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1. Low-rank matrix approximation problem via matvecs

Suppose B ∈ Rm×n is accessible via matvecs x 󰀁→ Bx, y 󰀁→ B⊤y.
The task is to produce a low-rank approximation of B that is
competitive with a best approximation of similar rank.

The best rank-k approximation is unique if and only if σk > σk+1:

min
rank(M)≤k

󰀂B−M󰀂2F = 󰀂B−UkU
⊤
k B󰀂2F =

󰁛
i>k

σ2
i ,

where Uk is the matrix consisting of the leading k left singular
vectors. Cost: O(mnp) where p = min(m,n).

Let s = k + l for a small natural number l. For a tolerance ε > 0,
we seek a rank-s approximation 󰁥Bs that competes with the best
rank-k approximation:

󰀂B− 󰁥Bs󰀂2F ≤ (1 + ε)󰀂B−UkU
⊤
k B󰀂2F = (1 + ε)

󰁛
i>k

σ2
i .
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1.1 Randomized SVD: Intuition

Draw a standard normal test vector w ∈ Rn. we have

Bw =

p󰁛

i=1

σiui(v
⊤
i w) :=

p󰁛

i=1

σiui 󰁥wi.

The component 󰁥wi := v⊤
i w of the random vector along the ith

right singular vector follows a standard normal distribution, and
the components ( 󰁥wi, i = 1, . . . , p) compose an independent family.

On average, E( 󰁥w2
i ) = 1. Therefore, the image Bw tends to align

with the left singular vectors associated with large singular values.

By repeating this process with a statistically independent family
(w(j) : j = 1, . . . , s) of random test vectors, we can obtain a family
(Bw(j) : j = 1, . . . , s) of vectors whose span contains most of
range(Uk). The number s = k + l of test vectors needs to be a bit
larger than the target rank k to obtain coverage of the subspace
with high probability.
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1.2 Randomized SVD: Algorithm (cost O(smn))

For a rank parameter s, we draw a random test matrix:

Ω =
󰀅
w(1) · · · w(s)

󰀆
where w(j) ∼ N (0, In) i.i.d.

We obtain Y := BΩ. The orthogonal projector PY onto range(Y)
serves as a proxy for the ideal projector UkU

⊤
k . Computationally,

PY := QQ⊤ where Q := orth(Y).

The function orth returns an orthonormal basis and costs O(s2m).

Finally, we report the approximation 󰁥Bs in factored form:

󰁥Bs := PYB = Q(Q⊤B).

If desired, we can report the SVD of the approximation after a
small amount of additional work (O(s2n)):

󰁥Bs = (Q󰁥U0)󰁥Σ󰁥V⊤ where (󰁥U0, 󰁥Σ, 󰁥V) = svd(Q⊤B).
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Algorithm: Randomized SVD.

Ω = randn(n, s)
Y = BΩ
Q = orth(Y)
C = Q⊤B

(󰁥U0, 󰁥Σ, 󰁥V) = svd(C)
󰁥U = Q󰁥U0

Theorem 1

Consider a matrix B ∈ Rm×n, and fix the target rank k ≤ p. When
s ≥ k + 2, the randomized SVD method produces a random rank-s
approximation 󰁥Bs that satisfies

E󰀂B− 󰁥Bs󰀂2F ≤
󰀕
1 +

k

s− k − 1

󰀖󰁛

i>k

σ2
i (B).

Proof. See A. Kireeva and J.A. Tropp, arXiv:2402.17873, 2024.
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1.3 Randomized subspace iteration

Algorithm: Randomized subspace iteration.

X0 = randn(n, s)
for t = 1, 2, . . . , T

Qt := orth(BXt−1)
Xt := B⊤Qt

end
󰁥Bs := QTX

⊤
T

Randomized SVD is the special case of this algorithm with T = 1.

Randomized subspace iteration produces approximations

󰁥Bs = Qt(Q
⊤
t B) where Qt = orth((BB⊤)t−1BΩ) for t = 1, 2, . . .

Much as the block power method drives its iterates toward the
leading eigenspace, subspace iteration drives range(Qt) so that it
aligns with range(Uk), the leading left singular subspace of B.
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2. Low-rank spsd approximation from entries

Consider an spsd matrix A ∈ Rn×n that we access via entry
evaluations: (j, k) 󰀁→ ajk. The task is to produce a low-rank spsd
approximation of A using as few as entry evaluations.

