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1. Taylor’s theorem

Taylor’s theorem shows how smooth functions can be locally
approximated by low-order (e.g., linear or quadratic) functions.
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Theorem 1

Given a continuously differentiable function f : Rn → R, we have

f(x+ p) = f(x) +∇f(x+ ξp)⊤p, for some ξ ∈ (0, 1),

f(x+ p) = f(x) +

 1

0
∇f(x+ tp)⊤pdt,

f(x+ p) = f(x) +∇f(x)⊤p+ o(p).

If f is twice continuously differentiable, we have for some ξ ∈ (0, 1),

f(x+ p) = f(x) +∇f(x)⊤p+
1

2
p⊤∇2f(x+ ξp)p,

and

∇f(x+ p) = ∇f(x) +

 1

0
∇2f(x+ tp)pdt,

f(x+ p) = f(x) +∇f(x)⊤p+
1

2
p⊤∇2f(x)p+ o(p2).

Data Analysis & Matrix Comp. Lecture 5 Xiamen University 3 / 20



2. Global and local solutions of min
x∈Rn

f(x)

x is a local minimizer of f if there is a neighborhood N of x

such that f(x) ≥ f(x) for all x ∈ N .

x is a strict local minimizer if it is a local minimizer on some
neighborhood N and in addition f(x) > f(x) for all x ∈ N with
x ∕= x.

x is an isolated local minimizer if there is a neighborhood N of x

such that f(x) ≥ f(x) for all x ∈ N and in addition, N contains
no local minimizers other than x.

Strict local minimizers are not always isolated: for example,

f(x) = x4 cos(1/x) + 2x4, f(0) = 0.

All isolated local minimizers are strict.

x is a global minimizer of f if f(x) ≥ f(x) for all x ∈ Rn.
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3. Optimality conditions for smooth functions

Theorem 2 (First-order necessary condition)

If x is a local minimizer of f and f is continuously differentiable in
an open neighborhood of x, then ∇f(x) = 0.

Proof. Suppose for contradiction that ∇f(x) ∕= 0. Define the vector
p = −∇f(x) and note that p⊤∇f(x) = −∇f(x)2 < 0. Because
∇f is continuous near x, there is a scalar T > 0 such that

p⊤∇f(x + tp) < 0, for all t ∈ [0, T ].

For any s ∈ (0, T ], we have by Taylor’s theorem that

f(x + sp) = f(x) + sp⊤∇f(x + ξsp) for some ξ ∈ (0, 1).

Therefore, f(x + sp) < f(x) for all s ∈ (0, T ]. We have found a
direction leading away from x along which f decreases, so x is not a
local minimizer, and we have a contradiction.
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Theorem 3 (Second-order necessary conditions)

If x is a local minimizer of f and ∇2f is continuous in an open
neighborhood of x, then ∇f(x) = 0 and ∇2f(x) ≽ 0.

Proof. We know from Theorem 2 that ∇f(x) = 0. Assume that
∇2f(x) is not positive semidefinite. Then we can choose a vector p
such that p⊤∇2f(x)p < 0, and because ∇2f is continuous near x,
there is a scalar T > 0 such that

p⊤∇2f(x + tp)p < 0, for all t ∈ [0, T ].

By doing a Taylor series expansion around x, we have for all s ∈ (0, T ]
and some ξ ∈ (0, 1) that

f(x + sp) = f(x) + sp⊤∇f(x) +
1

2
s2p⊤∇2f(x + ξsp)p < f(x).

As in Theorem 2, we have found a direction from x along which f is
decreasing, and so again, x is not a local minimizer.
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Theorem 4 (Second-order sufficient conditions)

Suppose that ∇2f is continuous in an open neighborhood of x and that
∇f(x) = 0 and ∇2f(x) ≻ 0. Then x is a strict local minimizer of f .

Proof. Because the Hessian ∇2f is continuous and positive definite at
x, we can choose a radius r > 0 so that ∇2f(x) remains positive
definite for all x in the open ball B = {z | z− x < r}. Taking any
nonzero vector p with p < r, we have x + p ∈ B and

f(x + p) = f(x) + p⊤∇f(x) +
1

2
p⊤∇2f(x + ξp)p

= f(x) +
1

2
p⊤∇2f(x + ξp)p,

for some ξ ∈ (0, 1). Since x + ξp ∈ B, we have

p⊤∇2f(x + ξp)p > 0,

and therefore f(x + p) > f(x), giving the result.
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A point x is called a stationary point if

∇f(x) = 0.

