# Lecture 6: Convex sets and convex functions



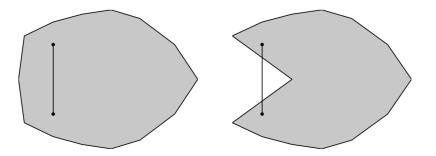
## School of Mathematical Sciences, Xiamen University

## 1. Convex sets

• A set  $C \in \mathbb{R}^n$  is a *convex set* if the straight line segment connecting any two points in C lies entirely inside C. Formally,

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{C}, \ \alpha \in [0, 1]: \quad \alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{C}.$$

Example: A convex set (left) and a non-convex set (right).



### 1.1 Basic properties of convex sets

• If  $\alpha \in \mathbb{R}$  and  $\mathcal{C}$  is convex, then

$$\alpha \mathcal{C} := \{ \alpha \mathbf{x} : \mathbf{x} \in \mathcal{C} \}$$

is convex.

• If  $\alpha_i \in \mathbb{R}$  and all  $\mathcal{C}_i$  are convex, then

$$\mathcal{C} = \sum_{i=1}^{m} \alpha_i \mathcal{C}_i := \left\{ \sum_{i=1}^{m} \alpha_i \mathbf{x}_i : \mathbf{x}_i \in \mathcal{C}_i \right\}$$

is convex.

• If all  $C_i$ , i = 1 : m, are convex. Then the Cartesian product

$$\mathcal{C}_1 imes \mathcal{C}_2 imes \cdots imes \mathcal{C}_m := \{ (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_m) : \mathbf{x}_i \in \mathcal{C}_i \}$$

is convex.

• Let  $C \subseteq \mathbb{R}^n$  be a convex set and let  $\mathbf{A} \in \mathbb{R}^{m \times n}$  and  $\mathbf{B} \in \mathbb{R}^{n \times m}$ . Then the sets

 $\mathbf{A}(\mathcal{C}) := \{ \mathbf{A}\mathbf{x} : \mathbf{x} \in \mathcal{C} \}, \quad \mathbf{B}^{-1}(\mathcal{C}) := \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{B}\mathbf{y} \in \mathcal{C} \}$ 

are both convex.

• If  $C_{\alpha}$  are convex sets for each  $\alpha \in \mathcal{A}$ , where  $\mathcal{A}$  is an arbitrary index set (possibly infinite), then the intersection

$$\mathcal{C} = \bigcap_{\alpha \in \mathcal{A}} \mathcal{C}_{\alpha}$$

is convex.

• The convex hull of a set of points  $\mathbf{x}_1, \cdots, \mathbf{x}_m \in \mathbb{R}^n$ , defined by

$$\operatorname{conv} \{ \mathbf{x}_1, \cdots, \mathbf{x}_m \} := \left\{ \sum_{i=1}^m \lambda_i \mathbf{x}_i : \lambda_i \ge 0, \sum_{i=1}^m \lambda_i = 1 \right\},\$$

is convex. Let  $S \subseteq \mathbb{R}^n$ . Then  $\operatorname{conv}(S)$  is the "smallest" convex set containing S.

Theorem 1 (Projection onto closed convex sets)

Let C be a closed convex set and  $\mathbf{x} \in \mathbb{R}^n$ . Then there is a unique point  $\pi_{\mathcal{C}}(\mathbf{x})$ , called the projection of  $\mathbf{x}$  onto C, such that

$$\|\mathbf{x} - \pi_{\mathcal{C}}(\mathbf{x})\|_2 = \inf_{\mathbf{y} \in \mathcal{C}} \|\mathbf{y} - \mathbf{x}\|_2,$$

that is,

$$\pi_{\mathcal{C}}(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{y} \in \mathcal{C}} \|\mathbf{y} - \mathbf{x}\|_2^2.$$

A point  $\mathbf{z}$  is the projection of  $\mathbf{x}$  onto  $\mathcal{C}$ , i.e.,

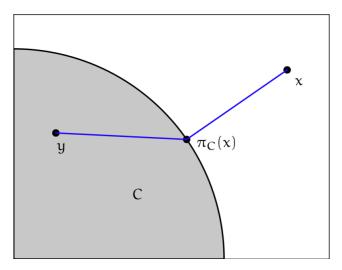
$$\mathbf{z} = \pi_{\mathcal{C}}(\mathbf{x}),$$

if and only if

$$\langle \mathbf{x} - \mathbf{z}, \mathbf{y} - \mathbf{z} \rangle \le 0,$$

for all  $\mathbf{y} \in \mathcal{C}$ .

