Lecture 7: Constrained optimization
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1. Convex optimization

e A convex optimization problem (or a convex problem)

min £(x),

xeC

where C is a convex set and f is a convex function.

Convex optimization problems in functional form

min  f(x)
st. gi(x) <0, i=1,2,...,m,
h](x):()? j:1727""p’
where f,91,92,...,9m : R" = R are convex functions and
hi,ha, ..., hy : R" — R are affine functions. The convex set C is

i=1

C= (ﬂ Lev(gi,0)> ﬂ ﬂ{x :hj(x) =0}
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Theorem 1 (local = grobal in convex optimization)

Let f:C — R be a (strictly) convex function defined on the conver set
C. Let x, € C be a local minimizer of f over C. Then X is a (strict)
global minimizer of f over C.

Theorem 2

Let f:C — R be a convex function defined over the convex set C C R"™.
Then the set of optimal solutions of the problem min{f(x) : x € C},
which we denote by X, is convex. If, in addition, f is strictly convex
over C, then there exists at most one optimal solution.

CVX: a Matlab-based convex modeling framework

y a cvx CvX TFOCS Aboutus  News CVX Forum [5%§
RESEARCH
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https://cvxr.com

2. Optimization over a convex set

o Let f be a continuously differentiable function over a closed
convex set C. Then x, € C is called a stationary point of

(P) min f(x) s.t. x€C,
if Vf(x,)"(x—x,) >0 for any x € C.

Theorem 3 (stationarity as a necessary optimality condition)

Let f be a continuously differentiable function over a closed convex set
C, and let x, be a local minimizer of (P). Then x, is a stationary point

of (P).

Theorem 4

Let f be a continuously differentiable convex function over a closed
convex set C CR™. Then x4 € C is a stationary point of (P) if and only
if x4 is an optimal solution of (P).

v
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2.1 The gradient projection method

@ The projection
re(x) = argmin |y — x|3.
yec

Theorem 5

Let C be a nonempty closed convex set. Then for any v,w € R",
Ime(v) = me(V)|I3 < (me(v) = me(w)) T (v —w),

[me(v) = me(v)lla < [[v — w2

Theorem 6

Let f be a continuously differentiable function defined on the nonempty
closed conver set C, and let s > 0. Then x, € C is a stationary point of
(P) if and only if

X, = (X — SV f(x4)).
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o The gradient projection method
Xp+1 = me(Xk — eV (X)),
where t;, > 0 is obtained by using a line search procedure.
Lemma 7

Suppose that f € C’i’l(C), where C is a nonempty closed conver set.
Then for any x € C and t € (0,2/L) the following inequality holds:

F(x) = f(me(x — tVf(x))) > (1/t = L/2)|lx — me(x — tVf(x))[13

e Define the gradient mapping G (x) = M[x — we(x — Vf(x)/M)]
Lemma 8

Let f be a continuously differentiable function defined on a nonempty
closed conver set C. Suppose that Ly > Lo > 0. Then for any x € R",

1GL, ()2 2 [|GLy(®)|l2,  [|GLy(%)]l2/L1 < [|Gr,(%)]l2/Le-
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e constant stepsize:

tr,=te (0 2
k= ')
e backtracking: s >0, a« € (0,1), 8 € (0,1).

First, set t;, = s. Then, while

F(xi) = f(me(xe — eV f(zr))) < atil Gy, (%2113,

set t;, < Pti. In other words, t;, = s8%, where i), is the smallest
nonnegative integer satisfying (the sufficient decrease condition)

Fxi) = f(me(xi — sV f(x1))) = asB™[|Gy pin (xi) 13-

If fe Ci’l(C), then the backtracking procedure ends when ¢, is
smaller than or equal to 2(1 — «)/ L. The chosen stepsize tj, satisfies

2(1—04)5}.

tr > min\ s,
oo 20
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Theorem 9 (convergence of the gradient projection method)

Let f € Ci’l(C) and C be a nonempty closed convex set. Let {xy} be the
sequence generated by the gradient projection method for solving (P)
with either a constant stepsize t € (0,2/L) or with a stepsize chosen by
the backtracking procedure with parameters s >0, a € (0,1), 5 € (0,1).
Assume that f is bounded below. Then we have the following:

(a) The sequence {f(xx)} is nonincreasing. In addition, for any
k>0, f(xkr1) < f(xr) unless xi is a stationary point of (P).
(b) Ga(xx) — 0 as k — oo, and

. f(x0) — fx
< LY Ix
kzlg}ll}}.,nHGd(xk)‘b S\ Murn
where f, = lim f(xy), and
k—oo
g 1/t, e t(1—1tL/2), constant stepsize,
1 1/s, "~ |amin{s,2(1 —a)8/L} backtracking.
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Theorem 10

Let f € C’}J’I(C) be convex and C be a nonempty closed convex set. Let
{x1} be the sequence generated by the gradient projection method for
solving (P) with a constant stepsize t € (0,1/L]. Assume that the set of
optimal solutions, denoted by Xy, is nonempty, and let f, be the
optimal value of (P). Then we have the following:

