Lecture 4: Randomized linear dimension reduction
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1. Subspace embedding

Definition 1 (Subspace embedding)

Let £ C R” be a linear subspace with dimension d. Given 0 < € < 1,
we consider a linear map ® : R” — R® with the property that

(1 —¢)|xll2 < [|Px]l2 < (1+¢)|x|2 forall xe& L.

The map ® is called a subspace embedding for £ with embedding
dimension s and distortion e.

Exercise: Prove that s > d.
o By the linearity of ®, for all x,y € L, it holds that
(1-9)lx -yl < [|2x— @y[[2 < (1 +¢)[x — vl

o In real applications, the embedding dimension s is close to the
subspace dimension d and much smaller than the ambient
dimension n: s &~ d < n.
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Proposition 2

Suppose that range(U) = L where U € R™*? is a matriz with
orthonormal columns. The subspace embedding property

(1 —=e)lxlz < [|®x[la < (1 +¢)[x[l2 forall xeLl
s equivalent to the condition

I1—-e< O'min((I)U) < O-max(q)U) <l+e

Proof. From £ = {Uy : y € R%}, we have
(1-2)|[Uyll2 < [®Uy|2 < (1 +¢)|[Uyll2 forall yeR?
By [[Uyll2 = [lyll2, we have
1—¢e<||®Uz|2s <1+¢ for each unit vector z € R,

The variational definition of oy and omax completes the proof.
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2. Random subspace embeddings

o In many applications, it is imperative to construct a subspace
embedding ® : R — R?® without using prior knowledge about the
subspace £ C R”. These are called oblivious subspace embeddings.

e By drawing a subspace embedding at random, we can ensure that
the embedding property holds with high probability.

2.1 Subsampled randomized trigonometric transform (SRTT)

@ Subsampled randomized trigonometric transform:

b = \/gRFD e R%*"
S

where R € R¥*"™ subsamples rows, F € R"*" is a DCT2 matrix,
and D € R™" is random diagonal. More precisely, R is a
uniformly random set of s rows drawn from the identity matrix I,
and the random diagonal matrix D has i.i.d. uniform{£1} entries.

Exercise: Prove that E|®x||3 = ||x/|3.
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e The cost of applying the SRTT to a vector is O(nlogn) operations
using a standard fast DCT2 algorithm, and it can be reduced to
O(nlogs) with a more careful implementation.

o What embedding dimension s does the SRTT require?

In practice, s ~ d/e? usually has ‘satisfying’ performance.

2.2 Sparse random matrices

e Consider a sparse random matrix of the form
@ = [(Pl . .. (pn] (= RSXTL,

where ; € R® are i.i.d. sparse vectors. More precisely, each
column ¢; contains exactly ¢ < s nonzero entries, equally likely to
be +1/4/C, in uniformly positions. Exercise: E||®x]|3 = ||x]|3.

e We can apply this matrix to a vector in O({n) operations. The
storage cost is at most (n parameters. If ( < s, then we obtain a
significant computational benefit.
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3. Approximate least-squares
o Consider the quadratic optimization problem

1
min ~||Ax — b3 with A € R™? becR"™
xERE 2

We focus on the case where d < n and A is dense and unstructured.
@ The cost of solving the problem with a direct method, such as QR
factorization, is O(d?n) operations.
o The sketch-and-solve approach can obtain a coarse solution to the
least-squares problem efficiently (O(ndlogd + d3/£?)).
(1) Construct a (random, fast) subspace embedding ® € R**™ for
range([A b]).
(2) Reduce the dimension of the problem data: ®A € R**? and
®b € R®. This step is commonly referred to as sketching.
(3) Find a solution xg € R? to the sketched least-squares problem:

1
min | ®(Ax — b)3.
xER
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Proposition 3

Suppose that A € R is q tall matriz and b € R™. Construct a
subspace embedding ® € R*™ for range([A b]) with distortion . Let
x, € R? be a solution to the original least-squares problem, and let
xgx € R% be a solution to the sketched problem. Then

1+¢
1—¢

[Axgi —bl|2 < [Ax, —b2.

Proof. Using the embedding property twice yields

|Axg — b2

IN

1
1—_€\|‘I’(Axsk —b)]2

1+¢
1—¢

IN

1
12 1®(Ax — D)2 < [A%, = b][2.