• Projection of the point  $\mathbf{x}$  onto the set C (with projection  $\pi_{\mathcal{C}}(\mathbf{x})$ ), exhibiting  $\langle \mathbf{x} - \pi_{\mathcal{C}}(\mathbf{x}), \mathbf{y} - \pi_{\mathcal{C}}(\mathbf{x}) \rangle \leq 0$ .



## Corollary 2 (Nonexpansiveness)

Projections onto closed convex sets are nonexpansive, in particular,

$$\|\pi_{\mathcal{C}}(\mathbf{x}) - \mathbf{y}\|_2 \le \|\mathbf{x} - \mathbf{y}\|_2$$

for any  $\mathbf{x} \in \mathbb{R}^n$  and  $\mathbf{y} \in \mathcal{C}$ .

## Theorem 3 (Strict separation of points)

Let C be a closed convex set. For any  $\mathbf{x} \notin C$ , the vector

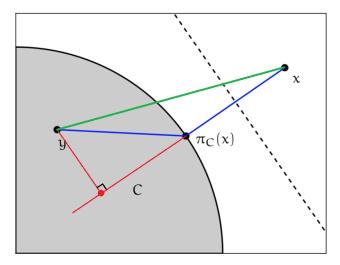
$$\mathbf{v} = \mathbf{x} - \pi_{\mathcal{C}}(\mathbf{x})$$

satisfies

$$\langle \mathbf{v}, \mathbf{x} \rangle \geq \sup_{\mathbf{y} \in \mathcal{C}} \langle \mathbf{v}, \mathbf{y} \rangle + \| \mathbf{v} \|_2^2 > \sup_{\mathbf{y} \in \mathcal{C}} \langle \mathbf{v}, \mathbf{y} \rangle.$$

This means the strict separation of the point  $\mathbf{x} \notin C$  from the closed convex set C.

• Strict separation of **x** from C by the vector  $\mathbf{v} = \mathbf{x} - \pi_C(\mathbf{x})$ .



• For nonempty sets  $S_1$  and  $S_2$  satisfying  $S_1 \cap S_2 = \emptyset$ , if there exist vector  $\mathbf{v} \neq \mathbf{0}$  and scalar b such that

$$\langle \mathbf{v}, \mathbf{x} \rangle \geq b$$
 for all  $\mathbf{x} \in \mathcal{S}_1$ ,

and

$$\langle \mathbf{v}, \mathbf{x} \rangle \leq b$$
 for all  $\mathbf{x} \in \mathcal{S}_2$ ,

then

$$\{\mathbf{x} \in \mathbb{R}^n \mid \langle \mathbf{v}, \mathbf{x} \rangle = b\}$$

is called a separating hyperplane for nonempty sets  $S_1$  and  $S_2$ .

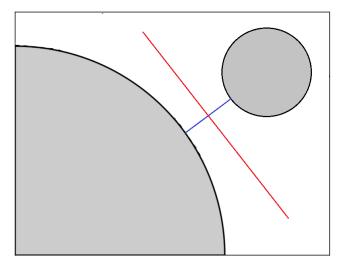
Theorem 4 (Strict separation of closed convex sets)

Let  $C_1, C_2$  be closed convex sets, with  $C_2$  compact and  $C_1 \cap C_2 = \emptyset$ . Then there is a vector  $\mathbf{v}$  such that

$$\inf_{\mathbf{x}\in\mathcal{C}_1}\langle\mathbf{v},\mathbf{x}\rangle>\sup_{\mathbf{x}\in\mathcal{C}_2}\langle\mathbf{v},\mathbf{x}\rangle.$$

Data Analysis & Matrix Comp.

