Lecture 2: Randomized iterative methods for linear systems

School of Mathematical Sciences, Xiamen University

Data Analysis & Matrix Comp.

Lecture 2

Xiamen University 1 / 12

- 1. The pseudoinverse solution of linear systems
 - Consider a linear system of equations

$$\mathbf{A}\mathbf{x} = \mathbf{b}, \quad \mathbf{A} \in \mathbb{R}^{m \times n}, \quad \mathbf{b} \in \mathbb{R}^{m}.$$

The system is called *consistent* if $\mathbf{b} \in \text{range}(\mathbf{A})$, otherwise, *inconsistent*.

• We are interested in the pseudoinverse solution $\mathbf{A}^{\dagger}\mathbf{b}$, where \mathbf{A}^{\dagger} denotes the Moore–Penrose pseudoinverse of \mathbf{A} .

Ax = b	$\mathrm{rank}(\mathbf{A})$	$\mathbf{A}^{\dagger}\mathbf{b}$
consistent	= n	unique solution
$\operatorname{consistent}$	< n	unique minimum 2-norm solution
inconsistent	= n	unique least-squares (LS) solution
inconsistent	< n	unique minimum 2-norm LS solution

- 2. Randomized Kaczmarz (RK) (Strohmer & Vershynin 2009)
 - Kaczmarz method projects \mathbf{x}^{k-1} onto $\{\mathbf{x} \mid \mathbf{A}_{i,:}\mathbf{x} = \mathbf{b}_i\},\$

$$\mathbf{x}^{k} = \mathbf{x}^{k-1} - \frac{\mathbf{A}_{i,:}\mathbf{x}^{k-1} - \mathbf{b}_{i}}{\|\mathbf{A}_{i,:}\|_{2}^{2}} (\mathbf{A}_{i,:})^{\top},$$

where $\mathbf{A}_{i,:}$ is the *i*th row of \mathbf{A} and \mathbf{b}_i is the *i*th component of \mathbf{b} .

Algorithm: RK for Ax = b

Initialize
$$\mathbf{x}^0 \in \mathbb{R}^n$$

for $k = 1, 2, ..., \mathbf{do}$
Pick $i \in [m]$ with probability $\frac{\|\mathbf{A}_{i,:}\|_2^2}{\|\mathbf{A}\|_F^2}$
Set $\mathbf{x}^k = \mathbf{x}^{k-1} - \frac{\mathbf{A}_{i,:}\mathbf{x}^{k-1} - \mathbf{b}_i}{\|\mathbf{A}_{i,:}\|_2^2} (\mathbf{A}_{i,:})^\top$
end

• Suppose that $\mathbf{b} \in \operatorname{range}(\mathbf{A})$. The convergence result:

$$\mathbb{E}\left[\|\mathbf{x}^k - \mathbf{x}^0_\star\|_2^2\right] \le \rho^k \|\mathbf{x}^0 - \mathbf{x}^0_\star\|_2^2,$$

where

$$\mathbf{x}^{0}_{\star} = (\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A})\mathbf{x}^{0} + \mathbf{A}^{\dagger}\mathbf{b}$$

and

$$\rho = 1 - \frac{\sigma_r^2(\mathbf{A})}{\|\mathbf{A}\|_{\mathrm{F}}^2}.$$

2.1 A numerical example

Figure: The relative error of the RK algorithm (10 independent trials) for consistent case (left) and inconsistent case (right).

3. Randomized coordinate descent (RCD)

• RCD or RGS: (Leventhal & Lewis 2010)

$$\mathbf{x}^{k} = \mathbf{x}^{k-1} - \frac{(\mathbf{A}_{:,j})^{\top} (\mathbf{A} \mathbf{x}^{k-1} - \mathbf{b})}{\|\mathbf{A}_{:,j}\|_{2}^{2}} \mathbf{I}_{:,j},$$

where $\mathbf{A}_{:,j}$ is the *j*th column of \mathbf{A} and $\mathbf{I}_{:,j}$ is the *j*th column of the $n \times n$ identity matrix \mathbf{I} .

7 / 12

Algorithm: RCD for Ax = bInitialize $\mathbf{x}^0 \in \mathbb{R}^n$ and $\mathbf{r}^0 = \mathbf{b} - \mathbf{A}\mathbf{x}^0$ for k = 1, 2, ... do Select $j \in [n]$ randomly with probability $\frac{\|\mathbf{A}_{:,j}\|_2^2}{\|\mathbf{A}\|^2}$ Compute $w_k = \frac{(\mathbf{A}_{:,j})^\top \mathbf{r}^{k-1}}{\|\mathbf{A}_{:j}\|_2^2}$ Update $\mathbf{x}_{i}^{k} = \mathbf{x}_{i}^{k-1} + w_{k}$ and $\mathbf{r}^{k} = \mathbf{r}^{k-1} - w_{k}\mathbf{A}_{:,i}$ end for

• The convergence result:

$$\mathbb{E}\left[\|\mathbf{A}(\mathbf{x}^k - \mathbf{A}^{\dagger}\mathbf{b})\|_2^2\right] \le \left(1 - \frac{\sigma_r^2(\mathbf{A})}{\|\mathbf{A}\|_{\mathrm{F}}^2}\right)^k \|\mathbf{A}(\mathbf{x}^0 - \mathbf{A}^{\dagger}\mathbf{b})\|_2^2.$$

3.1 A numerical example

Figure: Convergence history of the RCD algorithm (10 independent trials) for rank-deficient case. Left: the relative residual. Right: the relative error.

