Lecture 5: Unconstrained optimization
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1. Taylor’s theorem

o Taylor’s theorem shows how smooth functions can be locally
approximated by low-order (e.g., linear or quadratic) functions.

I 12.3.1{Taylor 2%) & f(x,y) £.5 (zg,v0) HHK U =
O((xg>y0),7r) LAA &+ L Brid 4R 58, ML T U AH— 8 (z + Az,
yo + Ay) #AK

 flaet Ax,yo + Ay)

= f(zo,y0) + (Ax 2. Ayai)f(xo,yo)

+2—!(M9—I+Aya )f(:co,yo)+
Ax o— 2 + A ( )+ R
k'( 3z yay)fxo’yo ')

A+l
*F Ry = (leJrl)'(Ar Ayaa) flxo+ 04z, y0+ 04y)(0< 6 < 1)

# % Lagrange & 1%.
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Theorem 1

Given a continuously differentiable function f :R"™ — R, we have

f(x+p) = f(x)+ Vf(x+Ep) p, for some € € (0,1),

1
Fx+p) = Fx) + /0 V(x+ tp) Tpdt,

f(x+p) = f(x)+ Vf(x)"p+o(pl).

If f is twice continuously differentiable, we have for some & € (0,1),

fGc+p) = F0) + VI B+ 5p VA (x + €D)p,

and

1
Vi(x+p) = Vi) + /0 V2/(x + tp)pdt,

flx+ )= f() + V() Tp + 50TV F(x)p + ol o).
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2. Global and local solutions of m]iRn f(x)
xER?

e x, is a local minimizer of f if there is a neighborhood N of x,
such that f(x) > f(x4) for all x € N.

@ X, is a strict local minimizer if it is a local minimizer on some
neighborhood N and in addition f(x) > f(x,) for all x € N with
X # Xi.

e x, is an isolated local minimizer if there is a neighborhood N of x,
such that f(x) > f(x4) for all x € N and in addition, N contains
no local minimizers other than x,.

Strict local minimizers are not always isolated: for example,
f(z) =zt cos(1/x) 4+ 22*, £(0) =0.

All isolated local minimizers are strict.

e x, is a global minimizer of f if f(x) > f(x,) for all x € R™.
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3. Optimality conditions for smooth functions

Theorem 2 (First-order necessary condition)

If x4 is a local minimizer of f and f is continuously differentiable in
an open neighborhood of X4, then V f(x4) = 0.

Proof. Suppose for contradiction that V f(x,) # 0. Define the vector
p = —Vf(x,) and note that p"Vf(x,) = —||Vf(x.)||? < 0. Because
V f is continuous near x,, there is a scalar T' > 0 such that

p' Vf(x,+tp) <0, forall tel0,T].
For any s € (0, 7], we have by Taylor’s theorem that
f(xe 4 5p) = f(x,) + sp' Vf(xs + Esp)  for some € € (0,1).

Therefore, f(x. + sp) < f(x,) for all s € (0,7]. We have found a
direction leading away from x, along which f decreases, so x, is not a
local minimizer, and we have a contradiction. O
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Theorem 3 (Second-order necessary conditions)

If x, is a local minimizer of f and V2f is continuous in an open
neighborhood of x,, then V f(x,) = 0 and V?f(x,) = 0.

Proof. We know from Theorem 2 that V f(x,) = 0. Assume that
V2f(x,) is not positive semidefinite. Then we can choose a vector p
such that pTVQf(X*)p < 0, and because V2f is continuous near x,,
there is a scalar T' > 0 such that

p' VZf(x,+tp)p <0, forall te0,T]

By doing a Taylor series expansion around x,, we have for all s € (0, 7]
and some & € (0,1) that

Fxs + 5D) = f(x0) + 5BV ) + 57T V£ (e + Esp)p < f(x2).

As in Theorem 2, we have found a direction from x, along which f is
decreasing, and so again, X, is not a local minimizer. O
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Theorem 4 (Second-order sufficient conditions)

Suppose that V2 f is continuous in an open neighborhood of x, and that
V£(x:) =0 and V2f(x,) = 0. Then x, is a strict local minimizer of f.

