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1. Convex sets

A set C ∈ Rn is a convex set if the straight line segment connecting
any two points in C lies entirely inside C. Formally,

∀ x,y ∈ C, α ∈ [0, 1] : αx+ (1− α)y ∈ C.

Example: A convex set (left) and a non-convex set (right).
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1.1 Basic properties of convex sets

If α ∈ R and C is convex, then

αC := {αx : x ∈ C}

is convex.

If αi ∈ R and all Ci are convex, then

C =

m

i=1

αiCi :=


m

i=1

αixi : xi ∈ Ci



is convex.

If all Ci, i = 1 : m, are convex. Then the Cartesian product

C1 × C2 × · · ·× Cm := {(x1,x2, · · · ,xm) : xi ∈ Ci}

is convex.
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Let C ⊆ Rn be a convex set and let A ∈ Rm×n and B ∈ Rn×m.
Then the sets

A(C) := {Ax : x ∈ C}, B−1(C) := {y ∈ Rm : By ∈ C}

are both convex.

If Cα are convex sets for each α ∈ A, where A is an arbitrary index
set (possibly infinite), then the intersection

C =


α∈A
Cα

is convex.

The convex hull of a set of points x1, · · · ,xm ∈ Rn, defined by

conv{x1, · · · ,xm} :=


m

i=1

λixi : λi ≥ 0,

m

i=1

λi = 1


,

is convex. Let S ⊆ Rn. Then conv(S) is the “smallest” convex set
containing S.
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Theorem 1 (Projection onto closed convex sets)

Let C be a closed convex set and x ∈ Rn. Then there is a unique point
πC(x), called the projection of x onto C, such that

x− πC(x)2 = inf
y∈C

y − x2,

that is,
πC(x) = argmin

y∈C
y − x22.

A point z is the projection of x onto C, i.e.,

z = πC(x),

if and only if
〈x− z,y − z〉 ≤ 0,

for all y ∈ C.
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Projection of the point x onto the set C (with projection πC(x)),
exhibiting 〈x− πC(x),y − πC(x)〉 ≤ 0.
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Corollary 2 (Nonexpansiveness)

Projections onto closed convex sets are nonexpansive, in particular,

πC(x)− y2 ≤ x− y2

for any x ∈ Rn and y ∈ C.

Theorem 3 (Strict separation of points)

Let C be a closed convex set. For any x /∈ C, the vector

v = x− πC(x)

satisfies
〈v,x〉 ≥ sup

y∈C
〈v,y〉+ v22 > sup

y∈C
〈v,y〉.

This means the strict separation of the point x /∈ C from the closed
convex set C.
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Strict separation of x from C by the vector v = x− πC(x).
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For nonempty sets S1 and S2 satisfying S1 ∩ S2 = ∅ , if there exist
vector v ∕= 0 and scalar b such that

〈v,x〉 ≥ b for all x ∈ S1,

and
〈v,x〉 ≤ b for all x ∈ S2,

then
{x ∈ Rn | 〈v,x〉 = b}

is called a separating hyperplane for nonempty sets S1 and S2.

Theorem 4 (Strict separation of closed convex sets)

Let C1, C2 be closed convex sets, with C2 compact and C1 ∩ C2 = ∅. Then
there is a vector v such that

inf
x∈C1

〈v,x〉 > sup
x∈C2

〈v,x〉.
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Strict separation of closed convex sets.
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For a set S and a boundary point x, i.e.,

x ∈ bdS := clS \ intS,

if vector v ∕= 0 satisfies

〈v,x〉 ≥ 〈v,y〉 for all y ∈ S,

then
{z ∈ Rn | v⊤(z− x) = 0}

is called a supporting hyperplane supporting S at x.

Theorem 5 (Supporting hyperplane theorem)

For convex set C and any x ∈ bdC, theres exists a supporting
hyperplane supporting C at x, i.e., ∃ v ∕= 0 satisfying

〈v,x〉 ≥ 〈v,y〉 for all y ∈ C.
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Supporting hyperplanes to a convex set. (unique?)

