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1. Subspace embedding

Definition 1 (Subspace embedding)

Let L ⊆ Rn be a linear subspace with dimension d. Given 0 < ε < 1,
we consider a linear map Φ : Rn 󰀁→ Rs with the property that

(1− ε)󰀂x󰀂2 ≤ 󰀂Φx󰀂2 ≤ (1 + ε)󰀂x󰀂2 for all x ∈ L.

The map Φ is called a subspace embedding for L with embedding
dimension s and distortion ε.

Exercise: Prove that s ≥ d.

By the linearity of Φ, for all x,y ∈ L, it holds that

(1− ε)󰀂x− y󰀂2 ≤ 󰀂Φx−Φy󰀂2 ≤ (1 + ε)󰀂x− y󰀂2.

In real applications, the embedding dimension s is close to the
subspace dimension d and much smaller than the ambient
dimension n: s ≈ d ≪ n.
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Proposition 2

Suppose that range(U) = L where U ∈ Rn×d is a matrix with
orthonormal columns. The subspace embedding property

(1− ε)󰀂x󰀂2 ≤ 󰀂Φx󰀂2 ≤ (1 + ε)󰀂x󰀂2 for all x ∈ L

is equivalent to the condition

1− ε ≤ σmin(ΦU) ≤ σmax(ΦU) ≤ 1 + ε.

Proof. From L = {Uy : y ∈ Rd}, we have

(1− ε)󰀂Uy󰀂2 ≤ 󰀂ΦUy󰀂2 ≤ (1 + ε)󰀂Uy󰀂2 for all y ∈ Rd.

By 󰀂Uy󰀂2 = 󰀂y󰀂2, we have

1− ε ≤ 󰀂ΦUz󰀂2 ≤ 1 + ε for each unit vector z ∈ Rd.

The variational definition of σmin and σmax completes the proof. .
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2. Random subspace embeddings

In many applications, it is imperative to construct a subspace
embedding Φ : Rn 󰀁→ Rs without using prior knowledge about the
subspace L ⊆ Rn. These are called oblivious subspace embeddings.

By drawing a subspace embedding at random, we can ensure that
the embedding property holds with high probability.

2.1 Subsampled randomized trigonometric transform (SRTT)

Subsampled randomized trigonometric transform:

Φ :=

󰁵
n

s
RFD ∈ Rs×n

where R ∈ Rs×n subsamples rows, F ∈ Rn×n is a DCT2 matrix,
and D ∈ Rn×n is random diagonal. More precisely, R is a
uniformly random set of s rows drawn from the identity matrix In,
and the random diagonal matrix D has i.i.d. uniform{±1} entries.

Exercise: Prove that E󰀂Φx󰀂22 = 󰀂x󰀂22.
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The cost of applying the SRTT to a vector is O(n log n) operations
using a standard fast DCT2 algorithm, and it can be reduced to
O(n log s) with a more careful implementation.

What embedding dimension s does the SRTT require?

In practice, s ≈ d/ε2 usually has ‘satisfying’ performance.

2.2 Sparse random matrices

Consider a sparse random matrix of the form

Φ =
󰀅
ϕ1 · · · ϕn

󰀆
∈ Rs×n,

where ϕi ∈ Rs are i.i.d. sparse vectors. More precisely, each
column ϕi contains exactly ζ < s nonzero entries, equally likely to
be ±1/

√
ζ, in uniformly positions. Exercise: E󰀂Φx󰀂22 = 󰀂x󰀂22.

We can apply this matrix to a vector in O(ζn) operations. The
storage cost is at most ζn parameters. If ζ ≪ s, then we obtain a
significant computational benefit.
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3. Approximate least-squares

Consider the quadratic optimization problem

min
x∈Rd

1

2
󰀂Ax− b󰀂22 with A ∈ Rn×d, b ∈ Rn.

We focus on the case where d≪n andA is dense and unstructured.

The cost of solving the problem with a direct method, such as QR
factorization, is O(d2n) operations.

The sketch-and-solve approach can obtain a coarse solution to the
least-squares problem efficiently (O(nd log d+ d3/ε2)).

(1) Construct a (random, fast) subspace embedding Φ ∈ Rs×n for
range(

󰀅
A b

󰀆
).

(2) Reduce the dimension of the problem data: ΦA ∈ Rs×d and
Φb ∈ Rs. This step is commonly referred to as sketching.

(3) Find a solution xsk ∈ Rd to the sketched least-squares problem:

min
x∈Rd

1

2
󰀂Φ(Ax− b)󰀂22.
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Proposition 3

Suppose that A ∈ Rn×d is a tall matrix and b ∈ Rn. Construct a
subspace embedding Φ ∈ Rs×n for range(

󰀅
A b

󰀆
) with distortion ε. Let

x󰂏 ∈ Rd be a solution to the original least-squares problem, and let
xsk ∈ Rd be a solution to the sketched problem. Then

󰀂Axsk − b󰀂2 ≤
1 + ε

1− ε
󰀂Ax󰂏 − b󰀂2.