4. Randomized extended Kaczmarz (REK) (Zouzias & Freris 2013)

• The normal equations $\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{A}^{\top}\mathbf{b}$ can be written as

$$\mathbf{A}^{\top}\mathbf{z} = \mathbf{0}, \quad \mathbf{A}\mathbf{x} = \mathbf{b} - \mathbf{z}.$$

• RK for $\mathbf{A}^{\top} \mathbf{z} = \mathbf{0}$ with $\mathbf{z}^0 \in \mathbf{b} + \operatorname{range}(\mathbf{A})$ yields $\{\mathbf{z}^k\}_0^{\infty}$ satisfying $\mathbf{z}^k \to (\mathbf{I} - \mathbf{A}\mathbf{A}^{\dagger})\mathbf{b}$ as $k \to \infty$.

Then $\mathbf{A}\mathbf{x} = \mathbf{b} - \mathbf{z}^k \to \mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{A}^{\dagger}\mathbf{b}$, which is consistent.

REK solves A^TAx = A^Tb via intertwining an iterate of RK on A^Tz = 0 with an iterate of RK on Ax = b − z.

$$\mathbf{z}^{k} = \mathbf{z}^{k-1} - \frac{(\mathbf{A}_{:,j})^{\top} \mathbf{z}^{k-1}}{\|\mathbf{A}_{:,j}\|_{2}^{2}} \mathbf{A}_{:,j},$$
$$\mathbf{x}^{k} = \mathbf{x}^{k-1} - \frac{\mathbf{A}_{i,:} \mathbf{x}^{k-1} - \mathbf{b}_{i} + \mathbf{z}_{i}^{k}}{\|\mathbf{A}_{i,:}\|_{2}^{2}} (\mathbf{A}_{i,:})^{\top}.$$

Algorithm: REK for $\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{A}^{\top}\mathbf{b}$

Initialize
$$\mathbf{z}^{0} \in \mathbf{b} + \operatorname{range}(\mathbf{A})$$
 and $\mathbf{x}^{0} \in \mathbb{R}^{n}$
for $k = 1, 2, ..., \mathbf{do}$
Pick $j \in [n]$ with probability $\frac{\|\mathbf{A}_{:,j}\|_{2}^{2}}{\|\mathbf{A}\|_{\mathrm{F}}^{2}}$
Set $\mathbf{z}^{k} = \mathbf{z}^{k-1} - \frac{(\mathbf{A}_{:,j})^{\top}\mathbf{z}^{k-1}}{\|\mathbf{A}_{:,j}\|_{2}^{2}}\mathbf{A}_{:,j}$
Pick $i \in [m]$ with probability $\frac{\|\mathbf{A}_{i,:}\|_{2}^{2}}{\|\mathbf{A}\|_{\mathrm{F}}^{2}}$
Set $\mathbf{x}^{k} = \mathbf{x}^{k-1} - \frac{\mathbf{A}_{i,:}\mathbf{x}^{k-1} - \mathbf{b}_{i} + \mathbf{z}_{i}^{k}}{\|\mathbf{A}_{i,:}\|_{2}^{2}}$
Set $\mathbf{x}^{k} = \mathbf{x}^{k-1} - \frac{\mathbf{A}_{i,:}\mathbf{x}^{k-1} - \mathbf{b}_{i} + \mathbf{z}_{i}^{k}}{\|\mathbf{A}_{i,:}\|_{2}^{2}}$
end

• The convergence result:

$$\mathbb{E}\left[\|\mathbf{x}^k - \mathbf{x}^0_\star\|_2^2\right] \le \rho^k \|\mathbf{x}^0 - \mathbf{x}^0_\star\|_2^2 + \frac{k\rho^k}{\|\mathbf{A}\|_{\mathrm{F}}^2} \|\mathbf{z}^0 - (\mathbf{I} - \mathbf{A}\mathbf{A}^\dagger)\mathbf{b}\|_2^2.$$

Data Analysis & Matrix Comp.

5. Summary of randomized iterative methods

- Randomized iterative methods are preferable if the coefficient matrix **A** is too large to fit in memory, or the matrix-vector product **Av** is considerably expensive.
- Consistent: RK and its variants Inconsistent, full-column rank: RCD and its variants Inconsistent, rank-deficient: REK and its variants

6. References

- T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm with exponential convergence, J. Fourier Anal. Appl., 2009
- D. Leventhal and A.S. Lewis, Randomized methods for linear constraints: convergence rates and conditioning, Math. Oper. Res., 2010
- A. Zouzias and N.M. Freris, Randomized extended Kaczmarz for solving least squares, SIMAX, 2013