Theorem 6 (Halfspace intersections)

Let C ⊂ Rn be a closed convex set. Then C is the intersection of all the
halfspaces containing it. Moreover, C =


x∈bdC

Hx, where Hx denotes

the intersection of the halfspaces contained in the hyperplanes
supporting C at x.
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2. Convex functions

A function f : C → R defined on a convex set C ⊆ Rn is called
convex (or convex over C) if for any x,y ∈ C, λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

It is called strictly convex if for any x ∕= y, λ ∈ (0, 1),

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y).

Examples of convex functions: afines functions, norms.

Jensen’s inequality.

Let f : C → R be a convex function defined on the convex set
C ⊆ Rn. Then for any x1,x2, . . . ,xk ∈ C and λ ∈ ∆k, the following
inequality holds:

f


k

i=1

λixi


≤

k

i=1

λif(xi).
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2.1 Characterizations of convex functions

Theorem 7 (the gradient inequality)

Let f : C → R be a continuously differentiable function defined on a
nonempty convex set C ⊆ Rn. Then f is convex over C if and only if

f(x) +∇f(x)⊤(y − x) ≤ f(y) for any x,y ∈ C,

and f is strictly convex over C if and only if

f(x) +∇f(x)⊤(y − x) < f(y) for any x,y ∈ C satisfying x ∕= y.

Theorem 8 (monotonicity of the gradient)

Suppose that f is a continuously differentiable function over a
nonempty convex set C ⊆ Rn. Then f is convex over C if and only if

(∇f(x)−∇f(y))⊤(x− y) ≥ 0 for any x,y ∈ C.
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Proposition 9

Let f be a continuously differentiable function which is convex over a
convex set C ⊆ Rn.

(1) Suppose that ∇f(x) = 0 for some x ∈ C. Then x is a global
minimizer of f over C.

(2) If C = Rn, then ∇f(x) = 0 if and only if x is a global minimizer
of f over Rn.

Theorem 10 (second order characterization of convex functions)

Let f be a twice continuously differentiable function over a nonempty
convex set C ⊆ Rn. Then

(1) If ∇2f(x) ≽ 0 for any x ∈ C, then f is convex over C.
(2) If ∇2f(x) ≻ 0 for any x ∈ C, then f is strictly convex over C.
(3) If C is open, then f is convex over C if and only if ∇2f(x) ≽ 0 for

any x ∈ C.
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2.2 Operations preserving convexity

Theorem 11 (nonnegative scalar multiplication and summation)

(1) Let f be a convex function defined over a convex set C ⊆ Rn and
let α ≥ 0. Then αf is a convex function over C.

(2) Let f1, f2, . . . , fp be convex functions over a convex set C ⊆ Rn.
Then the sum function f1 + f2 + · · ·+ fp is convex over C.

Theorem 12 (affine change of variables)

Let f : C → R be a convex function defined on a convex set C ⊆ Rn. Let
A ∈ Rn×m and b ∈ Rn. Then the function g defined by

g(y) = f(Ay + b)

is convex over the convex set

D = {y ∈ Rm : Ay + b ∈ C}.
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Theorem 13 (composition with a nondecreasing convex function)

Let f : C → R be a convex function over the convex set C ⊆ Rn. Let
g : I → R be a one-dimensional nondecreasing convex function over the
interval I ⊆ R. Assume that the image of C under f is contained in
I : f(C) ⊆ I. Then the composition of g with f defined by

h(x) ≡ g(f(x)), x ∈ C,

is a convex function over C.

Theorem 14 (pointwise maximum of convex functions)

Let f1, . . . , fp : C → R be p convex functions over the convex set
C ⊆ Rn. Then the maximum function

f(x) = max
i=1,...,p

fi(x)

is a convex function over C.
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Theorem 15 (partial minimization)

Let f : C ×D → R be a convex function defined over the set C ×D,
where C ⊆ Rm and D ⊆ Rn are convex sets. Let

g(x) = min
y∈D

f(x,y), x ∈ C,

where we assume that the minimal value (maybe not attained) in the
above definition is finite. Then g is convex over C.

Let C ⊆ Rn be a nonempty convex set and  ·  an arbitrary norm.
The distance function defined by

d(x, C) = min
y∈C

x− y

is convex since the function f(x,y) = x− y is convex over
Rn × C.
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2.3 Level sets of convex functions

Let f : S → R be a function defined over a set S ⊆ Rn. Then the
level set of f with level α ∈ R is given by

Lev(f,α) = {x ∈ S : f(x) ≤ α}.

