Lecture 6: Convex sets and convex functions

Data Analy: & Mat omp. Lecture 6



1. Convex sets

o A set C € R™ is a conver set if the straight line segment connecting
any two points in C lies entirely inside C. Formally,

Vx,yelC, a€l0,1]: ax+(l—a)yeC.

Example: A convex set (left) and a non-convex set (right).
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1.1 Basic properties of convex sets

o If & € R and C is convex, then
aC :={ax:x€C}

is convex.

o If o; € R and all C; are convex, then

m m
C:Zaici = ZaiXiZXiGCi
i=1 =1

1S convex.

o Ifall C;, i =1:m, are convex. Then the Cartesian product

ClXCQX"‘XCm::{(Xl’XQ,"',Xm):XiECi}

is convex.




o Let C C R™ be a convex set and let A € R™*"™ and B € R"*"*™,
Then the sets

A(C):={Ax:xeC}, B YC):={ycR™:ByeccC}

are both convex.

e If C, are convex sets for each a € A, where A is an arbitrary index
set (possibly infinite), then the intersection

C= ﬂ C,,
acA

is convex.

@ The convex hull of a set of points x1,--- ,x,, € R", defined by

CODV{XL.-- 7Xm} = {Z)\ZXZ A > O’Z)\Z = 1} ,
i=1 i=1

is convex. Let § C R™. Then conv(S) is the “smallest” convex set
containing S.
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Theorem 1 (Projection onto closed convex sets)

Let C be a closed convex set and x € R™. Then there is a unique point
7e(x), called the projection of x onto C, such that

_ — inf llv —
ke = me(x)ll2 = Inf [y — x|z,
that is,

7e(x) = argmin ||y — x3.
yeC

A point z is the projection of x onto C, i.e.,

if and only if

forally €C.
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e Projection of the point x onto the set C (with projection m¢(x)),
exhibiting (x — m¢(x),y — me(x)) < 0.

e (x)
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Corollary 2 (Nonexpansiveness)

Projections onto closed convex sets are monexpansive, in particular,

Ime(x) —yll2 < [Ix =¥l

for any x e R™ and y € C.

Theorem 3 (Strict separation of points)

Let C be a closed convex set. For any x ¢ C, the vector
v =x — me(x)

satisfies
(v, x) > sup(v,y) + [[v[3 > sup(v,y).
yec yeC
This means the strict separation of the point x ¢ C from the closed
convex set C.
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e Strict separation of x from C by the vector v = x — m¢(x).
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e For nonempty sets S; and Sy satisfying S; NSy = ) , if there exist
vector v # 0 and scalar b such that

(v,x) >b forall xeS8,
and
(v,x) <b forall xe& &y,

then
{x e R" | (v,x) = b}

is called a separating hyperplane for nonempty sets &1 and Ss.

Theorem 4 (Strict separation of closed convex sets)

Let C1,Cy be closed convex sets, with Co compact and C1 N Co = (). Then
there is a vector v such that

inf (v,x) > sup (v, x).
x€eCy x€Co
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@ Strict separation of closed convex sets.
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o For a set S and a boundary point x, i.e.,
x € bdS :=clS \ intS,
if vector v # 0 satisfies
(v,x) > (v,y) forall ye€S,

then
{zeR"|v'(z—x)=0}

is called a supporting hyperplane supporting S at x.

Theorem 5 (Supporting hyperplane theorem)

For convex set C and any x € bdC, theres exists a supporting
hyperplane supporting C at x, i.e., 3 v # 0 satisfying

(v,x) > (v,y) forall yeC.
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e Supporting hyperplanes to a convex set. (unique?)

Theorem 6 (Halfspace intersections)

Let C C R™ be a closed convex set. Then C is the intersection of all the

halfspaces containing it. Moreover, C = ()| Hx, where Hx denotes
x€bdC
the intersection of the halfspaces contained in the hyperplanes

supporting C at Xx.
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2. Convex functions

e A function f:C — R defined on a convex set C C R" is called
convez (or convex over C) if for any x,y € C, A € [0, 1],

FOx+(1=Ny) <A(x)+ (1 =N)f(y).

It is called strictly convex if for any x #y, A € (0, 1),

FOx+ (1 =Ny) <Afx) + 1= f(y)

Examples of convex functions: afines functions, norms.
o Jensen’s inequality.

Let f:C — R be a convex function defined on the convex set
C C R™. Then for any x1,Xo,...,X; € C and XA € Ay, the following
inequality holds:

k k
! (Z )\ixi> < Z)\if(xi)-
i=1 i=1
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2.1 Characterizations of convex functions

Theorem 7 (the gradient inequality)

Let f:C — R be a continuously differentiable function defined on a
nonempty convex set C C R™. Then f is convex over C if and only if

FE)+ Vi) (y —x) < f(y) forany xy€C,

and f is strictly convex over C if and only if

Fx) + V) (y = x) < f(y) for any x,y € C satisfying x #y.

Theorem 8 (monotonicity of the gradient)

Suppose that [ is a continuously differentiable function over a
nonempty convex set C CR™. Then f is convex over C if and only if

(Vfx)=Viy) (x—y)>0 forany x,yeC.
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Proposition 9

Let f be a continuously differentiable function which is convex over a

convex set C C R".

(1) Suppose that V f(x.) = 0 for some x, € C. Then x4 is a global
minimizer of f over C.

(2) If C =R"™, then V f(x4) = 0 if and only if X, is a global minimizer
of f over R™.

v

Theorem 10 (second order characterization of convex functions)

Let f be a twice continuously differentiable function over a nonempty
convex set C C R™. Then

(1) If V2f(x) = 0 for any x € C, then f is convex over C.
(2) If V2f(x) = O for any x € C, then f is strictly convex over C.

