Lecture 3: Low-rank matrix approximation
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1. Low-rank matrix approximation problem via matvecs

e Suppose B € R"™*" is accessible via matvecs x — Bx, y — BTy.
The task is to produce a low-rank approximation of B that is
competitive with a best approximation of similar rank.

@ The best rank-k approximation is unique if and only if o > og41:

i B-M|2=|B- IB|2 = 2
rani?ﬁ%gk” I =B —UxU;Bllw ZM%

where Uy, is the matrix consisting of the leading k left singular
vectors. Cost: O(mnp) where p = min(m,n).

o Let s = k + 1 for a small natural number [. For a tolerance £ > 0,
we seek a rank-s approximation B that competes with the best
rank-k approximation:

IB-Bilf < (1+e)IB-UUBi=(1+2))_  of.

Data Analysis & Matrix Comp. Lecture 3



1.1 Randomized SVD: Intuition

@ Draw a standard normal test vector w € R". we have

T
Bw = E o (v; W) g o W;.

=1

The component w; := viTw of the random vector along the ith

right singular vector follows a standard normal distribution, and
the components (w;,i = 1,...,p) compose an independent family.

e On average, E(@?) = 1. Therefore, the image Bw tends to align
with the left singular vectors associated with large singular values.

o By repeating this process with a statistically independent family
(w(j )ij=1,..., s) of random test vectors, we can obtain a family
(Bwl) :j=1,...,s) of vectors whose span contains most of
range(Uy). The number s = k + [ of test vectors needs to be a bit
larger than the target rank k£ to obtain coverage of the subspace
with high probability.
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1.2 Randomized SVD: Algorithm (cost O(smn))

e For a rank parameter s, we draw a random test matrix:
Q=[wh ... w®] where wl) ~ N(0,1,) iid.

e We obtain Y := Bf2. The orthogonal projector Py onto range(Y)
serves as a proxy for the ideal projector UkUg. Computationally,

Py :=QQ' where Q :=orth(Y).

The function orth returns an orthonormal basis and costs O(s?m).

o Finally, we report the approximation B s in factored form:
B, :=PyB =Q(Q'B).

o If desired, we can report the SVD of the approximation after a

small amount of additional work (O(s?n)):

B, = (QUy)EV' where (Up, =, V) =svd(Q B).
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Algorithm: Randomized SVD.

Q = randn(n, s)

Y = BQ
Q = orth(Y)
C=Q'B
(Up, £, V) = svd(C)
U = QU,

Theorem 1

Consider a matriz B € R™*" and fix the target rank k < p. When
s > k+ 2, the randomized SVD method produces a random rank-s
approzimation By that satisfies

R Lk
— 2 < JE— 2 .
BB - Bl < (1+ ;=) > oke)

Proof. See A. Kireeva and J.A. Tropp, arXiv:2402.17873, 2024.
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1.3 Randomized subspace iteration

Algorithm: Randomized subspace iteration.

Xy = randn(n, s)
fort=1,2,...,T
Qt = Orth(BXt_l)
Xt = BTQt
end
]§5 = QTX—lT—

o Randomized SVD is the special case of this algorithm with 7' = 1.

o Randomized subspace iteration produces approximations
B, = Q:(Q/B) where Q; =orth(BB")'"'BQ) for t=1,2,...

@ Much as the block power method drives its iterates toward the
leading eigenspace, subspace iteration drives range(Q;) so that it
aligns with range(Uy), the leading left singular subspace of B.
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2. Low-rank spsd approximation from entries

Consider an spsd matrix A € R™*"™ that we access via entry
evaluations: (j,k) — aj,. The task is to produce a low-rank spsd
approximation of A using as few as entry evaluations.

2.1 Column Nystrém approximation

e Given a list S € {1,2,3,...,n} of column indices, the column
Nystrom approximation:

Asy = A(:;, S)A(S, S)TA(S, ).

@ The column Nystrom approximation has several remarkable
properties: (1) range(A gy) = range(A(:,5)); (2) 0 < A(gy < A.

@ Our goal is to find a set S of s columns that make the error
A — Al = tr(A — Ag)

as small as possible. (||A|[|.: the sum of singular values of A)
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2.2 Pivoted partial Cholesky
@ Set ;&0 :=0and Ag := A.
At each step t =1,2,...,s, select iy € {1,2,...,n}, and update

N ~ Ay 1(cy i) Ar—1(ig, )

A=A ‘

t t=1 1 At—l(ituit) ’

At_l(i,it)At—l(ita :)

A=A — :
t t-1 At—l(itait)

Exercise: Prove the following results: (i) Ay + Ay = A;

(i) diag(A¢) = diag(A¢—1) —

Proposition 2

Suppose that we apply the pivoted partial Cholesky algorithm to an spsd
matriz A, and we select iy from S in any order. Then Ag = A g,
where |S| denotes the number of elements of the set S.
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2.3 Pivoted partial Cholesky: evaluating fewer entries
o Set Fp:=0. At stept=1,2,...,s, select iy € {1,2,...,n} and set

e = A(iy) — Feoq(Fea(ie,r)

Update F; := [Ft—1 ct/m] )
Exercise: Prove that Kt =FF, fort=0,1,2,...,s.
2.4 Pivot selection rules
e Uniform random pivoting: i; ~ uniform{1,2,...,n}.
Assumption: data points represent an i.i.d. sample from a
population, so one is just as good as another.

e Greedy pivoting: i; € argmax{A;_1(i,7):i=1,2,...,n}.
Note that At(it, Zt) = 0.
e Importance sampling pivoting: P{i; = j} = Ai_1(J4,7)/tr(As—1).

Balance between uniform random and greedy.
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2.5 Randomly pivoted partial Cholesky

Algorithm: Randomly pivoted partial Cholesky.

F = zeros(n, s) (Preallocation)
d = diag(A)
fort=1,2,...,s

Sample i; ~d/ "7, d(j)

C = A(i, Zt) — F(F(Zt, I))T

F(:,t) =c/+\/c(it)

d=d—|F(;,t)]?

d = max{d, 0} (Improve numerical stability)

Stop when E?:l d(j) <n-tr(A) (Optional)
end

o To produce a rank-s approximation, the algorithm only requires
(s + 1)n — s entries of A: its diagonal and the s pivot columns.
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@ Define the expected residual map: ®(A) := E(A;). This function
measures the average progress that we make after one step of the
algorithm. A quick calculation yields a formula for the expected
residual map:

As a result, we have

tr(A?)

E(tr(A1)) = tr(E(A1)) = (1 - W) tr(A) < 1

tr(A).

In each iteration, we decrease the expected trace of the residual on
average.
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o The best rank-k approximation in || - ||.:

min ||A — MH*—ZO'J
rank(M)<k ey

o Fix a comparison rank k and a tolerance € > 0. Randomly pivoted
Cholesky produces an approximation Ag that attains the error
bound

E(|A - A ) < (1+e) ) oj(A
>k

after selecting s columns where

k 1 1
> — 1 — =— i(A).
8784—]{5 Og(an) and 7 tr(A)ZJ]( )

>k

o Y. Chen, E.N. Epperly, J.A. Tropp, and R,J. Webber, Randomly
pivoted Cholesky: Practical approximation of a kernel matrix with

few entry evaluations, arXiv:2207.06503
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