2.1 Column Nyström approximation

Given a list S ⊆ {1, 2, 3, ..., n} of column indices, the column
Nyström approximation:

A〈S〉 := A(:, S)A(S, S)†A(S, :).

The column Nyström approximation has several remarkable
properties: (1) range(A〈S〉) = range(A(:, S)); (2) 0 󰃙 A〈S〉 󰃙 A.

Our goal is to find a set S of s columns that make the error

󰀂A−A〈S〉󰀂∗ = tr(A−A〈S〉)

as small as possible. (󰀂A󰀂∗: the sum of singular values of A)
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2.2 Pivoted partial Cholesky

Set 󰁥A0 := 0 and A0 := A.

At each step t = 1, 2, . . . , s, select it ∈ {1, 2, . . . , n}, and update

󰁥At := 󰁥At−1 +
At−1(:, it)At−1(it, :)

At−1(it, it)
;

At := At−1 −
At−1(:, it)At−1(it, :)

At−1(it, it)
.

Exercise: Prove the following results: (i) 󰁥At +At = A;

(ii) diag(At) = diag(At−1)−
1

At−1(it, it)
|At−1(:, it)|2.

Proposition 2

Suppose that we apply the pivoted partial Cholesky algorithm to an spsd
matrix A, and we select it from S in any order. Then 󰁥A|S| = A〈S〉,
where |S| denotes the number of elements of the set S.
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2.3 Pivoted partial Cholesky: evaluating fewer entries

Set F0 := 0. At step t = 1, 2, . . . , s, select it ∈ {1, 2, . . . , n} and set

ct := A(:, it)− Ft−1(Ft−1(it, :))
⊤.

Update Ft :=
󰀅
Ft−1 ct/

󰁳
ct(it)

󰀆
.

Exercise: Prove that 󰁥At = FtF
⊤
t for t = 0, 1, 2, . . . , s.

2.4 Pivot selection rules

Uniform random pivoting: it ∼ uniform{1, 2, . . . , n}.
Assumption: data points represent an i.i.d. sample from a
population, so one is just as good as another.

Greedy pivoting: it ∈ argmax{At−1(i, i) : i = 1, 2, . . . , n}.
Note that At(it, it) = 0.

Importance sampling pivoting: P{it = j} = At−1(j, j)/tr(At−1).

Balance between uniform random and greedy.
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2.5 Randomly pivoted partial Cholesky

Algorithm: Randomly pivoted partial Cholesky.

F = zeros(n, s) (Preallocation)
d = diag(A)
for t = 1, 2, . . . , s

Sample it ∼ d/
󰁓n

j=1 d(j)

c = A(:, it)− F(F(it, :))
⊤

F(:, t) = c/
󰁳

c(it)
d = d− |F(:, t)|2
d = max{d,0} (Improve numerical stability)
Stop when

󰁓n
j=1 d(j) < η · tr(A) (Optional)

end

To produce a rank-s approximation, the algorithm only requires
(s+ 1)n− s entries of A: its diagonal and the s pivot columns.
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Define the expected residual map: Φ(A) := E(A1). This function
measures the average progress that we make after one step of the
algorithm. A quick calculation yields a formula for the expected
residual map:

Φ(A) =

n󰁛

j=1

󰀗
A− A(:, j)A(j, :)

A(j, j)

󰀘
A(j, j)

tr(A)

= A− 1

tr(A)

n󰁛

j=1

A(:, j)A(j, :) = A− A2

tr(A)
.

As a result, we have

E(tr(A1)) = tr(E(A1)) =

󰀕
1− tr(A2)

(tr(A))2

󰀖
tr(A) ≤ n− 1

n
tr(A).

In each iteration, we decrease the expected trace of the residual on
average.
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The best rank-k approximation in 󰀂 · 󰀂∗:

min
rank(M)≤k

󰀂A−M󰀂∗ =
󰁛

j>k

σj(A).

Fix a comparison rank k and a tolerance ε > 0. Randomly pivoted
Cholesky produces an approximation 󰁥As that attains the error
bound

E(󰀂A− 󰁥As󰀂󰂏) ≤ (1 + ε)
󰁛

j>k

σj(A)

after selecting s columns where

s ≥ k

ε
+ k log

󰀕
1

εη

󰀖
and η :=

1

tr(A)

󰁛

j>k

σj(A).

Y. Chen, E.N. Epperly, J.A. Tropp, and R,J. Webber, Randomly
pivoted Cholesky: Practical approximation of a kernel matrix with
few entry evaluations, arXiv:2207.06503
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