
Lecture 3: Low-rank matrix approximation

School of Mathematical Sciences, Xiamen University

Data Analysis & Matrix Comp. Lecture 3 Xiamen University 1 / 12

1. Low-rank matrix approximation problem via matvecs

Suppose B ∈ Rm×n is accessible via matvecs x 󰀁→ Bx, y 󰀁→ B⊤y.
The task is to produce a low-rank approximation of B that is
competitive with a best approximation of similar rank.

The best rank-k approximation is unique if and only if σk > σk+1:

min
rank(M)≤k

󰀂B−M󰀂2F = 󰀂B−UkU
⊤
k B󰀂2F =

󰁛
i>k

σ2
i ,

where Uk is the matrix consisting of the leading k left singular
vectors. Cost: O(mnp) where p = min(m,n).

Let s = k + l for a small natural number l. For a tolerance ε > 0,
we seek a rank-s approximation 󰁥Bs that competes with the best
rank-k approximation:

󰀂B− 󰁥Bs󰀂2F ≤ (1 + ε)󰀂B−UkU
⊤
k B󰀂2F = (1 + ε)

󰁛
i>k

σ2
i .

Data Analysis & Matrix Comp. Lecture 3 Xiamen University 2 / 12

1.1 Randomized SVD: Intuition

Draw a standard normal test vector w ∈ Rn. we have

Bw =

p󰁛

i=1

σiui(v
⊤
i w) :=

p󰁛

i=1

σiui 󰁥wi.

The component 󰁥wi := v⊤
i w of the random vector along the ith

right singular vector follows a standard normal distribution, and
the components (󰁥wi, i = 1, . . . , p) compose an independent family.

On average, E(󰁥w2
i) = 1. Therefore, the image Bw tends to align

with the left singular vectors associated with large singular values.

By repeating this process with a statistically independent family
(w(j) : j = 1, . . . , s) of random test vectors, we can obtain a family
(Bw(j) : j = 1, . . . , s) of vectors whose span contains most of
range(Uk). The number s = k + l of test vectors needs to be a bit
larger than the target rank k to obtain coverage of the subspace
with high probability.

Data Analysis & Matrix Comp. Lecture 3 Xiamen University 3 / 12

1.2 Randomized SVD: Algorithm (cost O(smn))

For a rank parameter s, we draw a random test matrix:

Ω =
󰀅
w(1) · · · w(s)

󰀆
where w(j) ∼ N (0, In) i.i.d.

We obtain Y := BΩ. The orthogonal projector PY onto range(Y)
serves as a proxy for the ideal projector UkU

⊤
k . Computationally,

PY := QQ⊤ where Q := orth(Y).

The function orth returns an orthonormal basis and costs O(s2m).

Finally, we report the approximation 󰁥Bs in factored form:

󰁥Bs := PYB = Q(Q⊤B).

If desired, we can report the SVD of the approximation after a
small amount of additional work (O(s2n)):

󰁥Bs = (Q󰁥U0)󰁥Σ󰁥V⊤ where (󰁥U0, 󰁥Σ, 󰁥V) = svd(Q⊤B).

Data Analysis & Matrix Comp. Lecture 3 Xiamen University 4 / 12

Algorithm: Randomized SVD.

Ω = randn(n, s)
Y = BΩ
Q = orth(Y)
C = Q⊤B

(󰁥U0, 󰁥Σ, 󰁥V) = svd(C)
󰁥U = Q󰁥U0

Theorem 1

Consider a matrix B ∈ Rm×n, and fix the target rank k ≤ p. When
s ≥ k + 2, the randomized SVD method produces a random rank-s
approximation 󰁥Bs that satisfies

E󰀂B− 󰁥Bs󰀂2F ≤
󰀕
1 +

k

s− k − 1

󰀖󰁛

i>k

σ2
i (B).

Proof. See A. Kireeva and J.A. Tropp, arXiv:2402.17873, 2024.

Data Analysis & Matrix Comp. Lecture 3 Xiamen University 5 / 12

1.3 Randomized subspace iteration

Algorithm: Randomized subspace iteration.

X0 = randn(n, s)
for t = 1, 2, . . . , T

Qt := orth(BXt−1)
Xt := B⊤Qt

end
󰁥Bs := QTX

⊤
T

Randomized SVD is the special case of this algorithm with T = 1.

Randomized subspace iteration produces approximations

󰁥Bs = Qt(Q
⊤
t B) where Qt = orth((BB⊤)t−1BΩ) for t = 1, 2, . . .

Much as the block power method drives its iterates toward the
leading eigenspace, subspace iteration drives range(Qt) so that it
aligns with range(Uk), the leading left singular subspace of B.

Data Analysis & Matrix Comp. Lecture 3 Xiamen University 6 / 12

2. Low-rank spsd approximation from entries

Consider an spsd matrix A ∈ Rn×n that we access via entry
evaluations: (j, k) 󰀁→ ajk. The task is to produce a low-rank spsd
approximation of A using as few as entry evaluations.