Theorem 16 (level sets of convex functions are convex)

Let f : C → R be a convex function defined over a convex set C ⊆ Rn.
Then for any α ∈ R the level set Lev(f,α) is convex.

A function f : C → R defined over the convex set C ⊆ Rn is called
quasi-convex if for any α ∈ R the set Lev(f,α) is convex.

Quasi-convex functions may be nonconvex.

For example, f(x) =


|x| with level sets

Lev(f,α) =


[−α2,α2], α ≥ 0,

∅, α < 0.
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2.4 Continuity and differentiability of convex functions

Convex functions are always continuous at interior points of their
domain. Thus, for example, functions which are convex over Rn

are always continuous. A stronger result is given below.

Theorem 17 (local Lipschitz continuity at interior points)

Let f : C → R be a convex function defined over a convex set C ⊆ Rn.
Let x0 ∈ int(C). Then there exist ε > 0 and L > 0 such that B[x0, ε] ⊆ C
and

|f(x)− f(x0)| ≤ Lx− x0

for all x ∈ B[x0, ε].

Theorem 18 (existence of directional derivatives at interior points)

Let f : C → R be a convex function defined over a convex set C ⊆ Rn.
Let x ∈ int(C). Then for any d ∕= 0, the directional derivative f ′(x;d)
exists.
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2.5 Extended real-valued function

The effective domain of an extended real-valued function
f : Rn → R ∪ {+∞} is defined as

dom(f) := {x | f(x) < +∞}.

A extended real-valued function is called proper if there exists at
least one x ∈ Rn such that f(x) < +∞, meaning that dom(f) ∕= ∅.
An extended real-valued function f is convex if ∀ x,y ∈ Rn and
α ∈ [0, 1] the following inequality holds:

f((1− α)x+ αy)  (1− α)f(x) + αf(y),

where we use the arithmetic with +∞:

a+ (+∞) = +∞ (a ∈ R), b · (+∞) = +∞ (b > 0),

and
0 · (+∞) = 0.
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The definition of convexity of extended real-valued functions is
equivalent to saying that dom(f) is a convex set and that the
restriction of f to its effective domain dom(f) is a convex function.

The epigraph of f : Rn → R ∪ {+∞} is defined by

epi(f) = {(x, y) : f(x) ≤ y,x ∈ Rn, y ∈ R}.

An extended real-valued function f convex “⇔” epi(f) convex.

Theorem 19

Let fi : Rn → R ∪ {+∞} be an extended real-valued convex function for
any i ∈ I (I being an arbitrary index set). Then f(x) = maxiI fi(x) is
an extended real-valued convex function.
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2.6 Maxima of convex functions

Theorem 20

Let f : C → R be a convex function which is not constant over the
convex set C. Then f does not attain a maximum at a point in int(C).

Let C ⊆ Rn be a convex set. A point x ∈ C is called an extreme
point of C if there do not exist x1,x2 ∈ C,x1 ∕= x2, and λ ∈ (0, 1)
such that x = λx1 + (1− λ)x2. The set of extreme points is
denoted by ext(C).

Theorem 21 (Krein–Milman)

Let C ⊆ Rn be a compact convex set. Then C = conv(ext(C)).

Theorem 22

Let f : C → R be a convex and continuous function over the nonempty
convex and compact set C ⊆ Rn. Then there exists at least one
maximizer of f over C that is an extreme point of C.
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2.7 Convexity and inequalities

The arithmetic geometric mean inequality

For any x1, . . . , xn ≥ 0 and λ ∈ ∆n the following inequality holds:
n

i=1

λixi ≥
n

i=1

xλi
i .

Young’s inequality

For any s, t ≥ 0 and p, q > 1 satisfying 1/p+ 1/q = 1 it holds that

st ≤ sp/p+ tq/q.

Hölder’s inequality

For any x,y ∈ Rn and p, q ∈ [1,∞] satisfying 1/p+ 1/q = 1, it
holds that

|x⊤y| ≤ xpyq.

Minkowski’s inequality

Let p ≥ 1. For any x,y ∈ Rn, x+ yp ≤ xp + yp.
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