• Strict separation of closed convex sets.



• For a set  $\mathcal{S}$  and a boundary point  $\mathbf{x}$ , i.e.,

$$\mathbf{x} \in \mathrm{bd}\mathcal{S} := \mathrm{cl}\mathcal{S} \setminus \mathrm{int}\mathcal{S},$$

if vector  $\mathbf{v}\neq\mathbf{0}$  satisfies

$$\langle \mathbf{v}, \mathbf{x} \rangle \geq \langle \mathbf{v}, \mathbf{y} \rangle$$
 for all  $\mathbf{y} \in \mathcal{S}$ ,

then

$$\{\mathbf{z} \in \mathbb{R}^n \mid \mathbf{v}^\top (\mathbf{z} - \mathbf{x}) = 0\}$$

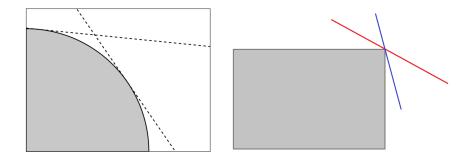
is called a supporting hyperplane supporting  $\mathcal{S}$  at  $\mathbf{x}$ .

### Theorem 5 (Supporting hyperplane theorem)

For convex set C and any  $\mathbf{x} \in bdC$ , there exists a supporting hyperplane supporting C at  $\mathbf{x}$ , i.e.,  $\exists \mathbf{v} \neq \mathbf{0}$  satisfying

$$\langle \mathbf{v}, \mathbf{x} \rangle \geq \langle \mathbf{v}, \mathbf{y} \rangle$$
 for all  $\mathbf{y} \in \mathcal{C}$ .

• Supporting hyperplanes to a convex set. (unique?)



### Theorem 6 (Halfspace intersections)

Let  $\mathcal{C} \subset \mathbb{R}^n$  be a closed convex set. Then  $\mathcal{C}$  is the intersection of all the halfspaces containing it. Moreover,  $\mathcal{C} = \bigcap_{\mathbf{x} \in \mathrm{bd}\mathcal{C}} \mathcal{H}_{\mathbf{x}}$ , where  $\mathcal{H}_{\mathbf{x}}$  denotes the intersection of the halfspaces contained in the hyperplanes supporting  $\mathcal{C}$  at  $\mathbf{x}$ .

24

### 2. Convex functions

A function f : C → ℝ defined on a convex set C ⊆ ℝ<sup>n</sup> is called convex (or convex over C) if for any x, y ∈ C, λ ∈ [0, 1],

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}).$$

It is called *strictly convex* if for any  $\mathbf{x} \neq \mathbf{y}, \lambda \in (0, 1)$ ,

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) < \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}).$$

Examples of convex functions: afines functions, norms.

#### • Jensen's inequality.

Let  $f : \mathcal{C} \to \mathbb{R}$  be a convex function defined on the convex set  $\mathcal{C} \subseteq \mathbb{R}^n$ . Then for any  $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k \in \mathcal{C}$  and  $\lambda \in \Delta_k$ , the following inequality holds:

$$f\left(\sum_{i=1}^k \lambda_i \mathbf{x}_i\right) \le \sum_{i=1}^k \lambda_i f(\mathbf{x}_i).$$

## 2.1 Characterizations of convex functions

## Theorem 7 (the gradient inequality)

Let  $f : \mathcal{C} \to \mathbb{R}$  be a continuously differentiable function defined on a nonempty convex set  $\mathcal{C} \subseteq \mathbb{R}^n$ . Then f is convex over  $\mathcal{C}$  if and only if

$$f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) \le f(\mathbf{y}) \text{ for any } \mathbf{x}, \mathbf{y} \in \mathcal{C},$$

and f is strictly convex over C if and only if

$$f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) < f(\mathbf{y}) \text{ for any } \mathbf{x}, \mathbf{y} \in \mathcal{C} \text{ satisfying } \mathbf{x} \neq \mathbf{y}.$$

## Theorem 8 (monotonicity of the gradient)

Suppose that f is a continuously differentiable function over a nonempty convex set  $C \subseteq \mathbb{R}^n$ . Then f is convex over C if and only if

$$(\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}))^{\top}(\mathbf{x} - \mathbf{y}) \ge 0 \text{ for any } \mathbf{x}, \mathbf{y} \in \mathcal{C}.$$

### Proposition 9

Let f be a continuously differentiable function which is convex over a convex set  $\mathcal{C} \subseteq \mathbb{R}^n$ .