Proof. Because the Hessian V2 is continuous and positive definite at
X,, we can choose a radius 7 > 0 so that V?f(x) remains positive
definite for all x in the open ball B ={z | ||z — x.|| < r}. Taking any
nonzero vector p with ||p|| < r, we have x, + p € B and

Fo 4 P) = F(x) + DTV () + 5T V2 f(x, + p)p
= f(xa) + %pTVQf(X* +£p)p,
for some ¢ € (0,1). Since x, + £p € B, we have
p'V2f(x. +Ep)p > 0,

and therefore f(x, + p) > f(x.), giving the result. O
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A point x is called a stationary point if
Vf(x)=0.

o A stationary point x is called a saddle point if there exist u and v
such that

f(x+oau) < f(x) and f(x+av)> f(x)

for all sufficiently small o > 0.

o Stationary points are not necessarily local minimizers. Stationary
points can be local mazximizers or saddle points.

o If Vf(x) = 0, and V2f(x) has both strictly positive and strictly
negative eigenvalues, then x is a saddle point.

o If V2f(x) is positive semidefinite or negative semidefinite, then
V2 f(x) alone is insufficient to classify x.
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4. Line search methods

@ Consider an iterative method:
Xpr1 =X +txdg, k£=0,1,2,...,

where dy, is the direction and t; > 0 is the stepsize.

o Let f:R"™ — R be a continuously differentiable function over R".
A nonzero vector d € R" is called a descent direction of f at x if
the directional derivative f'(x;d) is negative, meaning that

f(x,d)=Vf(x)'d<0.

Lemma 5 (descent property of descent directions)

Let f be a continuously differentiable function over an open set U, and

let x € U. Suppose that d is a descent direction of f at x. Then there
exists € > 0 such that

f(x+1td) < f(x) forany te(0,¢].
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4.1 Choices for stepsize selection rules
o Assume that dj is a descent direction. Three popular choices:
(1) constant. t; =¢ > 0 for any k

(2) exact line search. tj is a minimizer of f along the ray
xi + tdg, i.e.,

ty € argmin f(xy + tdg)
£>0

(3) backtracking. Three parameters s > 0, « € (0,1), 8 € (0,1).
First, set t; = s. Then, while

Fx) = F(xp + tedr) < —atyV f(xz) " dy,

set t;, < Bti. In other words, t;, = s8%, where ij, is the smallest
nonnegative integer satisfying (the sufficient decrease condition)

F(xk) = f(xp + sBdy) > —asf™V f(xy) " dy.
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Lemma 6 (validity of the sufficient decrease condition)

Let f be a continuously differentiable function over R™. Suppose that
0 #d € R" is a descent direction of f at x and let a € (0,1). Then
there exists € > 0 such that the inequality

f(x) = f(x+1td) > —atVf(x)'d

holds for all t € [0,¢].

Proof. It follows from d is a descent direction that

L (L= @)V Td + oftd])

t—0+ t

=(1-a)Vfx)'d<o.

Hence, there exists € > 0 such that for all ¢ € (0,¢] the inequality
(1 —a)tVf(x)"d +o(t||d]) < 0 holds. The statement follows from

f(x)— f(x+td) = —atVf(x)'d— (1 —a)tVf(x)"d—o(t|d])). O
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4.2 The gradient method
e Set dy = —V f(xx), the steepest descent direction.

Lemma 7

Let f be a continuously differentiable function over R™, and let x be a
nonstationary point (V f(x) # 0). Then we have

Vf(x) - T
———— - = argmin V/f(x)'d.
VG deaRT%HdH:I 19

Lemma 8 (“zig-zag”)

Let {xy} be the sequence generated by the gradient method with exact
line search for solving a problem of minimizing a continuously
differentiable function f. Then for any k =0,1,2,...,

(Xpr2 — Xpr1) | (X1 — x5) = 0.
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o We assume that f is continuously differentiable and that V f is
Lipschitz continuous over R™: there exists L > 0 such that

IVf(x) =Vl < Lix=yl, VxyeR"
o Notation: C}''(R™), V1 (R™), CPY(D), V(D)

Theorem 9

Let f be a twice continuously differentiable function over R™. Then
f € Cp'(RY) & ||V2f(x)|| < L for any x € R".