A stationary point x is called a saddle point if there exist u and v
such that

f(x+ αu) < f(x) and f(x+ αv) > f(x)

for all sufficiently small α > 0.

Stationary points are not necessarily local minimizers. Stationary
points can be local maximizers or saddle points.

If ∇f(x) = 0, and ∇2f(x) has both strictly positive and strictly
negative eigenvalues, then x is a saddle point.

If ∇2f(x) is positive semidefinite or negative semidefinite, then
∇2f(x) alone is insufficient to classify x.

Data Analysis & Matrix Comp. Lecture 5 Xiamen University 9 / 20



4. Line search methods

Consider an iterative method:

xk+1 = xk + tkdk, k = 0, 1, 2, . . . ,

where dk is the direction and tk > 0 is the stepsize.

Let f : Rn → R be a continuously differentiable function over Rn.
A nonzero vector d ∈ Rn is called a descent direction of f at x if
the directional derivative f ′(x;d) is negative, meaning that

f ′(x,d) = ∇f(x)⊤d < 0.

Lemma 5 (descent property of descent directions)

Let f be a continuously differentiable function over an open set U , and
let x ∈ U . Suppose that d is a descent direction of f at x. Then there
exists ε > 0 such that

f(x+ td) < f(x) for any t ∈ (0, ε].
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4.1 Choices for stepsize selection rules

Assume that dk is a descent direction. Three popular choices:

(1) constant. tk = t > 0 for any k

(2) exact line search. tk is a minimizer of f along the ray
xk + tdk, i.e.,

tk ∈ argmin
t≥0

f(xk + tdk)

(3) backtracking. Three parameters s > 0, α ∈ (0, 1), β ∈ (0, 1).
First, set tk = s. Then, while

f(xk)− f(xk + tkdk) < −αtk∇f(xk)
⊤dk,

set tk ← βtk. In other words, tk = sβik , where ik is the smallest
nonnegative integer satisfying (the sufficient decrease condition)

f(xk)− f(xk + sβikdk) ≥ −αsβik∇f(xk)
⊤dk.
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Lemma 6 (validity of the sufficient decrease condition)

Let f be a continuously differentiable function over Rn. Suppose that
0 ∕= d ∈ Rn is a descent direction of f at x and let α ∈ (0, 1). Then
there exists ε > 0 such that the inequality

f(x)− f(x+ td) ≥ −αt∇f(x)⊤d

holds for all t ∈ [0, ε].

Proof. It follows from d is a descent direction that

lim
t→0+

(1− α)t∇f(x)⊤d+ o(td)
t

= (1− α)∇f(x)⊤d < 0.

Hence, there exists ε > 0 such that for all t ∈ (0, ε] the inequality
(1− α)t∇f(x)⊤d+ o(td) < 0 holds. The statement follows from

f(x)− f(x+ td) = −αt∇f(x)⊤d− (1− α)t∇f(x)⊤d− o(td).
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4.2 The gradient method

Set dk = −∇f(xk), the steepest descent direction.

Lemma 7

Let f be a continuously differentiable function over Rn, and let x be a
nonstationary point (∇f(x) ∕= 0). Then we have

− ∇f(x)

∇f(x) = argmin
d∈Rn,d=1

∇f(x)⊤d.

Lemma 8 (“zig-zag”)

Let {xk} be the sequence generated by the gradient method with exact
line search for solving a problem of minimizing a continuously
differentiable function f . Then for any k = 0, 1, 2, . . . ,

(xk+2 − xk+1)
⊤(xk+1 − xk) = 0.
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We assume that f is continuously differentiable and that ∇f is
Lipschitz continuous over Rn: there exists L > 0 such that

∇f(x)−∇f(y) ≤ Lx− y, ∀ x,y ∈ Rn.

Notation: C1,1
L (Rn), C1,1(Rn), C1,1

L (D), C1,1(D)

Theorem 9

Let f be a twice continuously differentiable function over Rn. Then
f ∈ C1,1

L (Rn) ⇔ ∇2f(x) ≤ L for any x ∈ Rn.