- (1) Suppose that  $\nabla f(\mathbf{x}_{\star}) = \mathbf{0}$  for some  $\mathbf{x}_{\star} \in \mathcal{C}$ . Then  $\mathbf{x}_{\star}$  is a global minimizer of f over  $\mathcal{C}$ .
- (2) If  $C = \mathbb{R}^n$ , then  $\nabla f(\mathbf{x}_{\star}) = \mathbf{0}$  if and only if  $\mathbf{x}_{\star}$  is a global minimizer of f over  $\mathbb{R}^n$ .

# Theorem 10 (second order characterization of convex functions)

Let f be a twice continuously differentiable function over a nonempty convex set  $C \subseteq \mathbb{R}^n$ . Then

- (1) If  $\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$  for any  $\mathbf{x} \in \mathcal{C}$ , then f is convex over  $\mathcal{C}$ .
- (2) If  $\nabla^2 f(\mathbf{x}) \succ \mathbf{0}$  for any  $\mathbf{x} \in \mathcal{C}$ , then f is strictly convex over  $\mathcal{C}$ .
- (3) If C is open, then f is convex over C if and only if  $\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$  for any  $\mathbf{x} \in C$ .

## 2.2 Operations preserving convexity

Theorem 11 (nonnegative scalar multiplication and summation)

- (1) Let f be a convex function defined over a convex set  $C \subseteq \mathbb{R}^n$  and let  $\alpha \geq 0$ . Then  $\alpha f$  is a convex function over C.
- (2) Let  $f_1, f_2, \ldots, f_p$  be convex functions over a convex set  $\mathcal{C} \subseteq \mathbb{R}^n$ . Then the sum function  $f_1 + f_2 + \cdots + f_p$  is convex over  $\mathcal{C}$ .

## Theorem 12 (affine change of variables)

Let  $f : \mathcal{C} \to \mathbb{R}$  be a convex function defined on a convex set  $\mathcal{C} \subseteq \mathbb{R}^n$ . Let  $\mathbf{A} \in \mathbb{R}^{n \times m}$  and  $\mathbf{b} \in \mathbb{R}^n$ . Then the function g defined by

$$g(\mathbf{y}) = f(\mathbf{A}\mathbf{y} + \mathbf{b})$$

is convex over the convex set

$$\mathcal{D} = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{A}\mathbf{y} + \mathbf{b} \in \mathcal{C} \}.$$

### Theorem 13 (composition with a nondecreasing convex function)

Let  $f : \mathcal{C} \to \mathbb{R}$  be a convex function over the convex set  $\mathcal{C} \subseteq \mathbb{R}^n$ . Let  $g : \mathcal{I} \to \mathbb{R}$  be a one-dimensional nondecreasing convex function over the interval  $\mathcal{I} \subseteq \mathbb{R}$ . Assume that the image of  $\mathcal{C}$  under f is contained in  $\mathcal{I} : f(\mathcal{C}) \subseteq \mathcal{I}$ . Then the composition of g with f defined by

$$h(\mathbf{x}) \equiv g(f(\mathbf{x})), \quad \mathbf{x} \in \mathcal{C},$$

is a convex function over C.

Theorem 14 (pointwise maximum of convex functions)

Let  $f_1, \ldots, f_p : \mathcal{C} \to \mathbb{R}$  be p convex functions over the convex set  $\mathcal{C} \subseteq \mathbb{R}^n$ . Then the maximum function

$$f(\mathbf{x}) = \max_{i=1,\dots,p} f_i(\mathbf{x})$$

is a convex function over C.