(a) for any k > 0 and x, € X,
20(f(xk11) — F(x0)) < 1%k — %13 = Ixpr1 — %13,

which implies

Ixk+1 — Xull2 < [|x — Xill2, (Fejér monotonicity)
(b) for any n >0,
<o — .13
_ f, < 170 2
f(X'fl) f* — 2%n )
(c) the sequence {xy} converges to an optimal solution.
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3. Karush—Kuhn—Tucker conditionsﬂﬂjz@

Theorem 11 (KKT conditions for constrained problems)

Let x4 be a local minimizer of
min f(x), s.t. gi(x) <0, hj(x)=0,i=1:m, j=1:p,

where f, gi, h; are continuously differentiable functions over R™.
Suppose that the gradients of the active constraints and the equality
constraints

{Vgi(x.) i € I(x)} U{Vhj(x.) : j=1:p}

are linearly independent (where I(x,) = {i : gi(x,) = 0}). Then there
exist multipliers A; > 0 and p; € R such that \;ig;(x4) =0, i =1:m,

V(%) + Z AiVgi(x,) + Zuthj(x*) =0.

i=1 j=1
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https://zhuanlan.zhihu.com/p/38163970

Theorem 12 (sufficiency of KKT conditions for convex problems)

Let x, be a local minimizer of
min f(x), s.t. gi(x) <0, hj(x)=0,i=1:m, j=1:p,
where f, g; are continuously differentiable convex functions over R™
and h; are affine functions. Suppose that there exist multipliers \; > 0
and p; € R such that
)\,-g@-(x*) = 0, 1=1: m,

Vf(xs) + Z AiVgi(xy) + ZMJth(X*) =0.

i=1 j=1

Then X, is an optimal solution.
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Theorem 13 (necessity of KKT conditions under Slater’s condition)

Let x, be a local minimizer of min f(x) such that
gi(x) <0, hj(x) <0, sg(x)=0,i=1:m, j=1:p, k=1:q,

where f, g; are continuously differentiable convex functions over R,
and hj, s, are affine functions. Suppose that there exist X such that

gi(X) <0, hj(X) <0, sx(X)=0,i=1:m, j=1:p, k=1:q.
Then there exist multipliers A\; > 0, n; > 0, and p; € R such that
)‘igi(x*) = 07 1=1: m, njhj(x*) = 07 ] =1 - p,

m p a
Vf(xy) + Z AiVgi(x,) + anth(x*) + Z e Vsi(x4) = 0.
i=1 j=1 k=1

Then x4 is an optimal solution.
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4. Duality

@ The primal problem: Consider the general model

f*:minf(X)
s.t. (x) <0, 1=1,2,...,m,
hj(x)=0, j=12,...,p,
X E X,

where f, g;, hj are functions defined on the set X C R".
e The Lagrangian: x € X, A € R, u € RP,

p
‘C(X A N + Z )\zgz + Z Njhj (X)
=1

o The dual objective function q : R} x RP — RU {—o0},

q(A, p) = min £(x, A, p).
xeX
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o The dual problem:

¢ =max q(\, )
st. (A, p) € dom(q),

where dom(q) = {(A, ) € R x RP : q(A, ) > —o0}.

Theorem 14 (convexity of the dual problem)

The domain dom(q) of the dual objective function is a convex set, and
q is a concave (i.e., —q is convex) function over dom(q).

Theorem 15 (weak duality theorem)

It holds that
q* S f*a

where qx and fy are the optimal dual and primal values, respectively.
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4.1 Strong duality in the convex case

Theorem 16 (convex problems with inequality constraints)

Consider the optimization problem
fe=min f(x) s.t. ¢i(x) <0, i=1,2,...,m, X€EAX,

where X is a convex set and f, g;, are convex functions over X.
Suppose that there exists X € X for which g;(X) < 0 and the optimal
value of the primal problem is finite. Then the optimal value of the
dual problem

¢ = max{q(A) : A € dom(q)},

where q(A) = mi)r(l L(x, ) is attained, and the optimal values of the
xE

primal and dual problems are the same:

Jx = Gx-
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Theorem 17
Consider the optimization problem
fx =min f(x) s.t. gi(x) <0, hj(x) <0, sp(x)=0, xe€ X,

where X is a convex set and f, g;, i = 1 :m, are convex functions over
X. The functions hj, s, j =1:p, k=1:q, are affine functions.
Suppose that there exists X € int(X) for which g;(X) < 0, h;(X) <0,
sk(X) = 0. Then if the optimization problem has a finite optzmal value,
the optimal value of the dual problem

¢ = max{q(A,m, ) : (A, m, ) € dom(q)},
where ¢ : RT x RE. x R? — RU {—o0} is given by

p q
q(A,m, p) = min f(x) + Z)‘zgz + ) k(%) + > sk (x)
= k=1

s attained, and f, = g.
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