(3) If C is open, then f is convex over C if and only if V2f(x) = 0 for
any x € C.
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2.2 Operations preserving convexity

Theorem 11 (nonnegative scalar multiplication and summation)

(1) Let f be a convex function defined over a convex set C C R"™ and
let a > 0. Then of is a convex function over C.

(2) Let f1, fa,..., fp be convex functions over a convex set C C R"™.
Then the sum function fi1 + fo+---+ fp is convex over C.

Theorem 12 (affine change of variables)

Let f:C — R be a convex function defined on a convex set C C R™. Let
A e R"™™ and b € R™. Then the function g defined by

g(y) = f(Ay +b)

18 convex over the conver set

D={yecR": Ay +be(}
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Theorem 13 (composition with a nondecreasing convex function)

Let f:C — R be a convex function over the convex set C C R™. Let
g:Z — R be a one-dimensional nondecreasing convex function over the
interval T C R. Assume that the image of C under f is contained in
Z: f(C) CZ. Then the composition of g with f defined by

h(x) =g(f(x)), xe€C,

s a convex function over C.

Theorem 14 (pointwise maximum of convex functions)

Let f1,...,fp:C = R be p convex functions over the convex set
C C R™. Then the mazximum function

f(x) = max fi(x)

i=1,....,p

is a convex function over C.
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Theorem 15 (partial minimization)

Let f:C xD — R be a convex function defined over the set C x D,
where C C R™ and D C R"™ are convex sets. Let

g(x) = 1;rg;gf(x,y), xeC,

where we assume that the minimal value (maybe not attained) in the
above definition is finite. Then g is convex over C.

e Let C C R" be a nonempty convex set and || - || an arbitrary norm.
The distance function defined by

d(x,C) = min ||x —
(%,C) r;lelgHX yl|

is convex since the function f(x,y) = ||x — y|| is convex over

R™ x C.
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2.3 Level sets of convex functions

o Let f:S — R be a function defined over a set S C R™. Then the
level set of f with level a € R is given by

Lev(f,a) ={x € S: f(x) < a}.

Theorem 16 (level sets of convex functions are convex)

Let f : C — R be a convex function defined over a convex set C C R™.
Then for any a € R the level set Lev(f, a) is convex.

e A function f:C — R defined over the convex set C C R" is called
quasi-convez if for any o € R the set Lev(f, a) is convex.

e Quasi-convex functions may be nonconvex.
For example, f(x) = /|| with level sets

[_a27a2]7 « 2 07

0, a < 0.

Lev(f,a) = {
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2.4 Continuity and differentiability of convex functions

o Convex functions are always continuous at interior points of their
domain. Thus, for example, functions which are convex over R"
are always continuous. A stronger result is given below.

Theorem 17 (local Lipschitz continuity at interior points)

Let f:C — R be a convex function defined over a convexr set C C R"™.
Let x¢ € int(C). Then there exist € > 0 and L > 0 such that B[xg,e] C C
and

£ (x) = f(x0)| < L% — o

for all x € Blxo, €.

Theorem 18 (existence of directional derivatives at interior points)

Let f:C — R be a convex function defined over a convexr set C C R™.
Let x € int(C). Then for any d # 0, the directional derivative f'(x;d)
exists.
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2.5 Extended real-valued function

o The effective domain of an extended real-valued function
f:R" - RU{+o0} is defined as

dom(f) := {x | f(x) < +oo}.

o A extended real-valued function is called proper if there exists at
least one x € R™ such that f(x) < 400, meaning that dom(f) # 0.

o An extended real-valued function f is convex if V x,y € R™ and
a € [0,1] the following inequality holds:

f((I—a)x+ay) <(1-a)f(x)+af(y)
where we use the arithmetic with 4o0:
a+ (+o00) = +0 (a €R), b-(+00) =400 (b>0),

and
0-(4+00)=0.
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@ The definition of convexity of extended real-valued functions is
equivalent to saying that dom(f) is a convex set and that the
restriction of f to its effective domain dom(f) is a convex function.

e The epigraph of f: R"™ — RU{+oc0} is defined by

epi(f) = {(x,9) : f(x) <y,x € R",y € R}.

epif

An extended real-valued function f convex “<” epi(f) convex.

Theorem 19

Let f; : R" — RU {400} be an extended real-valued conver function for
any i € Z (I being an arbitrary index set). Then f(x) = max;z fi(x) is
an extended real-valued convex function.
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2.6 Maxima of convex functions

Theorem 20

Let f:C — R be a convex function which is not constant over the
convex set C. Then f does not attain a mazimum at a point in int(C).

o Let C C R"™ be a convex set. A point x € C is called an extreme
point of C if there do not exist x1,x2 € C,x1 # X2, and A € (0,1)
such that x = Ax; + (1 — \)xa. The set of extreme points is
denoted by ext(C).

Theorem 21 (Krein—Milman)
Let C CR™ be a compact convex set. Then C = conv (ext(C)).

Theorem 22

Let f:C — R be a convex and continuous function over the nonempty
convex and compact set C C R™. Then there exists at least one
mazimizer of f over C that is an extreme point of C.
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2.7 Convexity and inequalities
@ The arithmetic geometric mean inequality

For any x1,...,z, > 0 and XA € A, the following inequality holds:

n n
> aur = [
i=1 =1

e Young’s inequality
For any s,t > 0 and p,q > 1 satisfying 1/p + 1/q = 1 it holds that
st <s"/p+ti/q.
o Holder’s inequality
For any x,y € R"™ and p, q € [1, 00| satisfying 1/p+1/¢ =1, it
holds that
Ix "y | < [Ix[lp[lyllq-
o Minkowski’s inequality
Let p > 1. For any x,y € R, [x + vl < %], + 1y
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