### Theorem 15 (partial minimization)

Let  $f : \mathcal{C} \times \mathcal{D} \to \mathbb{R}$  be a convex function defined over the set  $\mathcal{C} \times \mathcal{D}$ , where  $\mathcal{C} \subseteq \mathbb{R}^m$  and  $\mathcal{D} \subseteq \mathbb{R}^n$  are convex sets. Let

$$g(\mathbf{x}) = \min_{\mathbf{y} \in \mathcal{D}} f(\mathbf{x}, \mathbf{y}), \quad \mathbf{x} \in \mathcal{C},$$

where we assume that the minimal value (maybe not attained) in the above definition is finite. Then g is convex over C.

• Let  $\mathcal{C} \subseteq \mathbb{R}^n$  be a nonempty convex set and  $\|\cdot\|$  an arbitrary norm. The distance function defined by

$$d(\mathbf{x}, \mathcal{C}) = \min_{\mathbf{y} \in \mathcal{C}} \|\mathbf{x} - \mathbf{y}\|$$

is convex since the function  $f(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$  is convex over  $\mathbb{R}^n \times \mathcal{C}$ .

### 2.3 Level sets of convex functions

• Let  $f : S \to \mathbb{R}$  be a function defined over a set  $S \subseteq \mathbb{R}^n$ . Then the *level set* of f with level  $\alpha \in \mathbb{R}$  is given by

$$\operatorname{Lev}(f,\alpha) = \{ \mathbf{x} \in \mathcal{S} : f(\mathbf{x}) \le \alpha \}.$$

Theorem 16 (level sets of convex functions are convex) Let  $f : \mathcal{C} \to \mathbb{R}$  be a convex function defined over a convex set  $\mathcal{C} \subseteq \mathbb{R}^n$ .

Then for any  $\alpha \in \mathbb{R}$  the level set  $\text{Lev}(f, \alpha)$  is convex.

- A function  $f : \mathcal{C} \to \mathbb{R}$  defined over the convex set  $\mathcal{C} \subseteq \mathbb{R}^n$  is called *quasi-convex* if for any  $\alpha \in \mathbb{R}$  the set  $\text{Lev}(f, \alpha)$  is convex.
- Quasi-convex functions may be nonconvex. For example,  $f(x) = \sqrt{|x|}$  with level sets

$$\mathrm{Lev}(f,\alpha) = \begin{cases} [-\alpha^2,\alpha^2], & \alpha \geq 0, \\ \emptyset, & \alpha < 0. \end{cases}$$

## 2.4 Continuity and differentiability of convex functions

• Convex functions are always continuous at interior points of their domain. Thus, for example, functions which are convex over  $\mathbb{R}^n$  are always continuous. A stronger result is given below.

## Theorem 17 (local Lipschitz continuity at interior points)

Let  $f : \mathcal{C} \to \mathbb{R}$  be a convex function defined over a convex set  $\mathcal{C} \subseteq \mathbb{R}^n$ . Let  $\mathbf{x}_0 \in \operatorname{int}(\mathcal{C})$ . Then there exist  $\varepsilon > 0$  and L > 0 such that  $\mathcal{B}[\mathbf{x}_0, \varepsilon] \subseteq \mathcal{C}$ and

$$|f(\mathbf{x}) - f(\mathbf{x}_0)| \le L \|\mathbf{x} - \mathbf{x}_0\|$$

for all  $\mathbf{x} \in \mathcal{B}[\mathbf{x}_0, \varepsilon]$ .

Theorem 18 (existence of directional derivatives at interior points) Let  $f : \mathcal{C} \to \mathbb{R}$  be a convex function defined over a convex set  $\mathcal{C} \subseteq \mathbb{R}^n$ . Let  $\mathbf{x} \in int(\mathcal{C})$ . Then for any  $\mathbf{d} \neq \mathbf{0}$ , the directional derivative  $f'(\mathbf{x}; \mathbf{d})$  exists.

