ dom(q)},

where q : Rm
+ × Rp

+ × Rq → R ∪ {−∞} is given by

q(λ,η,µ) = min
x∈X

f(x) +

m󰁛

i=1

λigi(x) +

p󰁛

j=1

ηjhj(x) +

q󰁛

k=1

µksk(x),

is attained, and f󰂏 = g󰂏.
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