Lemma 10 (descent lemma)

Let D CR" and [ € Ci’l(D) for some L > 0. Then for any x,y € D
satisfying [x,y| C D it holds that

Dy —xI* < f(y) — £(x) = VFC)T(y ~ %) < lly — x|
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Lemma 11 (sufficient decrease lemma)

Suppose that f € C’i’l(R”). Then for any x € R™ and t > 0, we have

f(x) = f(x =tV f(x)) 2 (1 - tL/2) |V f(x)||*.

Lemma 12 (sufficient decrease of the gradient method)

Let f € C}J’I(R"). Let {xy} be the sequence generated by the gradient
method for solving mingegrn f(x) with one of the following stepsize
strategies: constant stepsize t € (0,2/L), exact line search, backtracking
procedure with parameters s > 0, a € (0,1), and g € (0,1). Then

Foer) = f(xps1) = MV F(xi)lI%,
where
t(1—1tL/2), constant stepsize,
M = {1/(2L), exact line search,
amin{s,2(1 — a)B/L}, backtracking.
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Theorem 13 (convergence of the gradient method)

Let f € Ci’l(R"). Let {xy} be the sequence generated by the gradient
method for solving

min f(x)

with one of the following stepsize strategies: constant stepsize

t € (0,2/L), exact line search, backtracking procedure with parameters

s>0,a€(0,1), and g € (0,1). Assume that f is bounded below over

R™, that is, there exists m € R such that f(x) > m for all x € R™.

Then we have the following:

(a) The sequence {f(xg)} is nonincreasing. In addition, for any
k>0, f(xpr1) < f(xg) unless V f(xx) = 0.

(b) Vf(xx) = 0 as k — co.

(c) If lim f(xi) = fu then

. f(XU) — [«
ein VGl <[ Fra sy
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4.3 The scaled gradient method

o Let S € R™ "™ be nonsingular. Consider the equivalent problem

min{g(y) = f(Sy) : y € R"}.

We have Vg(y) = STV f(Sy) = STV f(x). The gradient method
takes the form

Yir1 =Yk — STV f(Syr).

Multiplying by S from the left and using the notation x; = Syy
and D =SS yield

X1 = Xg — 1DV f(xz).

The direction —DV f(xy) is a descent direction.

o It is often beneficial to choose the scaling matrix D differently at
each iteration:

Xpy1 = Xp — 1DV f(xz).
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4.4 Newton’s method

o We assume that f is twice continuously differentiable. Given xy,

Xp1 =Xk — (V2f(x1)) 7'V f(x3).

If V2f(x},) is positive definite, then x; 1 is the minimizer of the
following quadratic approximation of f around xp:

o) + V7 (66) T 0 = x0) + 0 — ) V£ (k) O — ).
o Damped Newton’s method:
Xpy1 = Xp — t(V2F(x1)) TV f (x5),

where t; is the stepsize.
e Hybrid gradient-Newton method:

de — —(V2f(xx)) 'V f(xk), if V2f(xx) is pd,
—Vf(xx), otherwise.
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Theorem 14 (quadratic local convergence of Newton’s method)

Suppose f(x) is twice Lipschitz continuously differentiable with
Lipschitz constant M > 0, i.e.,

IV2f(x) = VI3 < Mlx = yl.

Suppose that (the second-order sufficient conditions)
Vf(x,) =0, and V2f(x,) =~I for some v >0,

which ensure that X, is a local minimizer of f(x). If

0 _ < 0
I~ < 51

then the sequence {x*}5° in Newton’s method converges to x, at a
quadratic rate, with

M
“Xk+1_x*” < _ka_x*Hza k:O71a2a""
y
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5. Further reading
o Jorge Nocedal and Stephen J. Wright
Numerical Optimization
Second Edition, Springer, 2006

o Amir Beck

Introduction to Nonlinear Optimization: Theory, Algorithms, and
Applications with Python and MATLAB

Second Edition, SIAM, 2023

o Amir Beck
First-Order Methods in Optimization

SIAM, 2017
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https://link.springer.com/book/10.1007/978-0-387-40065-5
https://archive.siam.org/books/mo32/
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