### 2.5 Extended real-valued function

The effective domain of an extended real-valued function
f: ℝ<sup>n</sup> → ℝ ∪ {+∞} is defined as

$$\operatorname{dom}(f) := \{ \mathbf{x} \mid f(\mathbf{x}) < +\infty \}.$$

- A extended real-valued function is called *proper* if there exists at least one  $\mathbf{x} \in \mathbb{R}^n$  such that  $f(\mathbf{x}) < +\infty$ , meaning that  $\operatorname{dom}(f) \neq \emptyset$ .
- An extended real-valued function f is convex if  $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$  and  $\alpha \in [0, 1]$  the following inequality holds:

$$f((1-\alpha)\mathbf{x} + \alpha \mathbf{y}) \leq (1-\alpha)f(\mathbf{x}) + \alpha f(\mathbf{y}),$$

where we use the arithmetic with  $+\infty$ :

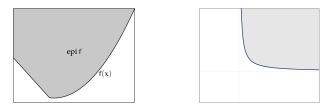
$$a + (+\infty) = +\infty \ (a \in \mathbb{R}), \quad b \cdot (+\infty) = +\infty \ (b > 0),$$

and

$$0\cdot (+\infty) = 0.$$

- The definition of convexity of extended real-valued functions is equivalent to saying that dom(f) is a convex set and that the restriction of f to its effective domain dom(f) is a convex function.
- The epigraph of  $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$  is defined by

 $epi(f) = \{ (\mathbf{x}, y) : f(\mathbf{x}) \le y, \mathbf{x} \in \mathbb{R}^n, y \in \mathbb{R} \}.$ 



An extended real-valued function f convex " $\Leftrightarrow$ " epi(f) convex.

#### Theorem 19

Let  $f_i : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$  be an extended real-valued convex function for any  $i \in \mathcal{I}$  ( $\mathcal{I}$  being an arbitrary index set). Then  $f(\mathbf{x}) = \max_{i\mathcal{I}} f_i(\mathbf{x})$  is an extended real-valued convex function.

## 2.6 Maxima of convex functions

## Theorem 20

Let  $f : \mathcal{C} \to \mathbb{R}$  be a convex function which is not constant over the convex set  $\mathcal{C}$ . Then f does not attain a maximum at a point in  $int(\mathcal{C})$ .

• Let  $C \subseteq \mathbb{R}^n$  be a convex set. A point  $\mathbf{x} \in C$  is called an *extreme* point of C if there do not exist  $\mathbf{x}_1, \mathbf{x}_2 \in C, \mathbf{x}_1 \neq \mathbf{x}_2$ , and  $\lambda \in (0, 1)$ such that  $\mathbf{x} = \lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2$ . The set of extreme points is denoted by ext(C).

### Theorem 21 (Krein–Milman)

Let  $\mathcal{C} \subseteq \mathbb{R}^n$  be a compact convex set. Then  $\mathcal{C} = \operatorname{conv}(\operatorname{ext}(\mathcal{C}))$ .

### Theorem 22

Let  $f : \mathcal{C} \to \mathbb{R}$  be a convex and continuous function over the nonempty convex and compact set  $\mathcal{C} \subseteq \mathbb{R}^n$ . Then there exists at least one maximizer of f over  $\mathcal{C}$  that is an extreme point of  $\mathcal{C}$ .

## 2.7 Convexity and inequalities

• The arithmetic geometric mean inequality

For any  $x_1, \ldots, x_n \ge 0$  and  $\lambda \in \Delta_n$  the following inequality holds:

$$\sum_{i=1}^n \lambda_i x_i \ge \prod_{i=1}^n x_i^{\lambda_i}$$

• Young's inequality

For any  $s,t \ge 0$  and p,q > 1 satisfying 1/p + 1/q = 1 it holds that

$$st \le s^p/p + t^q/q.$$

• Hölder's inequality

For any  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$  and  $p, q \in [1, \infty]$  satisfying 1/p + 1/q = 1, it holds that

$$|\mathbf{x}^{\top}\mathbf{y}| \leq \|\mathbf{x}\|_p \|\mathbf{y}\|_q.$$

• Minkowski's inequality

Let  $p \ge 1$ . For any  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ ,  $\|\mathbf{x} + \mathbf{y}\|_p \le \|\mathbf{x}\|_p + \|\mathbf{y}\|_p$ .