1 _
The first (third) inequality is the lower (upper) bound in the

embedding property. The second inequality holds because xg is the
optimal solution to the sketched least-squares problem. O
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4. Approximate orthogonalization

o Problem: Consider a matrix A € R"*? with full column rank. The
task is to find a well-conditioned matrix B € R"*? with
range(B) = range(A).

@ A direct method for orthogonalizing the columns of the matrix A
requires O(nd?) arithmetic.

e Randomized Gram—Schmidt:

(1) Construct a (random, fast) subspace embedding ® € R**™ for
range(A). s =0(d/e?)

(2) Sketch the problem data: ®A € R*?, O(ndlogd)

(3) Compute a (thin, pivoted) QR factorization of the sketched
data: ®A = QR. O(d3/e?)

(4) (Implicitly) define well-conditioned B = AR ™! with

range(B) = range(A). If we wish to form the matrix B explicitly,
we must spend O(nd?) operations.
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Proposition 4

Let A € R"%4 be q tall matriz with full column rank. Construct a
subspace embedding ® € R**? for range(A) with distortion €. Form a
QR factorization of the sketched matriz: ®A = QR with R € R%*4,
Then R has full rank, and the whitened matriz B = AR™! satisfies

1 1
lte < Jmin(B) < JmaX(B) < 1—¢&

v

Proof. Since ® is a subspace embedding for the d-dimensional subspace
range(A), the range of the sketched matrix ®A also has dimension d.
Thus, R must have full rank. For any x € R?, let y = R™!x. From

[Ryll2 = [[®Ay|l2 and (1 —¢)[|Ay[]2 < [[PAy[2 < (1+¢)[|Ay]2
we have

(1= )| AR x[l2 < [[x]l2 < (1 + ) [AR x].

The variational definition of o,y and opax completes the proof. O
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5. Approximate null space

e Problem: Consider a tall matrix A € R™ <. The task is to find an
orthonormal matrix W € R?* whose range aligns with the k&
trailing right singular vectors of A.

o A variational formulation of the problem:

min ||AX|[2 subject to X'X =TI.
X ecRdXk

The matrix of k trailing right singular vectors is a solution.

e A full SVD of the input matrix A requires O(nd?) arithmetic.

o The sketch-and-solve approach: O(ndlogd + d>/<?)
(1) Construct a (random, fast) subspace embedding ® € R**™ for
range(A). s =0(d/e?)
(2) Sketch the problem data: ®A € R*?, O(ndlogd)
(3) Compute SVD of the sketched matrix: ®A = UV . O(sd?)
(4) Set W =V (;,(d—k+1):d) € Rk,
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Proposition 5

Let A € R™4 be a tall matriz with full column rank, and let & € RS>
be a subspace embedding for range(A) with distortion €. The W
generated by the sketch-and solve approach satisfies

1 2

lawip < UED i jaxg

(1 — )2 Xerdxk, XTX=I,
In particular, if AX = 0 for some k-dimensional subspace X with
X = range(X), then AW = 0.

v

Proof. Fix an orthonormal matrix X, € R®* that solves the null space
problem. Since ® is a subspace embedding for range(A),

1 1 (I+¢)* £)?
(1—-¢)? (1—-¢)? (1-¢)?
The first (third) inequality is the lower (upper) bound in the

embedding property. The second inequality holds because W is the
optimal solution to the sketched problem. ]

AW | < 7 | PAW|[f: < 2 PAX,F < 7 I AXLF
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Proposition 6

Let A € R™*4 be a tall matriz with full column rank, and let & € RS*"
be a subspace embedding for range(A) with distortion . The singular
values of the sketched matrix ®A satisfy

(1—-¢)oi(A) <0i(PA) < (1+¢€)oi(A) for i=1,...,d.

Proof. Let A =UXVT be an SVD. Then & is a subspace embedding
for range(Uy). For each index ¢ = 1,...,d, by the rotational invariance
of singular values,

0i(®PA) = 0;(PUXV ') = 05 (PUX).
By Ostrowski’s theorem for singular values, we have
0q(®U)0i(X) < 0(PA) < 01(PU)0;(X).
By the subspace embedding property, we have
(1 —-¢)oi(A) <oi(PA) < (1+¢)oi(A). O

Data Analysis & Matrix Comp. Lecture 4 Xiamen University