2.1 Column Nyström approximation

Given a list S ⊆ {1, 2, 3, ..., n} of column indices, the column
Nyström approximation:

A〈S〉 := A(:, S)A(S, S)†A(S, :).

The column Nyström approximation has several remarkable
properties: (1) range(A〈S〉) = range(A(:, S)); (2) 0 󰃙 A〈S〉 󰃙 A.

Our goal is to find a set S of s columns that make the error

󰀂A−A〈S〉󰀂∗ = tr(A−A〈S〉)

as small as possible. (󰀂A󰀂∗: the sum of singular values of A)

Data Analysis & Matrix Comp. Lecture 3 Xiamen University 7 / 12

2.2 Pivoted partial Cholesky

Set 󰁥A0 := 0 and A0 := A.

At each step t = 1, 2, . . . , s, select it ∈ {1, 2, . . . , n}, and update

󰁥At := 󰁥At−1 +
At−1(:, it)At−1(it, :)

At−1(it, it)
;

At := At−1 −
At−1(:, it)At−1(it, :)

At−1(it, it)
.

Exercise: Prove the following results: (i) 󰁥At +At = A;

(ii) diag(At) = diag(At−1)−
1

At−1(it, it)
|At−1(:, it)|2.

Proposition 2

Suppose that we apply the pivoted partial Cholesky algorithm to an spsd
matrix A, and we select it from S in any order. Then 󰁥A|S| = A〈S〉,
where |S| denotes the number of elements of the set S.

Data Analysis & Matrix Comp. Lecture 3 Xiamen University 8 / 12

2.3 Pivoted partial Cholesky: evaluating fewer entries

Set F0 := 0. At step t = 1, 2, . . . , s, select it ∈ {1, 2, . . . , n} and set

ct := A(:, it)− Ft−1(Ft−1(it, :))
⊤.

Update Ft :=
󰀅
Ft−1 ct/

󰁳
ct(it)

󰀆
.

Exercise: Prove that 󰁥At = FtF
⊤
t for t = 0, 1, 2, . . . , s.

2.4 Pivot selection rules

Uniform random pivoting: it ∼ uniform{1, 2, . . . , n}.
Assumption: data points represent an i.i.d. sample from a
population, so one is just as good as another.

Greedy pivoting: it ∈ argmax{At−1(i, i) : i = 1, 2, . . . , n}.
Note that At(it, it) = 0.

Importance sampling pivoting: P{it = j} = At−1(j, j)/tr(At−1).

Balance between uniform random and greedy.

Data Analysis & Matrix Comp. Lecture 3 Xiamen University 9 / 12

2.5 Randomly pivoted partial Cholesky

Algorithm: Randomly pivoted partial Cholesky.

F = zeros(n, s) (Preallocation)
d = diag(A)
for t = 1, 2, . . . , s

Sample it ∼ d/
󰁓n

j=1 d(j)

c = A(:, it)− F(F(it, :))
⊤

F(:, t) = c/
󰁳

c(it)
d = d− |F(:, t)|2
d = max{d,0} (Improve numerical stability)
Stop when

󰁓n
j=1 d(j) < η · tr(A) (Optional)

end

To produce a rank-s approximation, the algorithm only requires
(s+ 1)n− s entries of A: its diagonal and the s pivot columns.

Data Analysis & Matrix Comp. Lecture 3 Xiamen University 10 / 12

Define the expected residual map: Φ(A) := E(A1). This function
measures the average progress that we make after one step of the
algorithm. A quick calculation yields a formula for the expected
residual map:

Φ(A) =

n󰁛

j=1

󰀗
A− A(:, j)A(j, :)

A(j, j)

󰀘
A(j, j)

tr(A)

= A− 1

tr(A)

n󰁛

j=1

A(:, j)A(j, :) = A− A2

tr(A)
.

As a result, we have

E(tr(A1)) = tr(E(A1)) =

󰀕
1− tr(A2)

(tr(A))2

󰀖
tr(A) ≤ n− 1

n
tr(A).

In each iteration, we decrease the expected trace of the residual on
average.

Data Analysis & Matrix Comp. Lecture 3 Xiamen University 11 / 12

The best rank-k approximation in 󰀂 · 󰀂∗:

min
rank(M)≤k

󰀂A−M󰀂∗ =
󰁛

j>k

σj(A).

Fix a comparison rank k and a tolerance ε > 0. Randomly pivoted
Cholesky produces an approximation 󰁥As that attains the error
bound

E(󰀂A− 󰁥As󰀂󰂏) ≤ (1 + ε)
󰁛

j>k

σj(A)

after selecting s columns where

s ≥ k

ε
+ k log

󰀕
1

εη

󰀖
and η :=

1

tr(A)

󰁛

j>k

σj(A).

Y. Chen, E.N. Epperly, J.A. Tropp, and R,J. Webber, Randomly
pivoted Cholesky: Practical approximation of a kernel matrix with
few entry evaluations, arXiv:2207.06503

Data Analysis & Matrix Comp. Lecture 3 Xiamen University 12 / 12