Proof. Using the embedding property twice yields

󰀂Axsk − b󰀂2 ≤
1

1− ε
󰀂Φ(Axsk − b)󰀂2

≤ 1

1− ε
󰀂Φ(Ax󰂏 − b)󰀂2 ≤

1 + ε

1− ε
󰀂Ax󰂏 − b󰀂2.

The first (third) inequality is the lower (upper) bound in the
embedding property. The second inequality holds because xsk is the
optimal solution to the sketched least-squares problem.
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4. Approximate orthogonalization

Problem: Consider a matrix A ∈ Rn×d with full column rank. The
task is to find a well-conditioned matrix B ∈ Rn×d with
range(B) = range(A).

A direct method for orthogonalizing the columns of the matrix A
requires O(nd2) arithmetic.

Randomized Gram–Schmidt:

(1) Construct a (random, fast) subspace embedding Φ ∈ Rs×n for
range(A). s = O(d/ε2)

(2) Sketch the problem data: ΦA ∈ Rs×d. O(nd log d)

(3) Compute a (thin, pivoted) QR factorization of the sketched
data: ΦA = QR. O(d3/ε2)

(4) (Implicitly) define well-conditioned B = AR−1 with
range(B) = range(A). If we wish to form the matrix B explicitly,
we must spend O(nd2) operations.
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Proposition 4

Let A ∈ Rn×d be a tall matrix with full column rank. Construct a
subspace embedding Φ ∈ Rs×d for range(A) with distortion ε. Form a
QR factorization of the sketched matrix: ΦA = QR with R ∈ Rd×d.
Then R has full rank, and the whitened matrix B = AR−1 satisfies

1

1 + ε
≤ σmin(B) ≤ σmax(B) ≤ 1

1− ε
.

Proof. Since Φ is a subspace embedding for the d-dimensional subspace
range(A), the range of the sketched matrix ΦA also has dimension d.
Thus, R must have full rank. For any x ∈ Rd, let y = R−1x. From

󰀂Ry󰀂2 = 󰀂ΦAy󰀂2 and (1− ε)󰀂Ay󰀂2 ≤ 󰀂ΦAy󰀂2 ≤ (1 + ε)󰀂Ay󰀂2
we have

(1− ε)󰀂AR−1x󰀂2 ≤ 󰀂x󰀂2 ≤ (1 + ε)󰀂AR−1x󰀂2.

The variational definition of σmin and σmax completes the proof.
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5. Approximate null space

Problem: Consider a tall matrix A ∈ Rn×d. The task is to find an
orthonormal matrix W ∈ Rd×k whose range aligns with the k
trailing right singular vectors of A.

A variational formulation of the problem:

min
X∈Rd×k

󰀂AX󰀂2F subject to X⊤X = Ik.

The matrix of k trailing right singular vectors is a solution.

A full SVD of the input matrix A requires O(nd2) arithmetic.

The sketch-and-solve approach: O(nd log d+ d3/ε2)

(1) Construct a (random, fast) subspace embedding Φ ∈ Rs×n for
range(A). s = O(d/ε2)

(2) Sketch the problem data: ΦA ∈ Rs×d. O(nd log d)

(3) Compute SVD of the sketched matrix: ΦA = UΣV⊤. O(sd2)

(4) Set W = V(:, (d− k + 1) : d) ∈ Rd×k.
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Proposition 5

Let A ∈ Rn×d be a tall matrix with full column rank, and let Φ ∈ Rs×n

be a subspace embedding for range(A) with distortion ε. The W
generated by the sketch-and solve approach satisfies

󰀂AW󰀂2F ≤ (1 + ε)2

(1− ε)2
min

X∈Rd×k, X⊤X=Ik
󰀂AX󰀂2F.

In particular, if AX = 0 for some k-dimensional subspace X with
X = range(X), then AW = 0.

Proof. Fix an orthonormal matrix X󰂏 ∈ Rd×k that solves the null space
problem. Since Φ is a subspace embedding for range(A),

󰀂AW󰀂2F ≤ 1

(1− ε)2
󰀂ΦAW󰀂2F ≤ 1

(1− ε)2
󰀂ΦAX󰂏󰀂2F ≤ (1 + ε)2

(1− ε)2
󰀂AX󰂏󰀂2F.

The first (third) inequality is the lower (upper) bound in the
embedding property. The second inequality holds because W is the
optimal solution to the sketched problem.
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Proposition 6

Let A ∈ Rn×d be a tall matrix with full column rank, and let Φ ∈ Rs×n

be a subspace embedding for range(A) with distortion ε. The singular
values of the sketched matrix ΦA satisfy

(1− ε)σi(A) ≤ σi(ΦA) ≤ (1 + ε)σi(A) for i = 1, . . . , d.

Proof. Let A = UΣV⊤ be an SVD. Then Φ is a subspace embedding
for range(Ud). For each index i = 1, . . . , d, by the rotational invariance
of singular values,

σi(ΦA) = σi(ΦUΣV⊤) = σi(ΦUΣ).

By Ostrowski’s theorem for singular values, we have

σd(ΦU)σi(Σ) ≤ σi(ΦA) ≤ σ1(ΦU)σi(Σ).

By the subspace embedding property, we have

(1− ε)σi(A) ≤ σi(ΦA) ≤ (1 + ε)σi(A).
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