Lemma 10 (descent lemma)

Let D ⊆ Rn and f ∈ C1,1
L (D) for some L > 0. Then for any x,y ∈ D

satisfying [x,y] ⊆ D it holds that

−L

2
y − x2 ≤ f(y)− f(x)−∇f(x)⊤(y − x) ≤ L

2
y − x2.
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Lemma 11 (sufficient decrease lemma)

Suppose that f ∈ C1,1
L (Rn). Then for any x ∈ Rn and t > 0, we have

f(x)− f(x− t∇f(x)) ≥ t(1− tL/2)∇f(x)2.

Lemma 12 (sufficient decrease of the gradient method)

Let f ∈ C1,1
L (Rn). Let {xk} be the sequence generated by the gradient

method for solving minx∈Rn f(x) with one of the following stepsize
strategies: constant stepsize t ∈ (0, 2/L), exact line search, backtracking
procedure with parameters s > 0, α ∈ (0, 1), and β ∈ (0, 1). Then

f(xk)− f(xk+1) ≥ M∇f(xk)2,

where

M =






t(1− tL/2), constant stepsize,

1/(2L), exact line search,

αmin{s, 2(1− α)β/L}, backtracking.
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Theorem 13 (convergence of the gradient method)

Let f ∈ C1,1
L (Rn). Let {xk} be the sequence generated by the gradient

method for solving
min
x∈Rn

f(x)

with one of the following stepsize strategies: constant stepsize
t ∈ (0, 2/L), exact line search, backtracking procedure with parameters
s > 0, α ∈ (0, 1), and β ∈ (0, 1). Assume that f is bounded below over
Rn, that is, there exists m ∈ R such that f(x) ≥ m for all x ∈ Rn.
Then we have the following:

(a) The sequence {f(xk)} is nonincreasing. In addition, for any
k > 0, f(xk+1) < f(xk) unless ∇f(xk) = 0.

(b) ∇f(xk) → 0 as k → ∞.

(c) If lim
k→∞

f(xk) = f, then

min
k=0,1,...,n

∇f(xk) ≤


f(x0)− f
M(n+ 1)

.
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4.3 The scaled gradient method

Let S ∈ Rn×n be nonsingular. Consider the equivalent problem

min{g(y) ≡ f(Sy) : y ∈ Rn}.

We have ∇g(y) = S⊤∇f(Sy) = S⊤∇f(x). The gradient method
takes the form

yk+1 = yk − tkS
⊤∇f(Syk).

Multiplying by S from the left and using the notation xk = Syk

and D = SS⊤ yield

xk+1 = xk − tkD∇f(xk).

The direction −D∇f(xk) is a descent direction.

It is often beneficial to choose the scaling matrix D differently at
each iteration:

xk+1 = xk − tkDk∇f(xk).
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4.4 Newton’s method

We assume that f is twice continuously differentiable. Given xk,

xk+1 = xk − (∇2f(xk))
−1∇f(xk).

If ∇2f(xk) is positive definite, then xk+1 is the minimizer of the
following quadratic approximation of f around xk:

f(xk) +∇f(xk)
⊤(x− xk) +

1

2
(x− xk)

⊤∇f(xk)(x− xk).

Damped Newton’s method:

xk+1 = xk − tk(∇2f(xk))
−1∇f(xk),

where tk is the stepsize.

Hybrid gradient-Newton method:

dk =


−(∇2f(xk))

−1∇f(xk), if ∇2f(xk) is pd,

−∇f(xk), otherwise.
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Theorem 14 (quadratic local convergence of Newton’s method)

Suppose f(x) is twice Lipschitz continuously differentiable with
Lipschitz constant M > 0, i.e.,

∇2f(x)−∇2f(y) ≤ Mx− y.

Suppose that (the second-order sufficient conditions)

∇f(x) = 0, and ∇2f(x) ≽ γI for some γ > 0,

which ensure that x is a local minimizer of f(x). If

x0 − x ≤ γ

2M
,

then the sequence {xk}∞0 in Newton’s method converges to x at a
quadratic rate, with

xk+1 − x ≤ M

γ
xk − x2, k = 0, 1, 2, . . . .
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5. Further reading

Jorge Nocedal and Stephen J. Wright

Numerical Optimization

Second Edition, Springer, 2006

Amir Beck

Introduction to Nonlinear Optimization: Theory, Algorithms, and
Applications with Python and MATLAB

Second Edition, SIAM, 2023

Amir Beck

First-Order Methods in Optimization

SIAM, 2017
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https://link.springer.com/book/10.1007/978-0-387-40065-5
https://archive.siam.org/books/mo32/
http://archive.siam.org/books/mo25/

